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Summary

In Amazonia, human activities that occurred hundreds of years ago in the pre-European era can

leave long-lasting effects on the forests – termed ecological legacies. These legacies include the

intentional or nonintentional enrichment or depletion of certain species. The persistence of these

legacies through time varies by species, and creates complex long-term trajectories of post-

disturbance succession that affect ecosystem processes for hundreds of years. Most of our

knowledge of Amazonian biodiversity and carbon storage comes from a series of several

hundred forest plots, andwe only know the disturbance history of four of them.More empirical

data are needed to determine the degree to which past human activities and their ecological

legacies affect our current understanding of Amazonian forest ecology.

I. Introduction

The importance of Amazonian rainforests for an array of ecosystem
services and functions is well known amongst scientists but perhaps
less so amongst policymakers (Levis et al., 2020). The biodiversity
of Amazonian forests is immense (ter Steege et al., 2020), but the
mechanisms driving the relative abundances and distributions of
this diversity remain largely unresolved. Environmental gradients,
biotic interactions and dispersal limitation all play a role in
structuring diversity patterns in Amazonian forests (e.g. Wright,
2005). An emerging hypothesis is that past disturbances in the
landscape, particularly those caused by human activities, have also
played a role in shaping the structure, function and diversity
patterns observed in modern forests (Levis et al., 2017;McMichael
et al., 2017b).

People have lived in Amazonia for over 10 000 yr (Roosevelt,
2013) and have cultivated maize in some regions for over

6000 yr (Brugger et al., 2016; Bush et al., 2016). Besides
cultivation, people in the pre-European era also used fire to
clear forests and amend soils, and they domesticated several
plant species (e.g. Neves & Petersen, 2006; Piperno, 2011;
Clement et al., 2015). Some of these forests have been managed
continually by indigenous people for hundreds or even
thousands of years, sometimes termed intensive or opportunistic
agroforestry (Neves, 2013; Levis et al., 2018). But many areas
that were cleared and managed at the time of European arrival
c. 500 years ago were abandoned, when a majority of indige-
nous populations collapsed (Denevan, 2014). Following Euro-
pean colonization, many Jesuit missions were established but
were quickly abandoned (Reeve, 1993). The ‘Amazonian rubber
boom’ (c. AD 1850–1920) was a subsequent influx of European
colonists that later collapsed because establishing rubber
plantations was cheaper in Malaysia (Hecht, 2013). It is likely
that all of these past waves of colonization and abandonment in
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the landscape have left ecological legacies on the forests, where
trees often have life spans exceeding 150 yr.

Ecological legacy refers to the influence of an event (i.e.
disturbance) on an ecosystem and its persistence over a given time
period, and is a term that has beenwidely used in succession studies.
The type and intensity of human disturbance (e.g. clear cut versus
forest burning) affect the trajectory of the ecological legacy in
Amazonian systems on decadal timescales (e.g. Mesquita et al.,
2015). The long-term ecological legacies of past human impacts
during the pre- and post-European eras, however, remain more
obscure. Here I review recent advances in our understanding of
long-term ecological legacies in Amazonia with a focus on
biodiversity and carbon storage, and highlight why assessing past
disturbances is crucial for understanding the patterns and dynamics
observed in these globally important forests.

II. Ecological legacies on forest composition

Most studies of ecological legacies on Amazonian forest compo-
sition have focused on the enrichment and long-term persistence of
useful species. It has been suggested that Bertholettia excelsa (Brazil
Nut), Bactris gasipaes (Peach Palm) and other edible plants were
enriched in the pre-European era, and their abundances have
remained artificially high ever since (i.e. for hundreds of years)
(Fig. 1a; Scoles & Gribel, 2011; Clement et al., 2015; Thomas
et al., 2015;Maezumi et al., 2018). In a series of c. 1100 forest plots
in Amazonia, there were higher richnesses and abundances of
domesticated tree species in locations that were closest to known
pre-European archaeological sites (Levis et al., 2017). Many of
these same domesticated species that show a relationship with pre-
European occupation are also some of themost abundant across the
basin (ter Steege et al., 2013).

Ecological legacies following disturbances may not always be
persistent, as is the casewith early successional taxa, such asCecropia

orTrema (Fig. 1a).Mid- to late-successional taxa, such as Ficus and
Pilea, have longer life spans and can persist for centuries, but
eventually decrease in abundance (�Akesson et al., 2020). In Costa
Rican forests, the proportion of old-growth taxa can reach 30–40%
within 25–30 ys following a disturbance, but then only reaches
50% at 80 yr following a disturbance (Chazdon et al., 2009). The
systems are expected to continue shifting in their composition for at
least 200 yr following a disturbance (Foster, 1990; Loughlin et al.,
2018). These nonpersistent ecological legacies are often simply part
of the long-term successional process.

Ecological legacies in Amazonia can also include the depletion of
species by people (Fig. 1b). Themost commonly observed example
of species depletion in palaeoecological records is the palm Iriartea
deltoidea, which occurs in higher abundances where there is little to
no evidence of human activity compared with areas containing past
fire and cultivation (Bush & McMichael, 2016; Heijink et al.,
2020). Iriartea deltoidea usually recovers c. 100 yr after site
abandonment and often reaches abundances higher than before
the disturbance (Fig. 1b). Iriartea deltoidea is currently the sixth
most common tree species in Amazonia (ter Steege et al., 2020),
and it is possible that this rise to dominance occurred as result of
recovery from past depletions. It is hard to find examples of
persistent depletion, which would require a species to have poor
recruitment and limited seed dispersal. These types of species are
rare in the landscape (Wills et al., 1997), and therefore almost
undetectable using palaeoecological reconstructions.

Palms are disproportionately abundant in Amazonia compared
with other tree families, and have varying degrees of responses to
human disturbances.Wettinia is a genus of mid-successional palms
that has a similar, nonpersistent, negative response to human
disturbance like I. deltoidea. Wettinia, however, does not seem to
have the recovery overshoot that has been documented in Iriartea
(Fig. 1b;�Akesson et al., 2020). The palmgenusEuterpe includes the
first and seventhmost common tree species in Amazonia (ter Steege
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et al., 2013). Both of these Euterpe species are useful for their fruit,
but their abundances do not seem to shift drastically in response to
low levels of human disturbance (Fig. 1; Heijink et al., 2020).

III. Ecological legacies on biomass and carbon
dynamics

Amazonia provides a significant input to global carbon and climate
models, and is believed to sequester more carbon than it releases
(i.e. is a carbon sink; e.g. Aragao et al., 2014). Global climate and
carbon models assume that forests are not recovering from past
disturbances, although this is intensely debated (Wright, 2013).
Over recent decades, the carbon sequestration potential of
Amazonia has been declining because increases in tree productivity
rates have slowed andmortality rates have increased (Brienen et al.,
2015). The effects of short-term disturbances (e.g. El Ni~no events)
have been studied (Phillips et al., 2009), but very little is known
about the longer-term disturbance histories within the forest plots
that are used to estimate Amazonian carbon dynamics.

Old growth forests typically contain high amounts of biomass,
but have relatively low productivity and mortality rates (Fig. 2a).
Landscape modifications by people lower the biomass but increase
the productivity and mortality of the system until the disturbance
ceases (Fig. 2b). Of these modifications, fire and deforestation are
the most intense, and biomass recovery patterns are known to be
linked to disturbance intensity (de Avila et al., 2018). Early
successional species transition to mid-successional species, which
have a higher biomass, c. 60 yr after abandonment, and this process
can happen for over 100 yr (Fig. 2c; Loughlin et al., 2018). Biomass
recovery, however, has been shown to exceed 100% of the pre-
disturbance values until at least 100 yr following an event (Fig. 2d;
Poorter et al., 2016). There are no current estimates of how long it
takes for the long-lived, mid-successional species to die off and for
biomass to return to pre-disturbance values (Fig. 2e). There are also

no data yet as to how long-term succession may be affecting the
forest dynamics observed in recent decades.

It is possible that the decline of the Amazonian carbon sink and
slowing down of productivity observed in the last 30 yr (Brienen et al.,
2015) reflect biomass and carbon dynamics returning to pre-
disturbance values over the last several hundred years (Fig. 2d,e).
Biomass and carbon dynamics are directly linked with species
composition (e.g. Phillips et al., 2019), and thus ecological legacies
of species composition (Fig. 1) probably translate to legacies on
biomass and carbon dynamics (Fig. 2). High abundances of
Bertholettia excelsa in southwestern Amazonia, which may be related
to past human enrichment (Fig. 1a), play a large role in the overall
carbon storage potential of those forests (Selaya et al., 2017). The large
changes in palm abundances seen over the last several thousand years
(Bush &McMichael, 2016) have also probably affected biomass and
carbondynamics.The forest plots used tomeasure carbondynamics in
Amazonia are disproportionately located in areas containing high
densities of archaeological sites andhighprobabilities of pre-European
settlement (McMichael et al., 2017b). These plots are thus probably
capturing changes in carbon dynamics related to long-term succes-
sional dynamics and ecological legacies.

IV. Outlook: advancing our knowledge of long-term
ecological legacies

There are several knowledge gaps and debatable aspects regarding
ecological legacies in Amazonian forests. The first concerns the
timing and intensity of the disturbance that created the ecological
legacy. Most research has focused on linking pre-European human
activities withmodern vegetation, but the impacts of the last 400 yr
of postcolonial activities are also beginning to be considered
(McMichael et al., 2017a; Arienzo et al., 2019). These two eras had
different types and intensities of land use, which affect long-term
successional trajectories (Bodin et al., 2020).
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Fig. 2 It is unknown where modern observations lie in the context of long-term successional trajectories. (a) Mature forests have more large trees, fewer
understorey trees and fewgrasses (brown forest floor). (b) Past humandisturbances includefire, forest clearance, cultivation, and treedomestication (increased
palms and fruit trees). Canopyopenings result in a thicker understorey, increasednumbers of grasses (green forest floor) andpioneer taxa. (c) Early successional
forests retain high numbers of domesticated species, palms and pioneers, and begin accumulating large trees. (d) Mid-successional forests retain high
abundances of domesticates, long-lived pioneers and large trees, resulting in higher biomass than mature forests (red bar, above-ground biomass (AGB)). (e)
Pioneers die off andmature forests re-emerge, although they are compositionally different than before the disturbance.Darker shading indicates higher values
and lighter shading indicates lower values for changes in AGB, productivity (Prod), and mortality (Mort) through time following a large-scale disturbance.
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The time since the last major disturbance is almost unknown in
the forest plots used to study biodiversity and carbon dynamics.
The time since the last fire has beenpublished in only four out of the
hundreds of surveyed forest plots (Fig. 3; Heijink et al., 2020). Los
Amigos in Peru has burned in some areas as recently as 50 yr ago
(Figs 2, 3, yellow star), whereas Amacayacu in Colombia has not
burned in over 1600 yr (Figs 2, 3, white star). The other two forest
plots had burned between 300 and 600 yr ago, and it is unknown
whether biomass and composition have returned to pre-distur-
bance values (Figs 2, 3, pink and red stars). Interestingly, palm
abundances in the modern vegetation and in vegetation recon-
structions were significantly lower at Los Amigos, which has had
more recent and frequent fire events over the last 4000 yr compared
with the other plots (Heijink et al., 2020). The timing of the last
major disturbance for the majority of these forest plots remains
unknown (Fig. 3).

The spatial extent of these past human activities and ecological
legacies into less well-studied and less accessible regions of the forest
also remains unknown and is highly debated. Some have argued
that the extent of site abandonment and subsequent forest regrowth
after European arrival was so great that it caused a global decrease in
CO2 concentrations (Koch et al., 2019). But these assumptions rely
on archaeological datasets, which, like the forest plots, are biased
towards the accessible areas in Amazonia (McMichael et al.,
2017a). Many soil surveys conducted in randomized and less
accessible areas show little to no evidence of past fire or human
occupation, or even the slightest bit of past forest opening (Piperno
et al., 2019). Despite extensive scanning of hundreds of samples for
charcoal in soils collected from a forest plot in the Colombian
Amazon, only three were collected that were > 10 mg, or the
minimum size required for 14C dating (Heijink et al., 2020). There
was no evidence ofmaize or past forest openings in the 90 phytolith
samples analysed from this forest plot, and the most recent fire

occurred 1600 yr ago (Figs 2, 3; Heijink et al., 2020). The
probability of the modern vegetation reflecting past human
activities, or an ecological legacy, at this site is almost zero.

The integration of ecological, palaeoecological, and archaeolog-
ical data are crucial to understanding the long-term ecology and
ecological legacies in Amazonian forests. Archaeologists and
palaeoecologists are beginning to collect complementary datasets
(Mayle & Iriarte, 2014; Maezumi et al., 2018; �Akesson et al.,
2019). But to fully understand how past human activities affect
modern processes, the palaeoecological and archaeological data
must also be collected within the series of ecological surveys – the
Amazonian forest plots that are used for estimating biodiversity and
carbon dynamics. The four plots with past fire and vegetation data
tell radically different stories, and filling in the gaps on the
continuum of past disturbances is necessary to make links with the
patterns found in the modern observational data (Figs 1–3).

Advancements in techniques of looking into the past are pushing
the boundaries of what can be learned from ecological, palaeoe-
cological and archaeological datasets. One example is by extracting
dendrochronological, isotopic and genetic information from living
trees, and using that information as time capsules of past human
and climatic change (Caetano-Andrade et al., 2020). Another
example is by using the chemical and morphological composition
of charcoal found within palaeoecological and archaeological
archives to infer the temperature (intensity) of past fires and the
types of plant material that were burned (Goulart et al., 2017;
Gosling et al., 2019). These technical developments, aswell as those
geared towards improving the taxonomic identification of macro-
and microfossils, are providing deeper insights into how past
disturbances are manifested in modern systems.
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