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SUMMARY

The testis expresses the largest number of genes of any mammalian organ, a finding that has long 

puzzled molecular biologists. Our single-cell transcriptomic data of human and mouse 

spermatogenesis provides evidence that this widespread transcription maintains DNA sequence 

integrity in the male germline by correcting DNA damage through a mechanism we term 

transcriptional scanning. We find that genes expressed during spermatogenesis display lower 

mutation rates on the transcribed strand and have low diversity in the population. Moreover, this 

effect is fine-tuned by the level of gene expression during spermatogenesis. The unexpressed 
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genes, which in our model do not benefit from transcriptional scanning, diverge faster over 

evolutionary time-scales and are enriched for sensory and immune-defense functions. Collectively, 

we propose that transcriptional scanning shapes germline mutation signatures and modulates 

mutation rates in a gene-specific manner, maintaining DNA sequence integrity for the bulk of 

genes but allowing for faster evolution in a specific subset.

In-brief

The male germline cells in human and mice balance the protection of genomic integrity and the 

evolutionary benefit of genetic mutations through transcriptional scanning, a mechanism that 

preferentially coupling efficient DNA damage repair with high transcription activity.

Graphical Abstract

INTRODUCTION

It has been known for many years that the testis is the organ with the most complex 

transcriptome in terms of the number of expressed genes (Melé et al., 2015; Schmidt and 

Schibler, 1995; Soumillon et al., 2013). Widespread transcription in the testis has been 

reported to include over 80% of all protein-coding genes in human as well as in other 

species (Melé et al., 2015; Soumillon et al., 2013). Several hypotheses have been put forth to 

explain this observation (Kleene, 2001; Schmidt, 1996). Widespread expression may 

represent a functional requirement for the gene-products in question (Johnston et al., 2008; 
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Schmidt, 1996). However, other organs containing more cell types – such as the brain – do 

not exhibit such high numbers of expressed genes (Brawand et al., 2011; Melé et al., 2015; 

Soumillon et al., 2013). Moreover, recent studies have shown that knocking-out many testis-

enriched and evolutionarily-conserved genes does not cause male infertility in mice (Miyata 

et al., 2016). The notable discordance between the transcriptome and the proteome in the 

testis (Kleene, 2003; Wang et al., 2019) further supports the notion that the widespread 

transcription does not exclusively lead to protein production, as the central dogma of 

molecular biology would suggest.

A second hypothesis implicates leaky transcription during the massive chromatin 

remodeling that occurs throughout spermatogenesis as the cause of the observed widespread 

transcription (Necsulea and Kaessmann, 2014; Rathke et al., 2014; Schmidt, 1996). 

However, this model would predict more expression during later stages of spermatogenesis – 

when the genome is undergoing the most chromatin changes – in contradiction with 

previous observations (Naro et al., 2017; Rathke et al., 2014; Soumillon et al., 2013). 

Additionally, given the high energetic requirements of transcription, one would not expect 

such high levels of non-functional transcription (Frumkin et al., 2017; Huang et al., 2015; 

Lynch and Marinov, 2015).

Here we propose the ‘transcriptional scanning’ hypothesis, whereby widespread testis 

transcription facilitates germline DNA repair and ultimately modulates gene evolution rates. 

Using single-cell RNA-Seq (scRNA-Seq) data of human and mouse testes, we confirmed 

that widespread transcription originates from the germ cells. We found that spermatogenesis-

expressed genes have lower germline mutation rates in the population compared to the 

unexpressed genes, and that the signature of transcription-coupled repair (TCR) on these 

genes could explain the observed pattern of biased germline mutation rates. Our 

transcriptional scanning model suggests that widespread transcription during 

spermatogenesis facilitates a DNA scanning process that systematically detects and repairs 

bulky DNA damage through TCR (Hanawalt and Spivak, 2008; Werner et al., 2015), thus 

reducing germline mutations rates and, ultimately, the rates of gene evolution. The set of 

unexpressed genes in the male germline is not random. Rather, they are enriched in sensory 

and immune/defense system functions, which have evolved faster in recent human evolution 

(Boehm, 2012; Flajnik and Kasahara, 2010; Singh et al., 2012). However, transcription-

coupled damage (TCD) appears to overwhelm the effects of TCR in the small subset of very 

highly expressed genes, which are enriched in spermatogenesis-related functions, 

implicating a role for TCD in modulating germline mutation rates (Jinks-Robertson and 

Bhagwat, 2014). Collectively, our transcriptional scanning model exposes a hitherto under-

appreciated aspect of DNA repair in biasing gene mutation rates and evolution rates 

throughout the genome.

RESULTS

Single-cell RNA-Seq reveals the developmental trajectory of spermatogenesis

To identify gene expression pattern throughout spermatogenesis, we applied single-cell 

RNA-Seq (scRNA-Seq) to the human and mouse testes (Figure S1A). The resulting data 

allowed us to distinguish between the genes expressed in the somatic and germline cells, as 
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well as to reveal genes with dynamic expression patterns throughout the developmental 

process of spermatogenesis, including mitotic amplification, meiotic specification to 

generate haploid germ cells, and finally, differentiation and morphological transition to 

mature sperm cells (Figure 1A–B) (Hammoud et al., 2014; Sharma and Agarwal, 2011).

Principal component analysis (PCA) and unsupervised clustering on the scRNA-Seq data of 

human testicular cells revealed 19 clusters composed of cells from different biological and 

technical replicates (Figure 1B, S1B–C and Table S1, SI methods). We annotated the 5 cell 

clusters composed of somatic cells – including Leydig cells, Sertoli cells, peritubular myoid 

cells, testicular endothelial cells and testis-resident macrophages (Sharma and Agarwal, 

2011) – using previously determined cell type markers (Figure 1B and S1D–E, see STAR 

Methods). Excluding the somatic cells, PCA on the 14 clusters of germ cells revealed a 

continuum suggesting that the order of the cells corresponds to the developmental trajectory 

of spermatogenesis (Figure 1C). Four independent lines of evidence support this inference. 

First, the order of expression of known marker genes across the continuous clusters matched 

their developmental order (Figure S1E). Second, pseudotime analysis using Monocle2 

revealed the same cell trajectory (Figure S1E–F) (Qiu et al., 2017). Third, RNA Velocity 

analysis (La Manno et al., 2018) – examining the relationship between the spliced and 

unspliced transcriptomes – further supported the developmental progression during 

spermatogenesis and also identified the previously reported decline of expression during 

meiosis and late spermiogenesis (Figure 1C) (Rathke et al., 2014; Sharma and Agarwal, 

2011). Finally, our scRNA-seq data across the developmental program of spermatogenesis 

showed high consistency with other recently published human testis scRNA-seq results 

(Figure S1G) (Guo et al., 2018; Hermann et al., 2018; Sohni et al., 2019; Wang et al., 2018).

Our scRNA-seq data allowed us to test whether the long-observed widespread gene 

expression in the testis has contributions from both germ and somatic cells, or is mainly 

from the germ cells. Examining only germ cells, we found that 90.5% of all protein-coding 

genes are expressed (Figure 1D, SI methods). In contrast, all of the detected somatic cell 

types collectively express 59.9% of the genes, where >99% overlap with the germ cell-

expressed genes. Overall, the spermatocytes and round spermatids clusters have the largest 

number of expressed genes at the single-cell level, far more than that of testicular somatic 

cell types (Figure S1H). We further compared the number of expressed protein-coding genes 

across multiple developmental scRNA-seq datasets, including that of the human developing 

brain and another human testis study (Guo et al., 2018; Hochane et al., 2019; La Manno et 

al., 2016; Nowakowski et al., 2017; Pellin et al., 2019) (see STAR Methods). Again, we 

found that testicular germ cells express the greatest number of protein-coding genes (Table 

S2). This observation is also supported by bulk RNA-seq results across all complex organs/

tissues included in the Genotype-Tissue Expression (GTEx) dataset (Figure S1I) (GTEx 

Consortium, 2015). Together, our scRNA-seq results and other analyses support the notion 

that the widespread gene expression in the testis originates in the germ cells.

To further ask whether specific developmental stages are enriched for expression, we 

clustered all human protein-coding genes into six groups including the unexpressed genes 

(Figure 1D–E, Table S3). While no single stage alone accounts for the widespread 
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transcription, we can infer that each sperm cell will have expressed ~90.5% of the genes by 

the end of its maturation.

To test the generality of these results, we repeated the experiments on mouse testes and 

found that the pattern of transcription during mouse spermatogenesis was broadly 

comparable to that of human (Figure S2A–D, Table S1 and S4). In terms of genes expressed 

across the stages, we found an overall highly conserved spermatogenesis gene expression 

program (Figure S2C–E). A combined principal component analysis of human and mouse 

germ cells further highlighted this conservation (Figure S2F–G). We also noted that PC2 

clearly separates the human and mouse cells (Figure S2H), indicating a species-specific gene 

expression signature between the two species. These genes include metabolic genes such as 

GAPDH (Gapdh) (Paoli et al., 2017) and FABP9 (Fabp9) (Selvaraj et al., 2010), chemokine 

gene CXCL16 (Cxcl16), and sperm motility-related gene SORD (Sord) (Frenette et al., 

2006) (Figure S2I). Collectively, these results highlight the conserved gene expression of 

human and mouse spermatogenesis, but also identify the divergence between the two 

species.

Reduction of germline mutation rates in spermatogenesis-expressed genes

We hypothesized that widespread transcription during spermatogenesis could lead to two 

scenarios (Figure 2A): 1) transcription events unwind the double-stranded DNA, leading to 

an increased likelihood of mutations by transcription-coupled damage (TCD) (Jinks-

Robertson and Bhagwat, 2014), and consequently to higher germline mutation rates and 

diversity within the population; and/or 2) the transcribed regions are subject to transcription-

coupled repair (TCR) of DNA damage (Hanawalt and Spivak, 2008), thus reducing germline 

mutation rates and safeguarding the germline genome, leading to lower population diversity. 

In both scenarios, differences in expression states may contribute to the pattern of germline 

mutation rates, and ultimately lead to differential gene evolution rates.

Public databases have amassed ~300 million germline variants detected in the human 

population, providing a rich resource for studying germline mutation rates (Zerbino et al., 

2018). Since ~80% of these germline variants are thought to have originated in males 

(Campbell and Eichler, 2013; Makova and Li, 2002), we used the single nucleotide 

variations (SNVs) from this dataset to query for germline mutation rates and predicted 

mutational signatures caused by widespread transcription in the testis (see STAR Methods) 

(Acuna-Hidalgo et al., 2016; Nei et al., 2010). Interestingly, we found that spermatogenesis-

expressed genes, regardless of the timing of their expression (throughout and following 

meiosis), generally have a lower rate of germline SNVs, relative to the unexpressed genes 

(Figure 2B). This difference is robust across donors (Figure S3A–C) and gene clustering 

parameters (Figure S3D). We also confirmed the observation of lower germline SNV rates 

using only SNVs detected by the 1000 Genome project (Figure S3E).

Previous results have shown that the density of somatic mutations is negatively correlated 

with genomic features of open chromatin, likely due to greater DNA repair accessibility 

(Polak et al., 2015; Schuster-Böckler and Lehner, 2012). To test whether lower germline 

SNV rates in the spermatogenesis-expressed gene sets are confounded by transcription-

independent DNA repair favoring open chromatin states of the expressed genes, we asked if 
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the upstream regions of these genes have lower germline SNV rates compared to those of the 

unexpressed genes. Upstream regions (5kb) of genes are strongly enriched with open 

chromatin states in expressed genes, relative to unexpressed genes (Buenrostro et al., 2013). 

However, analyzing the germline SNV rates in the upstream regions revealed minimal 

differences between the spermatogenesis expressed- and unexpressed-genes (Figure S3F). A 

similar pattern was also observed for the gene downstream regions (Figure S3G). Together, 

these results indicate that it is transcription itself – not the associated chromatin state – that 

leads to lowered germline SNV rates in the spermatogenesis-expressed genes.

To further control for differences in gene family-specific mutation rates, we examined gene 

families individually according to whether they are expressed (in any stage) or unexpressed 

during spermatogenesis (see STAR Methods) (Gray et al., 2016). For all large gene families 

(>100 genes) with at least 10 genes in both categories we found lower germline SNV rates in 

the spermatogenesis-expressed gene group (Figure 2C). For example, of the 110 genes with 

a basic helix-loop-helix domain, 94 are expressed in the germ cells, and the expressed 

subgroup has a ~23% lower germline SNV rate in the population as compared to the 

unexpressed complement (Mann-Whitney test P<1.1×10−3).

We next tested whether this reduction of germline mutation rates in the expressed genes is 

unique to male germline gene expression profile, relative to that of other cell types. By 

distinguishing the binarized expression status in both germ cells and testicular somatic cell 

types, we found that genes expressed exclusively in somatic cells do not exhibit lower 

germline SNV rates than those of unexpressed genes in the somatic cell types (Figure 2D 

and S3H, see STAR Methods). This observation was also confirmed by analyzing gene 

expression across other human developmental systems, including the developing brain 

(Figure S3I). To study somatic tissues more broadly we turned again to the GTEx dataset 

which has characterized transcriptional profiles across all major human tissues/organs, 

including testis (GTEx Consortium, 2015). While not at the single-cell level and thus an 

average measure of gene expression across cell types, testis expression in this dataset still 

showed a significant difference relative to all other tissues in its germline variant ratio of 

expressed and unexpressed genes (Z-score = 4.13; Figure 2E). Interestingly, we found that 

the ovary transcriptome does not predict such an effect. Collectively, these results support 

the second explanation of transcription-coupled DNA repair in the male germ cells (Figure 

2A), with spermatogenesis-expressed genes showing reduced levels of germline mutations 

rates.

A TCR-induced germline mutational signature

While we studied the germline mutation rates using SNVs from population-wide whole 

genome sequencing (WGS), the observed differential mutation rates may also be influenced 

by natural selection, particularly in the coding regions. To search for a transcription-

dependent germline mutational signature and exclude selection, we restricted our analysis to 

stringently defined intron regions (see STAR Methods). We first repeated our analysis on the 

differential mutation rates across gene clusters using intronic SNVs. We confirmed that 

intron SNV rates are lower in the spermatogenesis-expressed genes than that in the 

unexpressed genes (Figure S3J–K). However, the effect is smaller, suggesting that, in the 
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coding regions, selection also contributes to a lower SNV rate in the spermatogenesis-

expressed genes. We used these intronic SNVs in the following analyses to determine the 

nature of the transcription-dependent germline mutational signatures.

If the reduction of mutations results from a male germ cell TCR-induced process, we would 

expect an asymmetry between the germline mutation rates of the coding and the template 

strands in the spermatogenesis-expressed genes (Haradhvala et al., 2016; Mugal et al., 

2009), but not in the genes unexpressed during spermatogenesis (Figure 3A). The 

asymmetry would be such that the template strand retains fewer mutations since, in TCR, 

DNA damage is detected by the RNA polymerase on the template strand (Hanawalt and 

Spivak, 2008). To distinguish between mutations occurring on the coding and template 

strands, we adapted a previous approach for identifying strand-asymmetries in the somatic 

mutation rate (Figure 3B) (Chen et al., 2017; Haradhvala et al., 2016). Applying this 

approach to intronic germline SNVs, we inferred a lower mutation rate on the template 

strands – relative to the coding strands – of genes expressed during spermatogenesis, 

regardless of their expression pattern along the spermatogenesis stages (Figure 3C). This 

effect was not apparent in the unexpressed genes (Figure S4B), as exemplified by A-to-T 

(A>T) transversion mutations in Figure 3C. Notably, we found that the coding strand, which 

has no transcription or only minimal levels of antisense transcription (Pelechano and 

Steinmetz, 2013), shows similar level of SNV rates between expressed genes and 

unexpressed genes (except for A-to-G mutations, which are known to accumulate mutations 

through transcription-coupled DNA damage in the coding strand) (Haradhvala et al., 2016).

We computed an ‘asymmetry score’ to study the difference in mutation rates inferred from 

the coding and template strands (Figure 3C–D) (Haradhvala et al., 2016). As expected, the 

expressed gene clusters showed strong asymmetry scores between the coding and template 

strands (Figure 3D and 3G). As a control, we tested the overall Watson and Crick strands 

(Figure S4D–E) and did not find such an asymmetry, indicating a transcription-dependent 

asymmetry. The difference in asymmetry scores between mutation types may reflect 

differential TCR efficiencies across DNA damages. For example, the A>G mutation type has 

the strongest asymmetry between coding and template strands, as also observed in cancer 

mutational signatures (Haradhvala et al., 2016). The asymmetry scores decrease throughout 

spermatogenesis, correlating with a decreasing expression of transcription-coupled repair 

genes during spermatogenesis (Figure S4F–G).

We further tested whether male germ cell gene expression is unique in causing asymmetric 

germline mutation rates between coding and template strands. The unexpressed genes during 

spermatogenesis have minimal asymmetry score levels, in sharp contrast with the expressed 

gene clusters (Figure 3D and 3G). As a negative control, we shuffled the gene clustering 

assignments while maintaining the group sizes and found that difference of asymmetry 

scores disappeared (Figure S5A–C). To test if this signal is unique to the male germ cells, 

we compared the asymmetry scores of unexpressed gene sets determined from the male 

germ cells and from somatic cell types (Figure S5D). We found that only the unexpressed 

genes from the male germ cells could predict a minimum level of coding-template 

asymmetry score. These results support the notion that the gene expression pattern during 

Xia et al. Page 7

Cell. Author manuscript; available in PMC 2021 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



spermatogenesis uniquely generates the asymmetric germline mutation rates between coding 

and template strands.

Bidirectional transcription signatures of mutation asymmetries

Initiation of gene expression can occur on the opposite strand of gene upstream region and 

in the inverse direction, leading to bidirectional transcription (Core et al., 2008; Duttke et al., 

2015) (Figure 3E). If lower mutation rates on the template strand are indeed maintained by 

transcription, we predicted that mutation asymmetry scores would display an inverse pattern 

between the opposite sides of the initiation of bidirectional transcription (Figure 3E). 

Consistently, we detected an inverse pattern of asymmetry scores between the gene body 

(intron) and the upstream sequences (Figure 3F–G, S4A–B). Similarly, since transcription 

may extend beyond the annotated end or polyadenylation site (Figure 3E) (Proudfoot, 2016), 

we also predicted that the asymmetry scores in the downstream sequences would display a 

similar, though expectedly weaker pattern compared to that of the gene body (Figure 3E). 

Again, we found the expected pattern in which the gene body and the downstream sequences 

have the same pattern of asymmetry scores (Figure 3G–H, S4B–C). We further controlled 

the bidirectional transcription-induced mutational signature by removing the genes for 

which the upstream region overlaps with another gene, for example those forming head-to-

head pairs (Trinklein et al., 2004) (Table S5 and see STAR Methods). The mutation 

asymmetry scores on the remaining genes still show consistent bidirectional transcription 

signatures (Figure S5E), supporting the notion that bidirectional transcription of genes 

causes the observed asymmetric pattern.

Finally, we also detected evidence that the same TCR influences are manifested in the 

mouse data (Figure S5F–G). For example, G-to-T (G>T) transversion mutations show strong 

conserved asymmetric mutation patterns in both the human and mouse data. Since G-to-T 

mutations come predominantly from endogenous oxidative DNA damage of guanine 

(Menoni et al., 2018; Tubbs and Nussenzweig, 2017), such conserved asymmetric germline 

mutation patterns between coding and template strands of genes are consistent with TCR-

induced effects on germline mutations.

Sequence contexts of TCR-induced germline mutational signatures

Point mutations are strongly biased by the local sequence context (Helleday et al., 2014; 

Ségurel et al., 2014). For example, the rate of C-to-T mutations at CpG dinucleoride sites is 

~10-fold higher than the same mutation type in CpH (A/C/T) sites (Ségurel et al., 2014). 

Previous studies in TCGA cancer mutation profiles considering the 5’- and 3’-adjacent bases 

have revealed ~30 tumor-specific mutational signatures across tumor types (Alexandrov et 

al., 2013). Similarly, we sought to understand the sequence context specificity of 

transcription-induced germline mutational signatures (Figure 4 and S6, see STAR Methods). 

Consistent with earlier results (Nachman and Crowell, 2000), we found that C-to-T mutation 

rates at the CpG sites are at least 10-fold higher relative to CpH sites or any other mutation 

types (Figure 4A). Cytosine deamination damage is usually efficiently repaired through the 

base-excision repair (BER) pathway (Krokan and Bjørås, 2013). Failing to repair the 

deaminated cytosine in the genome causes C-to-T transition mutation upon DNA replication 

(Duncan and Miller, 1980), and indeed studying the C-to-T mutation rates according to 
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coding and template strands, we found only a slight mutation asymmetry between the 

strands at the YpCpH contexts (Y stands for C or T, Figure 4A–B and 4E–F). C-to-T 

mutation at the CpG sites showed a minimal level of strand asymmetry, indicating that BER 

function at these sites is not generally influenced by transcription.

Systematically studying all of the mutation types, according to both their sequence contexts 

and coding/template strands, led us to uncover a pattern of TCR-induced germline 

mutational signature, which we term the “3’-pyrimidine rule”. First, consistent with our 

observations in Figure 3, we found that A-to-G mutations have the strongest asymmetric 

mutation rates between coding and template strands (Figure 4A–B). Other mutation types, 

including A-to-T, G-to-T and C-to-G mutations, also showed substantial overall levels of 

mutation asymmetries between the two strands (Figure 4A–B). Studying the mutation 

subtypes according to their adjacent bases, we found that mutation subtypes with a 3’-

pyrimidine (Y) consistently have stronger asymmetry scores than the ones with a 3’-purine 

(S) (Figure 4B). For example, in A-to-T mutation type, we found that the asymmetry scores 

predominantly come from the subtypes where the reference A is in the NpApY sites. We 

further tested this ‘3’-pyrimidine rule’ by controlling the 5’ base, examining NXA-NXT and 

NXG-NXC pairs, where N is the controlled 5’ base and X is the reference base of a given 

mutation type (see STAR Methods). We found that the mutation types with strong strand 

asymmetries (i.e., A-to-T, A-to-G, G-to-T and C-to-G mutation types) exhibited a dramatic 

and significantly stronger mutation asymmetry scores when the 3’-adjacent base is a 

pyrimidine (Figure 4C). Similarly, we tested whether the germline mutational signature 

revealed 5’-adjacent base-associated rules. In this case, we controlled the 3’-adjacent base, 

generating AXN-TXN and GXN-CXN pairs. We found only a slight 5’-pyrimidine 

preference in the C-to-T and C-to-G mutation types (Figure 4D), indicating that the 5’-

adjacent base has less of an impact on the germline mutational signatures than that of the 3’-

adjacent base. Lastly, we repeated our analysis of the 3’-pyrimidine rule using mouse 

germline mutations, and found that it is largely recapitulated (Figure 4E–H), supporting the 

notion that TCR-induced mutational signatures are conserved across species.

Transcriptional scanning is tuned by gene-expression level

Our results led us to propose ‘transcriptional scanning’ as a mechanism to systematically 

reduce DNA damage-induced mutagenesis in the bulk of genes by widespread 

spermatogenic transcription to safeguard the germline genome sequence integrity (Figure 

5A). We predicted that transcriptional scanning would be tuned by different expression 

levels in the testis. Indeed, examining our total and strand-specific germline SNV rates in the 

intron regions according to different expression levels (Figure 5B, Table S6 and see STAR 

Methods), we observed that as expression level increases, the overall mutation rate drops 

(Figure 5C), and furthermore that this drop can be mostly attributed to the template strand, 

supporting a transcription-dependent manner of DNA repair (Figure 5D,E). Surprisingly, 

however, the very highly expressed genes showed the opposite effect: the overall mutation 

rates and template strand mutation rates all increase, and the mutation rates on the coding 

strand also substantially increases (Figure 5D). We propose that this pattern indicates that 

the very highly expressed genes incur transcription-coupled DNA damage (Figure 2A), 

especially on the coding strand (Figure 5D). This observation is consistent with previous 
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reports from other systems of transcription-associated mutagenesis in highly expressed 

genes (Jinks-Robertson and Bhagwat, 2014; Park et al., 2012). The A-to-G transition 

mutation type has the most evident TCD-induced mutation rate increase (Figure 5D), and 

similarly, a strong TCD-induced effect was readily observed in somatic A-to-G mutations in 

liver cancer samples (Haradhvala et al., 2016). Together, the TCD-induced effect in the very 

highly-expressed spermatogenesis genes is consistent across all mutation types, supporting a 

general TCD effect (Figure 5D–E).

Overall, this analysis suggests that spermatogenesis gene expression level tunes germline 

mutation rates by transcriptional scanning. Increasing gene expression levels during 

spermatogenesis are correlated with mutation rate reduction on the template strand (Figure 

5D), but only to a point, while on the coding strand, increasing gene expression levels lead 

to increased mutation rates (Figure 5D). In the very highly expressed genes, TCD 

overwhelms the TCR-induced reductions, and produces an overall higher germline mutation 

rate than genes expressed at moderate levels (Figure 5C).

De novo germline mutational signatures

While our analysis into the germline mutational signatures thus far was based on population-

wide SNVs, we sought to further test our model using de novo germline mutations (DNMs), 

since these constitute a set of variants that have only recently entered the human population, 

and consequently are less influenced by natural selection (Acuna-Hidalgo et al., 2016). We 

collected two public-available DNM datasets from large-scale healthy trio-WGS studies (An 

et al., 2018; Jónsson et al., 2017), generating a total of 214,728 single nucleotide DNMs for 

testing our transcriptional scanning model. Analyzing DNM rates across our gene clusters 

defined from spermatogenesis expression pattern (Figure 1D–E) or expression level (Figure 

5B), we again found that spermatogenesis-expressed genes exhibit a lower level of mutation 

rates, tuned by their expression level (Figure 6A–B). Additionally, we considered the local 

sequence contexts of these DNMs and calculated their mutation rates on both coding strand 

and template strand (Figure 6C). We found that the mutation rates calculated from 

population-wide SNVs and that from the DNMs are highly correlated in both coding and 

template strands (Figure 6E–F), supporting our earlier analysis into the germline mutational 

signatures using SNVs. Finally, we compared the asymmetry scores computed from 

population-wide SNVs and that from DNMs, and again we observe consistent results 

(Figure 6G). Collectively, the de novo mutation datasets clearly recapitulate our observation 

of transcription-dependent mutational signatures and the effect of transcriptional-scanning, 

derived from analyzing the population-wide SNVs.

Transcriptional scanning over evolutionary time-scales

To study the evolutionary aspects of transcriptional scanning we first studied the functional 

attributes of the unexpressed genes during spermatogenesis, which are the relative minority 

of genes that in our model would not benefit from transcriptional scanning. In this set of 

1,890 genes we observed significant enrichment for fast evolving genes between human and 

apes (dN/dS values larger than 1.0, hypergeometric p-value: 1.0e-15, see STAR Methods). 

These genes are enriched for functions related to environmental sensing, immune systems, 

defense responses, and signaling transduction (Figure 7A, S7A and Table S7). These 
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functions are known to have evolved faster in the human genome (Boehm, 2012; Flajnik and 

Kasahara, 2010; Singh et al., 2012), and this link to lack of expression in the testes provides 

a possible contribution to their unique mode of evolution. Consistently, we detected the 

highest rates of sequence divergence across ape genomes among our category of 

unexpressed genes (hypergeometric p-value of enrichment in the top 10% highly-divergent 

genes: 8.8e-10, see STAR Methods) (Figure 7B). While selection is typically invoked to 

account for the fast evolution of genes (Figure S7B–C), biased germline mutation rates may 

also contribute according to the neutral theory of gene evolution (Boehm, 2012; Flajnik and 

Kasahara, 2010; Nei et al., 2010). To test this, we studied the synonymous substitution rates 

(dS, generally assumed to be neutral) as a proxy for the germline mutation rates and used 

this measure to compare between the spermatogenesis expressed and unexpressed genes. 

Interestingly, we found that the spermatogenesis-expressed genes have lower dS values 

(Figure 7C), consistent with our analysis of SNV rates in the intron regions (Figure S3J–K). 

We further found that the very highly expressed genes in spermatogenesis have increased 

rates of divergence (Figure S7F-I). As expected from their high expression, we found that 

this set of genes is mainly enriched for roles in male reproduction (Figure S7J and Table S7). 

Together, our analyses into human-ape gene divergence provide evidence that widespread 

gene expression during spermatogenesis may have shaped gene evolution rates.

DISCUSSION

Our findings led us to propose the ‘transcriptional scanning’ model (Figure 7D), whereby 

widespread transcription during spermatogenesis systematically reduces germline mutations 

in the expressed genes by transcription-coupled repair (TCR), thereby safeguarding the germ 

cell genome sequence integrity. Given that this process is carried out in the germline, the 

variable mutation rates have important implications. Combined with natural selection, this 

process may contribute to the relatively slower evolution of the bulk of spermatogenesis-

expressed genes (Figure 7D, middle). The small group of unexpressed genes during 

spermatogenesis is enriched for sensory and immune/defense system genes (Figure 7A) and 

our transcriptional scanning model provides insight into how variation is preferentially 

retained in this class of genes. The biased germline mutation rates provide increased 

population-wide genetic diversity which may be under strong selective biases for adaptation 

at the population-level in rapidly changing environments. Genes with very high germline 

expression form a third class, and these exhibit higher germline mutation rates which our 

model explains in terms of transcription-coupled DNA damage (TCD) obscuring the effect 

of TCR (Figure 5F and 7D right). The model thus provides a comprehensive view of the 

combined effects of TCR and TCD in spermatogenic cells (Figure 5F), and refines previous 

observations that germline mutation rates increase with expression levels while highly 

expressed genes evolve more slowly (Chen et al., 2017; Drummond et al., 2005; Good and 

Nachman, 2005; Pál et al., 2001; Park et al., 2012). While the observed mutational bias does 

not alone direct evolution according to our model – since genetic diversity in the population 

is also influenced by genetic drift and natural selection – we propose that it contributes to 

global gene evolution rates.

Gene evolution at the sequence level involves (1) the generation of novel DNA variants, 

stemming from DNA damage-induced mutagenesis, replication errors and/or recombination, 
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and (2) natural selection and/or drift on the novel variants (Nei, 2005; Nei et al., 2010). Our 

results suggest that a DNA-repair mechanism contributes to the biased production of 

germline variants throughout the genome, and we propose that this represents a hitherto 

under-appreciated aspect in the establishment of differential gene evolution rates. Thus, 

DNA repair pathways act to constrain mutagenic DNA damage in a biased manner, 

analogous to the effects of selection and drift in the population (Figure 7E). By 

understanding these patterns of uneven germline mutations and the intrinsic removal 

mechanism of germline DNA damage, our model provides insight into mutation-driven 

genome evolution (Nei, 2013), such that transcriptional scanning in spermatogenesis 

imposes an additional bias in modulating rates of gene evolution.

Beyond modulating germline mutation rates and evolution rates, widespread gene expression 

during spermatogenesis generates a unique pattern of transcription-dependent germline 

mutational signatures (Figure 3–5). Our analysis into context-specific germline mutation 

rates allowed us to identify a new mutational signature induced by TCR, termed as “3’-

pyrimidine rule”, suggesting that TCR functions more efficiently at the XpY sites, where X 

and Y stand for the damaged base and pyrimidine, respectively. . The results are also 

consistent with a model whereby TCR-recognizable DNA damages occur more frequently at 

the XpY sites, but with no frequency bias between the coding and template strand. RNA 

polymerase would then recruit TCR machinery to the template strand for DNA damage 

repair, generating a coding-template asymmetric mutation rates. Future work is required to 

understand which mechanism (or both) leads to the “3’-pyrimidine rule” of the transcription-

dependent germline mutational signatures.

While transcriptional scanning is proposed to systematically detect and remove bulky 

germline DNA damages, male germ cells are still expected to retain damages that cannot be 

repaired by the TCR machinery, resulting in germline mutations (Barnes and Lindahl, 2004; 

Vermeulen and Fousteri, 2013). These male germline mutations likely originate from DNA 

replication errors, accumulating with paternal age (Kong et al., 2012), or less bulky DNA 

damages like base deamination (Krokan and Bjørås, 2013). Recombination-induced double-

strand breaks in the germ cell genome are also frequent, affecting mutation rates near 

crossover hotspots (Arbeithuber et al., 2015). Thus, beyond TCR, it will be of interest to 

analyze the germline mutation pattern with respect to other DNA repair pathways, such as 

mismatch repair following germ cell-specific genome replication (Yehuda et al., 2018), and 

distinct chromatin states which may affect transcription-independent DNA repair (Gonzalez-

Perez et al., 2019; Krokan and Bjørås, 2013; Supek and Lehner, 2017).

Our model leads to important testable predictions and may provide deeper insights into 

human genetics and diseases. First, the same process should also hold in other species which 

have similar widespread transcription in male germ cells (Soumillon et al., 2013), and we 

also provide evidence for conserved transcriptional scanning in mouse (Figure 4 and S2, S4, 

S6). Interestingly, a recent study on Drosophila testis gene expression using scRNA-seq also 

revealed widespread transcription, and that the mutation rate of germ cells decreases with 

the progression of spermatogenesis (Witt et al., 2019). This observation is consistent with 

our model that transcription-coupled DNA repair during spermatogenesis removes existing 

germline DNA damages. Second, we expect that TCR-deficient animals should produce 
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offspring with an increase in the number of de novo mutations in the germline expressed 

genes and that they would not show the characteristic lower mutation rates in the template – 

versus the coding – strand. For patients with TCR gene-associated mutations, such as 

Cockayne syndrome and xeroderma pigmentosum (Cleaver, 2017), our model predicts 

overall higher germline mutation rates. Lastly, embryonic stem cells (ESCs) share similar 

patterns of widespread transcription (Efroni et al., 2008), leading us to speculate that 

systematic scanning and removal of DNA damage also functions in ESCs. If so, beyond 

spermatogenesis, transcriptional scanning may be deployed to achieve lower mutation rates 

in ESCs and in the early developing embryos (Cervantes et al., 2002; Efroni et al., 2008).

STAR Methods

LEAD CONTACT AND MATERIALS AVAILABILITY

This study did not generate new unique reagents. Further information and requests for 

resources should be directed to, and will be fulfilled, by the Lead Contact, Itai Yanai 

(Itai.Yanai@nyulangone.org).

EXPERIMENTAL MODELS AND SUBJECT DETAILS

Human testicular tissue

Human testicular tissue was obtained from New York University Langone Health (NYULH) 

Fertility Center; this was approved by the NYULH Institutional Review Board (IRB). Fresh 

seminiferous tubules were collected from testicular sperm extraction (TESE) surgery of two 

healthy donors (one was 40-year old and the other was 45-year old) with an obstructive 

etiology for infertility. The tissues were collected and processed in different time (with a 

time interval of one year). There was no drug or hormonal treatments prior to the TESE 

surgery in both cases. The donors were fully informed before signing consent to donating 

excess tissue for research use. This was again done in fashion consistent with the IRB 

(including tissue sample de-identification).

Mouse testicular tissue—C57BL/6J mice (4-month old) were bought from the Jackson 

Laboratory through the New York University Langone Health (NYULH) Rodent Genetic 

Engineering Laboratory. Mice were anesthetized before sacrificing for testicular tissue 

collection following the NYULH IRB requirements for experimental animal operation.

METHOD DETAILS

Human testicular single cell suspension preparation

Human testicular tissues were kept in cell culture grade PBS buffer and transported to the 

research lab on ice within 1h post TESE surgery for single-cell preparation. Testicular 

single-cell suspension was prepared by adapting existing protocols (Valli et al., 2014). 

Specifically, samples from TESE surgery was washed once with PBS and resuspended in 

5mL PBS. Seminiferous tubules were minced quickly in a cell culture dish and spun down at 

100g for 0.5min to remove supernatants. The minced tissue was resuspended in 8mL of 

37°C pre-warmed tissue dissociation enzyme mix (See below). Tissue dissociation was done 

by incubating at 37°C for 20min with mechanical dissociation with pipetter every 5min. 
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After digestion, the reaction was quenched by adding 2mL of 100% FBS (Gibco, Cat. 

16000044) to a final concentration of 10%. Dissociation mix was filtered through a 100um 

strainer to remove remaining seminiferous tubule chunks. Cells were washed once with 

DMEM medium (Gibco, Cat. 11965092) with 10% of FBS and twice with PBS to remove 

residual EDTA in the cell suspension. Cell viability was checked with Trypan-blue staining 

(with expectation of over 85% viable cells) before moving to the inDrop microfluidics 

platform. The tissue dissociation enzyme mix (8mL) was composed of 7.56mL of 0.25% 

Trypsin-EDTA (Gibco, Cat. 25200056), 400uL of 20mg/mL type IV Collagenase (Gibco, 

Cat. 17104019) and 40uL of 2U/uL TURBO DNase (Invitrogen, Cat. AM2238).

Mouse testicular single cell preparation

C57BL/6J mice (4-month old) were bought from the Jackson Laboratory through the New 

York University Langone Health (NYULH) Rodent Genetic Engineering Laboratory. Mice 

were anesthetized before sacrificing for testicular tissue collection following the NYULH 

IRB requirements for experimental animal operation. Together, two mice were collected and 

processed separately as biological replicates, with a time interval of two months. The 

dissociated testicular tissue was kept in the PBS buffer and then transported to the research 

lab on ice immediately for single-cell dissociation. The tissue dissociation protocol is 

slightly different from the human testicular tissue dissociation. The whole testis was 

decapsulated in PBS buffer to collect the seminiferous tubules. The seminiferous tubules 

were quickly minced into small pieces of ~2-5mm and then washed once with PBS buffer. 

The minced tissue was resuspended in 8mL of 37°C pre-warmed tissue dissociation buffer 1 

(1mg/mL type IV Collagenase in DMEM medium) and incubate at 37°C for 5min. This pre-

dissociation step removes majority of the interstitial cells. The tissue was then spun down at 

100g for 1min to remove supernatants. The tissue was resuspended by 8mL tissue 

dissociation buffer 2 (7.96mL of 0.25% Trypsin-EDTA and 40uL of 2U/uL TURBO 

DNase). The second tissue dissociation was done by incubating at 37°C for 15min with 

mechanical dissociation with pipette every 5min. The dissociation was quenched by adding 

2mL of 100% FBS to a final concentration of 10%. Dissociation mix was filtered through a 

100um strainer to remove any remaining tissue chunks. Cells were washed once with 

DMEM medium and twice with PBS to remove residual EDTA. Cell viability was checked 

with Trypan-blue staining (both replicates have over 95% viable cells) before moving to the 

inDrop microfluidics platform.

Single-cell RNA-Seq

Single-cell barcoding was carried out with the inDrop™ Single Cell RNA Seq Kit 

(1CellBio, Cat. 10196) on the inDrop microfluidics system (1CellBio, Cat. 10256-01) as 

instructed by the manufacturer and by its original developers (Klein et al., 2015). Briefly, the 

microfluidic chip and barcoded hydrogel beads were primed ahead of single cell preparation. 

The ready-to-use single-cell suspension in PBS (after two times wash with PBS buffer) was 

adjusted to 0.1 million/mL by counting with hemocytometer. Next, the prepared cells, 

reverse transcription reagents (SuperScript III Reverse Transcriptase, Invitrogen, Cat. 

18080085), barcoded hydrogel beads and droplet-making oil were loaded onto the 

microfluidic chip sequentially. Encapsulation was done by adjusting microfluidic flow rates 

as instructed. Single-cell barcoding and reverse transcription in the droplets were done by 
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incubating at 50°C for 2h followed by heat inactivation at 70°C for 15min. Then the droplets 

containing barcoded single-cells were aliquoted aiming for 1000-2000 cells per aliquot and 

then decapsulated by adding demulsifying agent.

Sequencing library preparation

Single-cell RNA-Seq library preparation after inDrop single-cell capturing was carried out 

as instructed by the manufacturer (1CellBio) and similar to the CEL-Seq2 method 

(Hashimshony et al., 2016). Basically, barcoded single-cell cDNA was purified with 

Agencourt RNAClean XP magnetic beads (Beckman Coulter, Cat. A63987) followed by 

second-strand synthesis reaction with NEBNext mRNA Second Strand Synthesis Kit (New 

England Biolabs, Cat. E6111S). Then linear amplification of cDNA was carried out through 

in vitro transcription (IVT) using HiScribe T7 High Yield RNA Synthesis Kit (New England 

Biolabs, Cat. E2040S). IVT-amplified RNA was fragmented and purified again with 

Agencourt RNAClean XP magnetic beads. The second reverse transcription was done with 

PrimeScriptTM Reverse Transcriptase (Takara Clonetech, Cat. 2680A) followed with cDNA 

purification with Agencourt AMPure XP magnetic beads (Beckman Coulter, Cat.A63881). 

Quantity of cDNA was determined by qPCR on a fraction (5%) of purified cDNA. Final 

PCR amplification was done according to qPCR results and purified with Agencourt 

AMPure XP magnetic beads. Library concentration was determined by Qubit dsDNA HS 

Assay Kit (Invitrogen, Cat. Q32851). Library size was determined by Bioanalyzer High 

Sensitivity DNA Analysis Kit (Agilent, Cat. 5067-4626).

Sequencing

Single-cell RNA-Seq library sequencing was carried out with Illumina NextSeq 500/550 75 

cycles High Output v2 kit (Cat. FC-404-2005). Custom sequencing primers were used for 

NextSeq sequencing as instructed and provided by the manufacturer (1CellBio, Cat. 10196) 

(Klein et al., 2015). In addition, 5% of PhiX Control v3 (Illumina, Cat. FC-110-3001) 

library was added to give more complexity to scRNA-Seq libraries. Pair-end sequencing was 

carried out with read1 (barcodes) for 34bp, index read for 6bp and read2 (transcripts) for 

50bp. We processed and sequenced two technical replicates for each human testicular 

sample and one technical replicate for each mouse testicular sample, together generating 6 

scRNA-seq datasets for downstream analysis.

QUANTIFICATION AND STATISTICAL ANALYSIS

Sequencing data processing

Raw sequencing data obtained from the inDrop method were processed using a custom-built 

pipeline, available at https://github.com/flo-compbio/singlecell. Briefly, the “W1” adapter 

sequence of the inDrop RT primer was located in the barcode read (the second read of each 

fragment), by comparing the 22-mer sequences starting at positions 9-12 of the read with the 

known W1 sequence (“GAGTGATTGCTTGTGACGCCTT”), allowing at most two 

mismatches. Reads for which the W1 sequence could not be located in this way were 

discarded. The start position of the W1 sequence was then used to infer the length of the first 

part of the inDrop cell barcode in each read, which can range from 8-11 bp, as well as the 

start position of the second part of the inDrop cell barcode, which always consists of 8 bp. 
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Cell barcode sequences were mapped to the known list of 384 barcode sequences for each 

read, allowing at most one mismatch. The resulting barcode combination was used to 

identify the cell from which the fragment originated. Finally, the UMI sequence was 

extracted, and reads with low-confidence base calls for the six bases comprising the UMI 

sequence (minimal PHRED score less than 20) were discarded. The reads containing the 

mRNA sequence (the first read of each fragment) were mapped to the references genomes 

(here human GRCh38 and mouse GRCm38) by STAR 2.5.3a with parameter ‘—

outSAMmultNmax 1’ and default settings otherwise (Dobin et al., 2013). Mapped reads 

were split according to their cell barcode and assigned to genes by testing for overlap with 

exons of protein-coding genes and long non-coding RNA genes, based on genome 

annotations from Ensembl release 90. For each gene, the number of unique UMIs across all 

reads assigned to that gene was determined (UMI filtering), corresponding to the number of 

transcripts expressed and captured.

Quality filtering of the scRNA-seq data

Single cells with less than 1,000 expressed genes or contain more than 20% of transcripts 

from either mitochondrial genes (i.e., genes that are part of the mitochondrial genome) or 

ribosomal protein genes were removed from downstream analysis. After filtering, the single 

cells from different biological or technical replicate were merged together for downstream 

analysis. In total, we have 2554 cell from human, with an average of 6499 UMI counts and 

2495 expressed protein-coding genes in the raw data. From mouse testes, we obtained 1593 

cells after quality filtering, with an average of 8998 UMI counts and 2601expressed protein-

coding genes in the raw data. The more detailed cell information from each sample is 

provided in the Table S1.

Testicular cell clustering and cell type identification

Following quality cell filtering, clustering was done by k-means on the principal component 

analysis scores, with k determined by ‘elbow-method’(Kodinariya and Makwana, 2013). To 

increase the performance of cell clustering step, the raw UMI counts of testicular single cells 

were pre-processed through the kNN-smoothing method, with k=3 which indicates a 

smoothing step involving the nearest 3 single cell transcriptomes. The smoothing step 

greatly reduces the noise in scRNA-seq data while retaining the variance between single 

cells (Wagner et al., 2017). Following kNN-smoothing, the principal component analysis 

used for cell clustering was performed on the smoothed UMI expression matrix of all 

testicular cells. The pre-processed expression matrices were first normalized to 100,000 

transcripts per cell, followed by calculating the Fano factor (or variance-to-mean ratio, 

VMR) for each gene (Baron et al., 2016). Genes with a Fano factor larger than 1.5 folds of 

the mean values were defined as dynamically expressed genes. In total, 3615 dynamically 

expressed genes were selected from the human datasets for downstream PCA visualization 

and cell clustering. PCA was then performed on the normalized and log2 transformed 

expression matrix using the dynamically expressed genes. Cell clustering was done by k-

means clustering with elbow-methods determined k. Following first rounds of cell clustering 

(k=24), several marker genes were used to determine spermatogenic cell types/states versus 

somatic cells. DDX4 (also called VASA) was used as a pan-germ cell marker to distinguish 

the spermatogenic cell lineage from the somatic cells. FGFR3 and DMRT1 (Kanatsu-
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Shinohara and Shinohara, 2013; von Kopylow and Spiess, 2017) were used to determine 

spermatogonia. SYCP3 and TEX101(Chang et al., 2011; Djureinovic et al., 2014) were used 

to determine spermatocytes. ACRV1 and ACTL7B (Chang et al., 2011; Djureinovic et al., 

2014) were used to determine round spermatids. TNP1, PRM1, PRM2, YBX1, YBX2 and 

HILS1 (Djureinovic et al., 2014; Mali et al., 1989; Rathke et al., 2014; Yan et al., 2003) 

were used collectively to determine elongating spermatid states. Together, we identified 14 

human spermatogenic cell clusters with at least 50 cells in each cluster (min value as 69 

cells, corresponding to spermatocyte-1). Seven cell clusters which overlapped with each 

other were identified as somatic cells (as shown in Figure 1B). These cells were isolated for 

an additional k-means clustering algorithm (k=5) and visualized through the t-distributed 

stochastic neighbor embedding (tSNE) algorithm, as shown in Figure 1B and Figure S1D. In 

summary, CYP11A1, CSF1, and IGF1 (Chang et al., 2011; Potter and DeFalco, 2017; Ye et 

al., 2017) genes were used to identify Leydig cells; WT1 and SOX9(Buganim et al., 2012; 

Chang et al., 2011) were used to identify Sertoli cells; MYH11 and ACTA2 were used to 

identify peritubular myoid cells (Chen et al., 2016); CD68 and CD163 were used to identify 

macrophages (DeFalco et al., 2015); PECAM1 and VWF were used to identify endothelia 

cells (Rebourcet et al., 2016). Three small clusters with mixed expression profiles and/or bad 

quality were labeled as “other” and discarded as potential contaminants and/or doublets. 

Mouse testicular cells were analyzed in the same process. In brief, 1915 dynamically 

expressed genes were selected from the mouse datasets for PCA and cell clustering. Cell 

clustering with k-means algorithm generated 16 clusters (optimum k defined by elbow-

method), out of which 13 clusters were kept as mouse spermatogenic cell clusters, and 3 

clusters with few cells were discarded for downstream analysis.

Pseudotime analysis with Monocle2

We used the R package Monocle2 (version 2.6.1) (Qiu et al., 2017) to infer pseudotime 

tracks for both human and mouse testicular germ cells. The raw UMI counts of the isolated 

spermatogenic cells were pre-processed through the kNN-smoothing method (k=3) before 

performing pseudotime inference. We found that smoothing process greatly increased the 

resolution of pseudotime tracks as compared to the ones directly inferred from the raw UMI 

counts (data not shown). Pseudotime inference was performed with default parameters 

according to the user manual (http://cole-trapnell-lab.github.io/monocle-release/docs/): 1) 

Set “negbinomial.size()” for expression distribution, and estimated size factors and 

dispersions. 2) Select genes detected among at least 5% of input cells to project cells to 2D 

space using “DDRTree” method. 3) Order cells and visualize pseudotime tracks as shown in 

Figure S1F and S2F. The ascending order of pseudotime values was consistent to the pattern 

of marker genes during spermatogenesis for both human and mouse (data not shown).

Cell fate prediction with “RNA velocity”

We used the R package ‘velocyto.R’ (version 0.6) to estimate RNA velocity according to the 

standard procedures suggested by the developers (La Manno et al., 2018). The RNA velocity 

estimation involves three separate UMI count matrices: intronic UMIs (nmat), exonic UMIs 

(emat), and the optional intron-exon spanning matrix (spmat). These matrices were 

generated by the ‘dropEst’ pipeline (version 0.7.1, https://github.com/hms-dbmi/dropEst) 

(Petukhov et al., 2018). Briefly, 1) raw sequencing reads were tagged by ‘droptag’ with the 
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default ‘inDrop v1&v2’ configuration file except here that the ‘r1_rc_length’ was set as 3. 2) 

The tagged reads were mapped to the reference genomes (here human GRCh38 and mouse 

GRCm38) using STAR (version 2.5.3a) with default settings. 3) The alignments were 

processed by ‘dropEst’ with gene annotation GTF file (Ensembl release 90) and the default 

settings except here the ‘--merge-barcodes’ option was additionally called as suggested in 

the standard procedure. We followed the velocyto.R manual (https://github.com/velocyto-

team/velocyto.R) which used emat and nmat to estimate and visualize RNA velocity. With 

predefined cell stage, we performed gene filtering with the parameter 

“min.max.cluster.average” set to 0.1 and 0.03 for emat and nmat, respectively. RNA velocity 

was estimated with the default settings except the parameters ‘kCells’ and ‘fit.quantile’ 

which were set as 3 and 0.05, respectively. RNA velocity field was visualized on a separate 

PCA embedding as shown in Figure 1C for human testicular germ cells, and in Figure S2A 

for mouse testicular germ cells, respectively.

Conservation and divergence analysis of human-mouse spermatogenesis

Following identifying the human and mouse spermatogenic cells separately, human-mouse 

spermatogenesis comparison was performed on genes which have one-to-one orthologues 

between human and mouse. Human-mouse one-to-one orthologous gene pair list was 

downloaded from Mouse Genome Informatics (MGI)-Vertebrate Homology (http://

www.informatics.jax.org/homology.shtml). After filtering, 17,012 one-to-one orthologous 

genes were selected for integrating the human and mouse spermatogenic cells. Joint PCA 

was performed by selecting dynamically expressed genes using integrated gene expression 

matrix. In total, 1,124 genes were selected to perform joint PCA, as the results shown in 

Figure S2G–H. Top 20 genes contributing to PC2 from both ends, separating human and 

mouse species-specific signature, were selected and plotted in Figure S2I.

Gene clustering

Gene clustering was performed on a collapsed expression matrix of genes-by-spermatogenic 

clusters across all testicular germ cells. First, we defined the set of unexpressed genes by 

having expression (minimum of 1 UMI count per cell) in at least 5 single cells from the 

kNN-smoothing method (k=3) smoothed scRNA-seq data. The genes pass such criteria were 

defined as expressed genes, leading to the estimation of expressing ~90.5% of human genes 

(Figure 1D–E) and ~80.4% of mouse genes (Figure S2C–D). We also tested the sensitivity 

to different parameters for determining expression or unexpression status. Specifically, we 

included the criterion of minimal expression level (>0.1 mean UMI count in at least one cell 

cluster) or changing the criterion of minimal expressed cell number to 10 cells. Following 

determining expression or unexpression of genes, the expressed genes were then clustered 

by k-means algorithm, with k varied from 2 to 10, as shown in Figure S3D. A combination 

of parameters for determining expression/unexpression and k-expressed gene clusters 

allowed us to test the sensitivity of the observed reduction of germline mutation rates in the 

expressed genes relative to the unexpressed genes. Through interpreting the results, minimal 

expression in 5 single cells was chosen as the optimal criterion for determining expression or 

unexpression; k=5 was chosen to display the expressed gene clusters as it best represents the 

overall gene expression dynamics during spermatogenesis. The determined gene clusters 

were used for downstream analysis into the mutation signatures. The gene names of each 
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cluster were provided in the Table S3. We applied the same criteria to human germ cells 

from individual donor or independent dataset for sensitivity analysis as shown in Figure 

S3B–C. We also applied the same criteria to the mouse germ cells for determine gene 

clusters as shown in Figure S2C–D, and the corresponding gene lists were provided in the 

Table S4.

The human expressed genes were additionally clustered by their expression level, as used in 

the Figure 4B. The average expression level (UMI counts) across the spermatogenic cell 

clusters were used as input. To assign gene groups based on expression levels, we binned the 

genes by expression level into 9 groups:

Group 1: unexpressed;

Group 2: −inf < log2(UMImean) ≤ −8;

Group 3: −8 < log2(UMImean) ≤ −6;

Group 4: −6 < log2(UMImean) ≤ −4;

Group 5: −4 < log2(UMImean) ≤ −2;

Group 6: −2 < log2(UMImean) ≤ 0;

Group 7: 0 < log2(UMImean) ≤ 2;

Group 8: 2 < log2(UMImean) ≤ 4;

Group 9: 4 < log2(UMImean), highly expressed.

The gene names of each expression-level gene group were provided in the Table S6.

In addition, for modeling the germline variant levels versus expression level, the expression 

level was further binned into smaller groups. Specifically, log2(UMImean) expression level 

between −8 and 4 were evenly binned into 100 expression level stages, and the genes within 

each expression level stage were isolated for calculating the germline variants levels and 

confidence intervals.

Determine upstream-confounded gene list

As a control analysis in Figure S5E, the genes which have their upstream 5kb region 

overlapped with an inverse-oriented gene, together termed as upstream-confounded genes, 

were determined and removed from analyzing the mutation asymmetry scores. These 

upstream-confounded genes include those genes naturally formed into head-to-head pairs. 

We extracted the gene feature table from Ensembl 91 (being consistent with the germline 

variants database), containing chromosome, gene start position, gene end position and strand 

information for each gene. We sorted the genes by chromosome and then by the gene start 

sites considering the gene orientation. We then determined the natural bidirectional genes as 

head-to-head gene pairs with the gap between two gene start sites smaller than 5kb. In 

addition, we determined the genes which have their upstream 5kb region overlapped with an 
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inverse-oriented gene as confounded genes. Together, we identified 2270 genes forming 

bidirectional gene pairs, which is ~11.4% of all protein-coding genes, consistent with 

previous study on bidirectional gene pairs (Trinklein et al., 2004). Together with other genes 

which have their upstream region overlapped, we identified 4094 upstream-confounded 

genes. The gene lists of bidirectional gene pairs and all upstream-confounded genes were 

provided in Table S5.

External scRNA-seq datasets

External scRNA-seq datasets were all downloaded from the public deposit according to the 

specific instruction from the original publication. Human adult testicular cell scRNA-seq 

dataset was downloaded from GEO: GSE112013, and the cell type annotation was extracted 

from the SI Table 1 of the original publication (Guo et al., 2018). Human adult bone marrow 

hematopoietic cell scRNA-seq datasets were downloaded from GEO: GSE117498 which 

comes with the cell type annotations (Pellin et al., 2019). Human embryonic midbrain 

scRNA-seq dataset was downloaded from GEO: GSE76381 which comes with the cell type 

annotations (La Manno et al., 2016). Human developing cortex scRNA-seq dataset was 

downloaded from the deposit website of the authors (https://cells.ucsc.edu/cortex-dev/

exprMatrix.tsv.gz) and the cell type annotation from the SI Table 3 of the original 

publication (Nowakowski et al., 2017). Human embryonic kidney (week16) scRNA-seq 

dataset was downloaded from GEO: GSM3143601, and the cell type annotation comes from 

the deposit website of the authors (https://home.physics.leidenuniv.nl/~semrau/

humanfetalkidneyatlas/) (Hochane et al., 2019).

To count the expressed protein-coding gene numbers of a corresponding cell cluster or 

scRNA-seq sample type, we used a bootstrap sampling strategy to overcome the technical 

variance of gene number estimates in different studies. We first binarized the gene 

expression in a single cell as expressed or unexpressed, defined as >0 or =0 UMI/TPM 

count. Gene expression in a cell cluster/sample was defined as having expression in at least 5 

cells from a random sampling (with replacement) of 1000 cells. According to this definition, 

the presented numbers in Table S2 represent the average detected protein-coding gene 

number of bootstrap sampling (with replacement) of 1000 cells for 100 times. Such a 

strategy overcomes the variance of cell numbers, as well as minimizing the effects of 

differential sequencing depth between different studies, thus allowing an overall fair 

comparison of protein-coding gene numbers across different cell/sample types and across 

studies.

Human and mouse germline variants pre-processing

Human and mouse germline variations were downloaded from the Ensembl release 91 FTP 

site (ftp://ftp.ensembl.org/pub/release-91/variation/vcf/homo_sapiens/homo_sapiens.vcf.gz 

and ftp://ftp.ensembl.org/pub/release-91/variation/vcf/mus_musculus/mus_musculus.vcf.gz, 

respectively). VCF file containing the 1000Genome phase 3 germline variants was 

downloaded from the Ensembl release 91 FTP site (ftp://ftp.ensembl.org/pub/release-91/

variation/vcf/homo_sapiens/1000GENOMES-phase_3.vcf.gz).
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We pre-processed the human germline variants in the VCF file (homo_sapiens.vcf) with 

custom bash and Perl scripts. As a first step, we restricted the germline mutation records to 

only the source database of dbSNP (dbSNP150) and then restricted the mutation type as 

single nucleotide variation (TSV=SNV). Second, we removed any SNV records with a 

minor allele frequency (MAF) higher than 5% so that only to use the SNV records with 

MAF<0.05 for downstream analysis. This step allows minimizing the effect of positive 

selection on germline mutational signature analysis. Third, we checked the SNV record 

information by referring its genome reference allele (ref) to its ancestral allele (AA). Around 

~97.7% (303,936,260/311,056,106) of the SNV records are annotated with an ancestral 

allele. If the annotated reference allele of an SNV record is inconsistent with its AA, we then 

assigned the ancestral allele as the reference allele of this SNV record while the other allele 

was assigned as the alternative allele. For example, if an SNV record is annotated as C (ref) 

to T (alt) but comes with an AA=T, we will then assign this SNV record as a T-to-C 

mutation instead of a C-to-T mutation. Such a replacement of the reference allele to its 

ancestral allele affects ~1.5% (4,710,352/311,056,106) of the total SNV records. Fourth, 

occasionally, an SNV was recorded incorrectly, with swapped reference and alternative 

bases. These SNVs mostly happen in the pan-telomere region and/or in sex chromosomes. 

We corrected such SNV records by swapping back the reference and alternative bases 

according to the human reference genome (hg38). Such incorrect recording affects ~0.067% 

(210,695/311,056,106) of the total SNV records. Lastly, we extracted the 5’- and 3’-adjacent 

bases of the reference of each SNV record, in order to generate the triple-base reference 

allele for each SNV record. Following these five steps, the final output of each SNV record 

was recorded to include key information of chromosome, location, reference, triple-base 

reference and mutant base. For example:

CHR LOCATION REF_BASE TRIPLE_BASE_REF MUT_BASE

1 10039 A AAC C

The output of 311,056,106 clean SNV records from homo_sapiens.vcf were used for 

counting SNVs according to gene loci, and the results were used as input for all downstream 

human germline variants analysis unless specifically stated.

Germline variants from 1000GENOMES-phase_3.vcf were processed in exactly the same 

way. In total, 1,916,266 out of 77,202,542 SNV records (~2.48%) were corrected according 

to the ancestral allele and 8 SNV records were corrected according to the hg38 reference 

genome. The output file containing 77,202,542 SNV records from 1000GENOMES-
phase_3.vcf was used as the input data for control analysis as shown in Figure S3E.

In parallel, we applied the same pipelines for the mouse germline SNVs 

(mus_musculus.vcf). The correction step affected 51 out of the 73,077,311 mouse SNV 

records. The processed mouse germline SNV records were used for computing germline 

SNV rates in the downstream analysis.
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Counting SNVs according to gene locus

We used a custom bash script and an R script to count the processed SNV records according 

to specific gene loci. We classified the variants into the six mutation types: (A>T/T>A; 

A>G/T>C; T>G/A>C; C>T/G>A; G>T/C>A; C>G/G>C). Each mutation type was further 

distinguished in terms of the coding and the template strands, as previously introduced 

(Haradhvala et al., 2016). Specifically, we first split the processed SNV records file into 

mutation type-specific files according to the reference base (single base and triple bases) and 

mutation base, generating X>Y mutation type files and NXN>Y mutation type files, 

respectively. Second, we used the “bedmap --count” option in the bedops tool (version 

2.4.35) to count the number of SNVs of each mutation type according to specific gene loci. 

The gene loci used in the analysis include: (1) Gene body, defined as the genomic interval 

between the gene start site and gene end site as annotated in the GTF file (Ensembl release 

91); (2) Upstream 5kb and downstream 5kb regions, each defined according to gene body 

region and with reference to gene orientation information, respectively; (3) Intron regions, 

defined as the noncoding regions between coding-exon regions and are not covered by any 

isoform mRNA. According to this definition, we did not consider introns located in the 5’ - 

or 3’-UTRs since these introns frequently have regulatory roles which are more likely under 

selection (Barrett et al., 2012). For intronic regions, we additionally removed the splicing 

donor/acceptor consensus sequences – 6 bases on the 5’ end (splicing donor region) and 3 

bases on the 3’ end (splicing acceptor region) – according to the gene orientation (Matera 

and Wang, 2014). With these strategies, we selected the intron regions containing the least 

level of natural selection pressure.

Calculating mutation rates and asymmetry scores

The mutation rates used throughout the paper are generally defined as SNV counts per 

kilobases, calculated by dividing SNV counts by the reference base counts and then multiply 

by 1000. According to this definition, the actual number (y-axis in the plots) of the mutation 

rates would vary between the input file of the processed SNV records, since they have 

different total numbers of SNVs. Specifically, for germline mutations in total of a given gene 

locus, the mutation rates were calculated by dividing the sum of all SNVs (regardless of 

mutation types) by the count of all bases in the locus and then normalized to 1kb. The 

germline mutation rates of specific mutation type on the coding (Mutcoding) and on the 

template (Muttemplate) stands were calculated by dividing SNV count by specific reference 

base count according to the strand information of the gene locus, respectively. The Mutcoding 

and Muttemplate rates were all normalized to 1000 reference bases.

The asymmetry score of a specific mutation type between the coding strand and template 

strand of each gene was calculated as log2(Mutcoding/Muttemplate), where the Mutcoding and 

Muttemplate represents the mutation rates on the coding and template strand, respectively. In 

rate cases, the asymmetry scores being zero or infinity were removed, since these numbers 

indicate that Mutcoding or Muttemplate is zero, respectively. The same procedures were also 

performed on upstream and downstream genomic regions, with the strand specificity (coding 

strand versus template strand) being assigned in consistent with the corresponding genes.
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Analyzing germline variants by gene family

Human gene family annotations were downloaded from the HUGO Gene Nomenclature 

Committee (https://www.genenames.org/data/genegroup/#!/). In total, 27 families contain 

more than 100 gene members. These families include: ‘Ankyrin repeat domain containing 

(ANKRD)’, ‘Armadillo-like helical domain containing (ARMH)’, ‘Basic helix-loop-helix 

proteins (BHLH)’, ‘BTB domain containing (BTBD)’, ‘Cadherins’, ‘CD molecules (CD)’, 

‘EF-hand domain containing’, ‘Fibronectin type III domain containing’, ‘GPCR, Class A 

rhodopsin-like(excluding OR)’, ‘GPCR, Class A rhodopsin-like(Olfactory receptor)’, ‘Heat 

shock proteins’, ‘Helicases’, ‘Histones’, ‘Homeoboxes’, ‘Immunoglobulin superfamily 

domain containing’, channels’, ‘PDZ domain containing (PDZ)’, ‘PHD finger proteins’, 

‘Pleckstrin homology domain containing (PLEKH)’, ‘Ras small GTPases superfamily’, 

‘Ring finger proteins’, ‘RNA binding motif containing (RBM)’, ‘Solute carriers (SLC)’, 

‘WD repeat domain containing (WDR)’, ‘Zinc fingers C2H2-type’, ‘Zinc fingers - other’, ‘T 

cell receptor gene’. We further selected these gene families by having at least 10 gene 

members in both expressed and unexpressed categories, as defined above. Additionally, we 

removed the ‘GPCR, Class A rhodopsin-like(Olfactory receptor)’ family because majority of 

the genes lack an intron region located between the coding sequences of the gene, preventing 

us from analyzing the neutral variants. Together these steps led to a list of 9 gene families as 

shown in Figure 2C and S3K. Germline SNV rates were calculated according to gene body 

regions (Figure 2C) or intron regions (Figure S3K) for each gene corresponding to a specific 

gene family.

Somatic cell gene expression analysis

We used the somatic cells determined from the current study to perform the control analysis 

of somatic cell expressed genes. Considering that the somatic cells are in a smaller fraction 

among all testicular cells and the cell number varies across somatic cell types, we restricted 

the set of expressed genes as being expressed in at least 5% of cells in each somatic cell 

type, or in all somatic cells.

Analyzing germline variants by GTEx expression profiles

The Genotype-Tissue Expression (GTEx, release V7) gene expression profiles used in 

Figure 2E and S1I across 53 tissue/organ/cell samples were downloaded from the GTEx 

Portal (https://gtexportal.org/home/datasets/). We used the expression profiles containing the 

median TPM by tissue 

(GTEx_Analysis_2016-01-15_v7_RNASeQCv1.1.8_gene_median_tpm.gct.gz ). We first 

only selected the protein coding genes in the GTEx expression matrix for downstream 

analysis. In Figure S3I, we used the cutoffs varied from 0.01 to 10 median TPM for counting 

the number of expressed protein-coding genes in each tissue/organ. To distinguish the 

expressed genes out of the unexpressed protein-coding genes for each tissue in Figure 2E, 

we set the cutoff as 0.1 median TPM value as given from the GTEx Portal. For each tissue, a 

gene was defined as expressed if the expression level was ≥ 0.1, otherwise it was defined as 

unexpressed. Average germline SNV rates associating with each gene category for each 

tissue was then calculated and the ratio was further calculated between the unexpressed gene 
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category versus the expressed category. These ratios were plotted as shown in Figure 2E. Z-

scores were calculated on these ratios and indicated in the plot.

De novo germline mutations

We selected the single nucleotide DNMs defined from large scale trio-WGS studies on 

healthy families for extracting the DNMs which do not contain disease-associated biases. 

The selected datasets come from two large scale WGS studies involving healthy trios: 

Jonsson et al, 2017 and An et al, 2018. The Jonsson et al, 2017 study included 1,548 trios 

from Iceland and detected 98,858 single nucleotide DNMs. The An et al, 2018 study 

included 1,902 trios assigned in the control group and detected 115,870 single nucleotide 

DNMs. Together, our DNM analysis incorporated 214,728 single nucleotide DNMs 

determined from the healthy trios. Following that, we applied the DNMs to the same pre-

processing steps and counted the DNMs to the gene body of each gene. We then calculated 

the DNM rates at the gene level (Figure 6A–B) or considering the adjacent sequence 

contexts (Figure 6C–G). We also compared the mutation rates calculated from population-

wide SNVs and DNMs by scaling the DNM rates. The scaling was calculated by multiplying 

the ratio of total SNV number divided by total DNM number on the coding (Figure 6E) or 

template (Figure 6F) strand, respectively.

Gene divergence datasets

The sequence divergence datasets of human to apes (chimpanzee, gorilla, bonobo, orangutan 

and gibbon) were downloaded from Ensembl release 91. Percent divergences in Figure 7 and 

S7 were calculated as: Divergence = 100% – Identity (human to other apes). dN and dS 

values were also retrieved from Ensembl and we excluded genes with dN or dS being zero, 

which would bias the dN/dS calculation. The mean values shown in Figure 7 and S7 were 

computed after excluding outlier values, where an outlier value was defined as more than 

three scaled median absolute deviations (MAD) away from the median. For a set of 

divergence or dN/dS values made up with N genes, MAD is defined as: MAD = median ( |Ai 
– median(A)| ), for i = 1,2,…,N.

Gene set enrichment analysis of unexpressed genes was done against the fast evolving genes 

or highly divergent genes. We first calculated the human-to-ape dN/dS values and 

divergence values, respectively, in a species-specific manner for each gene. Then the dN/dS 

value or divergence value for each gene was determined by averaging the values across the 

five ape species (NaN values were ignored in this step). Positive selection genes were 

determined by having an average dN/dS value > 1.0 across all five human-to-ape 

comparisons, generating a list of 864 genes. Highly divergent genes were determined as 

ranking in top 10% of divergence scores across all protein-coding genes, generating a list of 

1975 genes.

Gene Ontology analysis

Gene ontology (GO) term analysis were done with GOrilla (Gene Ontology enRIchment 

anaLysis and visuaLizAtion) online tool (http://cbl-gorilla.cs.technion.ac.il/) (Eden et al., 

2009). Target gene lists and background gene lists were provided for performing GO term 

analysis on Biological Processes. The GOrilla program searches for GO terms enriched in 
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the target gene list compared to the background set using standard hyper geometric statistics. 

The output GO terms were selected by setting p-value cutoff as <10e-5, generating the lists 

of GO terms in the Table S7.

Statistical Analysis

Statistical significance was computed by the Mann-Whitney U test (also called rank-sum 

test) to test whether two groups of genes have distinct value distributions. The significance 

p-values of multiple tests were adjusted by Bonferroni method accordingly. Error bars in the 

plots represent 99% percent confidence intervals, calculated by bootstrap method sampling 

with replacement for 10,000 times on the input values of mutation rates or asymmetry scores 

of genes. We used default settings of bootci function in MATLAB to calculate the bootstrap 

confidence interval with bias-corrected and accelerated percentile method. We set ‘alpha’ to 

0.01 to calculate 99% bootstrap confidence intervals around the mean values. For coding-

template strand mutation rates comparison, we used paired-sample t-test during which the 

outlier values were replaced with the previous non-outlier value to ensure an approximately 

normal distribution of the elements. Gene set enrichment p-values of unexpressed genes 

against the positive selection genes or highly divergent genes were done by hypergeometric 

test based on the cumulative distribution function (CDF) of the hypergeometric distribution.

DATA AND CODE AVAILABILITY

The single cell RNA-seq results were deposited to NCBI GEO database with the accession 

code GSE125372. The data analysis codes related to the project are available on Github 

through the following link: https://github.com/xiabo821/TS_related_scripts.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Genes expressed in the testis have reduced germline mutation rates

• Germline mutational signature is tuned by spermatogenesis-gene expression 

levels

• Genes not expressed during spermatogenesis are enriched for fast-evolving 

functions.

• A germline mutational signature generated by TCR follows a “3’-pyrimidine 

rule”.

Xia et al. Page 31

Cell. Author manuscript; available in PMC 2021 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. scRNA-Seq reveals a detailed molecular map of human spermatogenesis.
(A) Schematic of developmental stages of human spermatogenesis. (B) Dimension reduction 

analysis (PCA and tSNE) of human testes scRNA-Seq results. Colors indicate the main 

spermatogenic stages and somatic cell types (see Figure S1 and SI methods). (C) PCA on 

the spermatogenic-complement of the single-cell data. Arrows and large arrowheads indicate 

the RNA velocity algorithm (La Manno et al., 2018) predicted developmental trajectory and 

transcriptionally inactive stages during spermatogenesis, respectively. (D-E) Heatmap (D) 

and plots (E) of the expression patterns of all human protein-coding genes throughout 

spermatogenesis according to k-means method-defined gene clusters (see STAR methods). 

See also Figure S1, S2 and Table S1, S2 and S3.
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Figure 2. Widespread transcription in spermatogenic cells is associated with reduced germline 
mutation rates.
(A) Two possible consequences of widespread transcription in spermatogenic cells: 

transcription-coupled DNA damage and transcription-coupled repair. (B) Germline SNV 

rates in the gene body across the gene clusters, as determined in Figure 1D. (C) Germline 

SNV rates in the gene body of expressed and unexpressed genes across large gene families 

(see STAR Methods). (D) Germline SNV rates in the gene body across gene sets as 

determined by binarized expression (expressed versus unexpressed) in testicular germ cells 

and somatic cells. (E) Ratios of germline SNV rates of unexpressed genes versus the 

expressed genes determined from diverse human organs and cell types. Points represent 

individual tissue samples collected by the GTEx-project (GTEx Consortium, 2015). 

Significance in B-D is computed by the Mann-Whitney test with Bonferroni correction for 

multiple tests. Error bars indicate 99% confidence intervals calculated by bootstrap method 

with n=10,000 (see STAR Methods, same for Figures below). See also Figure S3 and Table 

S3.

Xia et al. Page 33

Cell. Author manuscript; available in PMC 2021 February 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. TCR-associated mutation asymmetry scores show bidirectional transcription and 
extended transcription signatures.
(A) Schematic of a transcribed gene with the template strand containing lower DNA damage 

and, consequently, a lower mutation rate. (B) Distinguishing germline mutations according 

to coding and template strands (see STAR Methods). (C) A-to-T transversion mutation rates 

of the coding and the template strands for the spermatogenic gene categories (paired-sample 

t-test). Dashed line indicates the average SNV rate in the unexpressed genes. (D) 
Asymmetry scores throughout spermatogenic gene categories (see STAR Methods). (E) 
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Schematic of gene architecture indicating bidirectional and extended transcription. (F-H) 
Asymmetry scores in the upstream 5kb region (F), gene body (G), represented by intron 

regions, and downstream 5kb region (H) across all six mutation types (Mann-Whitney test). 

Significance p-values were adjusted for multiple tests with Bonferroni method. *, P<0.01; 

**, P<1.0e−6; n.s., not significant. See also Figure S4 and S5.
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Figure 4. TCR-induced mutational signatures considering sequence contexts.
(A) Human intronic germline mutation rates in the spermatogenesis-expressed genes. The 

mutation rates considered the adjacent bases and distinguished the coding/template strands. 

(B) Human germline mutation asymmetry scores according to adjacent bases in the 

spermatogenesis-expressed genes. (C-D) Human asymmetry score pairs distinguished by 3’- 

(C) or 5’- (D) adjacent bases. For each pair of points in a given mutation type, the 

asymmetry scores were plotted in a purine (left) – to – pyrimidine (right) fashion in terms of 

3’- (C) or 5’- (D) adjacent base. (E-H) Same as shown in A-D, but for mouse germline 
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mutations in the intron regions. Significance in C-D and G-H were computed by paired-

sample t-test with Bonferroni correction for multiple tests. See also Figure S6.
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Figure 5. Transcriptional scanning-induced mutation reduction is tuned by gene-expression 
levels.
(A) Schematic of transcriptional scanning of DNA damage in male germ cells. (B) Genes 

were binned to nine expression level groups, from unexpressed (Unexp) to highly expressed 

(High-exp) (Table S6 and see STAR Methods). (C) Intronic SNV rates across gene 

expression level categories (Mann-Whitney test). (D) Intronic SNV rate distributions of the 

indicated germline mutation types across gene expression level categories, and distinguished 

by coding and template strands (paired-sample t-test). (E) Distribution of asymmetry scores 

between coding and template strands for the mutation types indicated in (D) (Mann-Whitney 

test). (F) Expression level tuning of germline mutation rates following additive contributions 

by transcription-coupled repair (TCR-reduced) and transcription-coupled damage-induced 

(TCD-induced) effects. The observed germline mutation rate distribution represents average 

mutation rates across 100 evenly-binned expression levels, with background shadow 
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indicating 99% confidence intervals. Significance p-values were adjusted for multiple tests 

with Bonferroni method. *, P<0.01; **, P<1.0e−6; n.s., not significant. See also Table S6.
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Figure 6. De novo germline mutations exhibit spermatogenesis expression-dependent mutational 
signatures.
(A) DNM rates across the spermatogenesis gene clusters, as determined in Figure 1D. (B) 
DNM rates across spermatogenesis gene expression level categories, as determined in Figure 

5B. (C-D) DNM rates (C) and asymmetry scores (D) regarding to local sequence contexts 

and coding/template strands in the spermatogenesis-expressed genes. (E-F) Correlations 

between the SNV rates and scaled DNM rates on the coding strand (E) and on the template 

strand (F), respectively. (G) Correlation between the asymmetry scores defined from SNVs 

and from DNMs. Each dot in E-G represents a mutation subtype which considers 5’- and 3’-

adjacent bases referring to the reference base. We excluded the dots representing C-to-T 

mutating rates in the CpG contexts in (E) and (F), though including such outlier dots would 

further increase the correlation coefficients. Significance in A-B was computed by the 

Mann-Whitney test with Bonferroni method correction for multiple tests.
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Figure 7. Evolutionary consequences of transcriptional scanning in male germ cells.
(A) Gene ontology terms enriched in the set of genes unexpressed during spermatogenesis. 

(B-C) DNA divergence levels (B) and dS scores (C) of human genes with their orthologous 

in the indicated apes, according to gene expression-pattern clusters. Gray dashed box 

highlights the male germ cell-unexpressed gene cluster. (D) Schematic of transcriptional 

scanning in biasing germline mutation rates and its evolutionary impact. (E) A revised 

model for generating biased DNA sequence variation and gene evolution. See also Figure S7 

and Table S7.
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