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Growth and survival of larval fishes is highly variable and unpredictable.
Our limited understanding of this variation constrains our ability to forecast
population dynamics and effectively manage fisheries. Here we show that
daily growth rates of a coral reef fish (the sixbar wrasse, Thalassoma
hardwicke) are strongly lunar-periodic and predicted by the timing of noctur-
nal brightness: growth was maximized when the first half of the night was
dark and the second half of the night was bright. Cloud cover that obscured
moonlight facilitated a ‘natural experiment’, and confirmed the effect of
moonlight on growth. We suggest that lunar-periodic growth may be
attributable to light-mediated suppression of diel vertical migrations of
predators and prey. Accounting for such effects will improve our capacity
to predict the future dynamics of marine populations, especially in response
to climate-driven changes in nocturnal cloud cover and intensification of
artificial light, which could lead to population declines by reducing larval
survival and growth.
1. Introduction
The ocean is a dangerous place for larval fish because of the risk of starvation
[1–3], predation [4,5] and/or advection away from suitable habitat [6–8]. Cumu-
lative estimates of mortality during the pelagic larval stage often exceed 99% [9],
which adult fishes commonly offset via high fecundities [10,11], and by spawn-
ing at locations or times that increase offspring survival [12,13]. Small reductions
in risks to offspring can yield large increases in fitness when combined with
high fecundity [14]. When scaled-up to populations, these small changes in
larval mortality combined with high fecundity will lead to large changes
in the recruitment of young fishes, which can facilitate boom-and-bust dyna-
mics and severely challenge the effective conservation, management and
sustainability of fisheries [15].

Improved understanding of factors that drive variation in larval performance
could therefore lead to: (i) improved forecasts of boom-and-bust dynamics,
(ii) better predictions of how fish populations might respond to future environ-
mental change, and (iii) more sustainable fisheries. More than 100 years of
research on larval fish ecology has highlighted important environmental con-
ditions that affect variation in larval performance (e.g. food [1,3,16], predators
[5,17], temperature [18–20], hydrodynamics [7,21–23]); and yet, the accuracy of
forecasts remains limited [15,24–26]. What are we missing?

Nocturnal ecology—the missing piece of the puzzle?Most ecological studies ignore
the night [27,28]. This may reflect a cognitive bias that shapes our conceptual
frameworks and the data that we choose to collect [29]. Half of the lives of
larval fishes—and important events shaping their growth and survival—occur
at night [30–33]. Over the typical lifespan of a larval fish (1–10 weeks [34–36]),
the night-time ocean environment may be far more variable than the day-time
environment. Fortunately, night-time conditions change in somewhat predictable
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ways.Over a 29.5 day lunar cycle, there is tremendous variation
in the intensity and timing of nocturnal illumination: nights
close to the new moon are perpetually dark; nights close to
the full moon are perpetually bright; nights in the intervening
periods (e.g. ‘first quarter’ and ‘last quarter’moons) are illumi-
nated by only a portion of the lunar disc, and for opposing
halves of the night. Variation in the intensity and timing of noc-
turnal illumination affects diel vertical migrations of
zooplankton [31,37] (e.g. copepods, a primary food source for
larval fishes [38–40]) and micronekton [41–45] (e.g. myctophid
‘lanternfishes’ that prey on larval fishes in large numbers [45–
47]). In short, moonlight suppresses the flux of predators and
prey into the surface waters where larval fishes reside [48,49].
A ‘moving window’ of lunar illumination (owing to the
timing of moonrise and set across a lunar month), coupled
with the influence of cloud cover that obscures moonlight,
probably creates a dynamic landscape of potential risks and
rewards for larval fish. From a forecasting perspective, the
lunar cycle fortuitously makes this dynamic landscape predict-
able. The knowledge gap we still need to fill is how that lunar
periodic landscape affects larvae. Consequently, we hypoth-
esized that growth of larval fish will vary with the lunar
cycle, and that temporal patterns of growth should therefore
further depend on a fish’s birthdate. To quantify these patterns,
we: (i) used otoliths [50] (ear stones) to reconstruct size-at-age of
young coral reef fish (sixbar wrasse, Thalassoma hardwicke); (ii)
fit an appropriate growthmodel to capture age-related patterns
of growth during the larval stage; (iii) interpreted daily change
in residual size as a measure of age-independent growth rate
(hereafter we refer to these residuals as ‘growth’); and
(iv) evaluated patterns of variation in age-independent
growth rate across the lunar cycle.
2. Methods
(a) Study system
We reconstructed birthdates and larval growth trajectories of
recently settled sixbar wrasse, T. hardwicke, sampled from the
island ofMo’orea, French Polynesia. Sixbars are coral reef fish, com-
monly found on shallow fringing reefs and lagoons throughout
much of the Indo-Pacific region. Spawning is observed on most
days of the lunar cycle [51,52], but reproductive output peaks
near the newmoon and is lowest near the full moon [53]. Spawning
activity is also concentrated near reef edges (e.g. breaks in the reef),
and during times of day when offshore water flow is maximal [52].
These reproductive patterns probably facilitate rapid transport of
propagules off the reef and into the adjacent pelagic habitat
where initial predation risk may be reduced [12,54]. Pelagic
larvae develop for an average of approximately 47 d (range
approx. 37–63 d [34,53]), before settling back to the reef at night.
Larvae systematically alter developmental durations (i.e. they exhi-
bit accelerated or delayed maturation) to settle on a darker night of
the lunar cycle than is predicted by their birthdates [53]. Selection in
the pelagic habitat favours individuals born close to the full moon
(fish born at this time incur a mortality rate that is approximately
one-fifteenth that of individuals born during the new moon [53]).
This pattern of selection on birthdates and systematic develop-
mental plasticity leads to maximal settlement near the new
moon, despite the low production of eggs at a time that would
lead to settlement near the new moon (i.e. approx. 47 d prior,
which corresponds to the full moon [13]). As a further consequence
of selection and developmental plasticity, traits of successful settlers
(e.g. size and/or age) vary as a function of their birthdates and
developmental histories, and these traits probably influence
competitive interactions [55–57], and survival and reproduction
(i.e. via carry-over effects [53]).

(b) Reconstructing larval developmental histories
We used hand nets and clove oil anaesthetic to collect recently
settled sixbars (i.e. fish less than 15 mm total length, TL) from
focal reefs distributed across eight locations on the north shore
of Mo’orea. All activities were conducted with permission from
the French Polynesian government, and in strict accordance
with Victoria University of Wellington animal ethics permits
(AEC22038, AEC26378). Descriptions of collection sites and
details of sampling effort are presented in Shima et al. [53]
which used these collections to quantify survival patterns. Briefly,
we collected approximately 10 settlers per location at weekly
intervals from February to June 2017 (957 settlers total), and we
randomly selected a subsample of approximately five fish per
location per week (n = 490) for further analysis (we subsampled
owing to cost and time constraints).

We extracted sagittal otoliths, cleaned them following
methods of Shima & Swearer [58], and sent them to CEAB’s
Otolith Research Laboratory (www.ceab.csic.es/en/otolith-
research-lab-2), where they were mounted sulcus-side down and
polished along the sagittal plane to expose daily growth incre-
ments along the postrostral axis (validated in Shima 1999 [59]).
Daily increment widths from the otolith core to the conspicuous
settlement mark were tagged and measured along this axis using
the ‘calliper tool’ of IMAGEPRO PREMIER.

We estimated each settler’s larval age (i.e. pelagic larval
duration in days) from the number of tagged daily growth incre-
ments counted from the core to the settlement mark plus two (to
account for the lag between spawning and the initiation of otolith
increments [34]). We estimated post-settlement age from the
number of daily increments counted from the settlement mark
to the otolith edge. We estimated the calendar date of an
individual’s birth by taking the known date of collection and
subtracting the estimated age of the fish (i.e. age = number of
larval increments + 2 + number of post-settlement increments).
We successfully reconstructed complete otolith growth histories
and calendar dates of birth (and, by extension, dates associated
with each growth increment) for 411 settlers (of 490 attempted;
79 samples were either damaged during preparation or other-
wise yielded growth sequences that could not be resolved
and/or assigned to calendar dates with certainty).

(c) Estimating body size from otoliths
We reconstructed each settler’s size (TL, mm) at each day of its
larval life, from the record of daily otolith increments across
the larval stage, using the modified-Fry method [60]:

Li ¼ aþ exp
�
ln (L0p � a)þ (ln (Lcpt � a)� ln (L0p � a))

� ðln (Ri)� ln(R0p)Þ
ðln (Rcpt)� ln(R0p)Þ

�
, ð2:1Þ

where Li and Ri are fish length (TL) and otolith radius at age i,
Lcpt and Rcpt are fish length and otolith radius at capture, L0p
and R0p are fish length and otolith radius at biological intercept
(which were assumed to be 1.5 mm and R0p = 2.5 µm, respect-
ively, based upon values from the published literature [36,61],
and our own qualitative observations), and a, b and c are
parameters estimated by fitting data to other relationships.

Specifically, b and c were estimated from the nonlinear
regression using the nls function in R v. 4.0.2 [62]:

Lcpt ¼ L0p � bRc
0p þ bRc

cpt, ð2:2Þ

a was then defined as:

a ¼ L0p � bRc
0p: ð2:3Þ
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We took this approach because Wilson et al. [63] suggested
that back-calculated estimates of size provide a better proxy of
fish length-at-age than otolith radius-at-age, and the modified-
Fry method for back-calculating size-at-age minimized bias in
estimated size.
ypublishing.org/journal/rspb
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(d) Detrending growth trajectories
We removed age-related trends in larval growth by fitting a
growth model and obtaining residuals. We evaluated five candi-
date growth models (von Bertalanffy, logistic, Gompertz,
quadratic and an unrestricted model of size as a function of
age) to capture the general relationship between larval size
(TL, in mm) and larval age (in days). We fitted each model
(using the nls function in R for nonlinear models, lm for the
unrestricted model (Li∼ ‘age’, modelled as a factor); [63]) to the
full set of data (i.e. growth trajectories of the 411 individuals)
and used Akaike’s information criterion adjusted for small
sample size (AICc) to determine the best model (using the
MuMIn package [64]).

The relationship between size and age of sixbar larvae was
best described by an unrestricted model (electronic supplemen-
tary material, figure S1, red line), although the von Bertalanffy
function described length at age better than the other growth
models (electronic supplementary material, figure S1, black
line, shown for comparison). Despite a severe penalty for
having many more parameters, the unrestricted model greatly
outperformed the von Bertalanffy model (ΔAICc = 1284; elec-
tronic supplementary material, figure S2). The von Bertalanffy
growth function failed to capture the size-at-age patterns of the
youngest and oldest larvae (electronic supplementary material,
figure S3). Thus, we use the unrestricted model in our sub-
sequent growth analyses, which had the added advantage of
generating residuals for each age with a mean of 0.

Using the unrestricted model, we obtained residuals for
each observation as a measure of de-trended size-at-age. We
interpreted a change in residual size as a measure of ‘growth’.
Because estimates of residual size were dependent upon the
sample at age i (and this varied between time-steps as individ-
uals settled and were therefore absent from the sample at age
‘i + 1’), we estimated residual growth for successive days in the
larval life of each individual as:

residual sizeðiþ1Þ–residual sizeði0Þ, ð2:4Þ

where the subscript i0 indicates the subset of individuals at
age i that remained in the pelagic until at least age i + 1.
Thus, this difference in residuals provides the growth of a fish (in
mm d−1) during its ith day relative to all fish whose growth was
measured on their ith day. Note that the average residual growth
among fish at each age was = 0.
(e) Lunar patterns of larval growth
Becausewe previously observed strong effects of birth date on sur-
vival, we visually examined residual growth trajectories of larvae
born in different quarters of an approximately 29.5 d lunar month.
As an exploratory exercise, we re-expressed each larva’s calendar
date of birth as a lunar day (LD, where 0 corresponds to the new
moon, 14 to the full moon, etc.), and then binned fish into lunar
quarters of birth (i.e. centred on the new moon, first quarter
moon, full moon and last quarter moon). We visualized residual
growth trajectories (i.e. residual growth plotted against larval
age) for each lunar cohort using smoothed conditional means
(span = 3, generated from generalized additive models (GAMs)).
These visualizations strongly suggested a pattern of lunar period-
icity in residual growth.

We then formally evaluated lunar periodicity in residual
growth using periodic regression, following methods of
deBruyn & Meeuwig [65]. More specifically, we evaluated a set
of candidate models that included fixed effects for lunar period-
icity (using sin θ and cos θ (where θ is an angular representation
of LD)), and random intercepts and slopes associated with each
individual (i.e. a variable called ‘FishID’, coded as a factor with
unique levels corresponding to the 411 individuals in our
sample) and calendar date (modelled using the lm4e package
[66]). These random effectswere included to account for non-inde-
pendence among multiple estimates of residual growth obtained
from (i) individual fish and (ii) the same calendar dates. We
fitted candidate random effects structures (using restricted maxi-
mum likelihood (REML), and a single fixed effect: sin θ), and
used AICc to identify the best random effect structure (i.e. with
the lowest AICc; MuMIn package [64]). We evaluated competing
models of lunar periodicity that included the best random effects
structure and either sin θ alone, or sin θ and cos θ (fitted using
maximum likelihood; AICc to determine the best model). Finally,
we re-fitted the best mixed effects model using REML to obtain
unbiased parameter estimates [67].
( f ) Sources of variation in lunar periodicity
Following the results of the previous analyses, we hypothesized
that lunar periodicity in growth may be related to intensity and
timing of nocturnal brightness. Nocturnal brightness is shaped
by predictable attributes of the lunar cycle (e.g. moon phase,
timing of moonrise and moonset) and by an additional com-
ponent induced by the masking effects of cloud cover. This
‘natural experiment’, enabled us to formulate a statistical
model that captured the two components of nocturnal brightness
(the lunar cycle and cloud cover), and allowed us to quantify
how growth responded to cloud cover across the lunar month
(i.e. to evaluate if nocturnal brightness, per se, was causally
linked to variation in growth).

We obtained estimates of lunar parameters (including times
of moonrise and moonset at our study site) from https://www.
timeanddate.com, and used these values to calculate ‘early night
illumination’ (i.e. the proportion of time from 18.00 to 0.00 when
the moon was above the horizon) and ‘late night illumination’
(i.e. the proportion of time from 0.00 to 6.00 when the moon was
above the horizon) on each calendar day. In addition, we estimated
‘moon brightness’ on each calendar day as the proportion of
the lunar disc illuminated (new moon = 0, full moon = 1). We esti-
mated ‘early night brightness’ as the product of ‘early night
illumination’ and ‘moon brightness’. Similarly, we estimated ‘late
night brightness’ as the product of ‘late night illumination’ and
‘moon brightness’.

We obtained available records of nocturnal cloud cover data
estimated by the Atmospheric Infrared Sounder [68]. We esti-
mated ‘cloud cover’ at our study location from the proportion
of an area of night sky within a bounding box (3° latitude × 3°
longitude centred on Mo’orea) that was obscured by clouds
(i.e. irrespective of cloud type or altitude). Where nocturnal
cloud cover observations were missing (19 of 126 records), we
infilled with adjacent day-time observations. Finally, we logit
transformed cloud cover to meet statistical assumptions.

We modelled growth as a function of (i) early night bright-
ness, (ii) late night brightness, (iii) cloud cover nested within
early night brightness, and (iv) cloud cover nested within late
night brightness. We also included a random intercept for
FishID, and we evaluated a set of autoregressive error structures
to account for temporal autocorrelation in our data. Specifically,
we evaluated a first-order autoregressive error structure (AR1)
and an autoregressive-moving-average error structure (ARMA;
p = 1, q = 1), and used AICc to identify the best model. Because
the lme4 package does not currently support autoregressive
error structures, we fitted these models using lme (nlme
package [69]).

https://www.timeanddate.com
https://www.timeanddate.com
https://www.timeanddate.com
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Figure 1. Lunar cohorts of larval sixbar wrasse and their residual growth trajectories. (a) Frequencies of sampled larvae (n = 411) born on each LD. Colour identifies
‘lunar cohort’ determined by birthdate on a lunar calendar (estimated from otoliths). Birthdates from LD∼ 26 to LD 3 = ‘new moon’; 4≤ LD≤∼11 = ‘first
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If growth of larval sixbars is mediated by patterns of noctur-
nal illumination (e.g. brightness at particular times of night), then
we predicted that the effects of increasing cloud cover should
differ qualitatively with the phase of the moon. Specifically:
(i) at the new moon (when the moon is below the horizon
throughout the entire night), increasing cloud cover should
have no effect; (ii) during the lunar phase when growth is
below average, increasing cloud cover should be beneficial (i.e.
growth should converge to levels observed for a darker night,
i.e. the new moon); and (iii) during the lunar phase when
residual growth is above average, increasing cloud cover
should be costly (again, residual growth should converge to
levels observed for a darker night, i.e. the new moon). We used
the ‘effects’ package [70] to visualize parameter estimates.
3. Results
(a) Lunar patterns of larval growth
Larval fish had birthdates across the entire lunar cycle,
although more fish in our sample were born close to the full
moon than during other lunar phases (figure 1a). Larval
sixbars, like most reef organisms, develop in a pelagic environ-
ment before settling back to the reef, where they remain
through adulthood. Pelagic larval durations ranged from 37
to 61 d. Growth was relatively invariant over the first 25 d of
larval life, but growth patterns became more pronounced
(and variation appeared to be a function of the lunar cycle)
after day 25 (figure 1b). The shift in these growth trajectories
was related to the timing of a fish’s birth relative to the lunar
cycle, with each cohort’s trajectory offset by approximately
7 d (i.e. an interval similar to the offset between lunar cohorts),
suggestive of lunar periodicity in larval growth. All lunar
cohorts experienced at least one episode of accelerating
growth that appeared to coincide with the last quarter of the
moon, and a minimum near the first quarter.

We used periodic regression to formally quantify lunar
periodicity in growth. We constrained our formal analyses to
observations of residual growth derived from larvae aged
25–50 d because growth trajectories appeared to diverge
after 25 d of age (figure 1b) and nearly all fish had completed
their larval development by 50 d of age (see the electronic
supplementary material, figure S4 for a presentation with all
ages). We evaluated a set of competing statistical models
and settled on a random effect structure that included both
random intercepts and slopes associated with FishID and
calendar date (ΔAICc for the next best model = 8.11; electronic
supplementary material, table S1). Inclusion of cos θ did not
improve model fit (ΔAICc = 0.56; i.e. ΔAICc < 2); consequently
we considered the simplified model (with periodicity
modelled by sin θ alone) to be the best model. The parameter
estimate for sin θ was −0.0130 (s.e. = 0.0014, t-value =−9.30),
and the intercept was −0.000731 (s.e. = 0.000982, t-value =
−0.74), indicating the following lunar periodicity: growth
was lowest near the first quarter moon (LD approx. 7),
increased through the full moon, and peaked near the last
quarter moon (LD approx. 21; figure 2).

(b) Sources of variation in the magnitude of lunar
periodicity

Temporal variation in nocturnal cloud cover facilitated a
‘natural experiment’ that enabled us to test a hypothesis that
growth-related effectsweremediated bymoonlight, as opposed
to other sources of variation occurring on a lunar schedule
(e.g. tides). Temporal autocorrelation in larval growth was
best captured by an ARMA (q = 1, p = 1) error structure. This
model outperformed a competing model with an AR1 error
structure (ΔAICc = 380.94), and effectively eliminated temporal
autocorrelation in the residuals. Our model suggests that cloud
cover modifies the effect of nocturnal lunar illumination
on growth of larval fish, and it provides support for our hypoth-
esis that nocturnal brightness mediates growth of larval fish
(electronic supplementary material, table S2). The effect of
cloud cover depends on the timing of lunar illumination:
when the early portion of the night is bright, cloud cover
tends to increase growth of larval fish (0.00143, s.e. = 0.00099,
t = 1.44). By contrast, when the latter half of the night is
bright, cloud cover reduces growth of larval fish (−0.00189,
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s.e. = 0.00089, t =−2.11). Importantly, these parameter estimates
indicate that the effect of cloud cover varies qualitatively with
the state of the moon. Nocturnal cloud cover has no effect on
larval growth when the moon is not visible (figure 3a) or is
full (figure 3c), which is when we observed average growth of
larvae. However, cloud cover increases larval growth during
portions of the lunar month when growth is normally low, pre-
sumably because nocturnal brightness is deleterious for growth
(figure 3b, cf. figure 2b), but cloud cover reduces larval growth
during portions of the lunar month when growth is normally
high, presumably because nocturnal brightness enhances
growth (figure 3d, cf. figure 2b).
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4. Discussion
Our study demonstrates strong lunar periodicity in growth
rates of larval fish. On the best nights of the lunar month (i.e.
near the last quarter moon) larval sixbars grew approximately
0.012 mm d−1 more than average, but on the worst nights
(i.e. near the first quarter moon), they grew approximately
0.014 mm d−1 less than average. Thus, for a typical larval
sixbar (calculated for an individual 37.5 d in age), its growth
is 24% greater on the best night relative to the worst. This mat-
ters because larval growth is inextricably linked to larval
survival, recruitment and fisheries productivity [1–6].

Larval growthwas not maximal on the brightest nights of a
lunar cycle, as would be expected if growth was simply driven
by vision of larval fish [71,72]. Instead, growth wasmaximized
when the first half of the night was dark and the second half of
the night was bright (i.e. during the last quarter moon when
the moon rises around midnight). Conversely, larval growth
was minimized when the first half of the night was bright
and the second half of the night was dark (i.e. during the
first quarter moon). Nocturnal cloud cover moderated these
effects, making the worst nights for growth better and the
best nights for growth worse. Importantly, these effects were
estimated from a natural experiment that decoupledmoonlight
from other aspects of the lunar cycle, and suggested thatmoon-
light per se is the environmental mechanism that mediates
growth. This is notable because it suggests that nocturnal illu-
mination drives an important component of the productivity of
marine ecosystems.

We hypothesize that these lunar patterns of growth are ulti-
mately linked to the effect of moonlight on organisms that
vertically migrate and enter surface waters at night. These
diel vertical migrants (DVMs) are suppressed by moonlight
[31,37,41–45,73], although the component species (or func-
tional groups) that comprise this mobile community may
vary in their sensitivities and/or responses to moonlight [74].
Zooplankton (potential prey) respond rapidly to the onset of
darkness [37,74]. By contrast, micronekton (e.g. myctophids
that prey on larval fishes) may initiate nightly migrations
from much deeper depths and reach surface waters to hunt
larval fishes later at night, and with a significant delay relative
to vertically migrating zooplankton [45–47]. Consequently,
prey availability in surface waters may be suppressed by
early nocturnal brightness while predator densities may be
suppressed by late nocturnal brightness (figure 4). We hypoth-
esize that these effects result in the lunar patterns of growth for
larval sixbars. Influxes of both prey and predators may be rela-
tively high during the new moon, and predation risk may
prevent larval fish from capitalizing on increased prey biomass
[75] (figure 4a). Predator and prey DVMs may both be sup-
pressed during the full moon, leading larval fish to be
relatively free of risk, but with relatively little food in the sur-
face waters, resulting in no net growth advantage (figure 4c).
Growth may be worst at the first quarter moon because prey
are suppressed but predators are not (figure 4b), whereas
growth may be best at the last quarter because predators are
suppressed and prey are not (figure 4d ). The more we know
about how marine organisms respond to the lunar cycle
and night-time illumination, the more reliably we can make
predictions about the future of marine ecosystems.

We note that our sampling can only account for growth of
larval fish that survived to settlement. We speculate that
interactions between larvae of reef organisms and the DVM
community may also contribute to changing patterns of selec-
tive predation across the lunar cycle. These effects, mediated
by nocturnal illumination, are likely to affect the composition
of larval communities that survive to settle back to the reef.
We also note that the behaviour patterns of larvae of reef
organisms themselves may be mediated by nocturnal illumi-
nation, and such effects may further contribute to observed
patterns. Lastly, lunar periodicity in spawning of other reef
associated organisms could increase prey availability for
larval fishes and thus contribute to variation in growth
rates during particular phases of the lunar cycle. None of
these possibilities are mutually exclusive with our hypothesis
of an important interaction between the DVM and the sur-
face-dwelling larvae of marine reef fishes (a similar
hypothesis has also been proposed for pelagic fisheries [27]).

Our data suggest that growth rates of young larvae (i.e. less
than 25 d of age) are relatively invariant (figure 1b; see also the
electronic supplementary material, figure S4). Early stages of
development are primarily fuelled by maternal provisioning
(i.e. yolk) but this intrinsic energy source is unlikely to account
for homogeneous growth beyond the first fewdays of larval life.
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We speculate that younger (and therefore smaller) larvae may
be relatively unaffected by the DVM community (i.e. they
may be sufficiently small to escape increased predation risk
and/or unable to capitalize on prey sources that are affected
by nocturnal processes). Younger larvaemay simply experience
a more homogeneous prey and predator environment.

Periodic variation in lunar illumination has remained a
constant environmental feature through the history of all
life on Earth, and has probably shaped the evolution of life-
history strategies that relate to spawning and larval develop-
ment in the sea. Indeed, many marine organisms reproduce
[12] and complete their pelagic larval stage [13,76,77] on a
lunar schedule, and this may indicate an evolutionary
response to periodic moonlight and its associated effects
(e.g. facilitation and/or suppression of the DVM commu-
nity). Sixbars spawn disproportionately on the days near
the new moon [53], even though survival is lowest for fish
born at the new moon. Part of the explanation for this see-
mingly paradoxical spawning pattern may lie in the
observed lunar pattern of growth. Spawning at the new
moon is the only time that provisions offspring with two epi-
sodes of beneficial growth in the pelagic larval stage (with the
second episode occurring immediately prior to settlement;
figure 1b). For the growth advantage to reconcile the paradox,
we note that the growth advantage associated with spawning
on a new moon would need to compensate for the reduced
survival of larvae by greatly increasing the fitness of post-
settlement juveniles and/or adults (e.g. via a carry-over
effect). Our previous work [53] suggests that such fitness
advantages do accrue to fish that settle to the reef at older
ages and larger sizes (i.e. traits that are probably associated
with larvae that were spawned on the new moon).

The magnitude of lunar periodic larval growth that we
quantified for sixbars rivals documented effects of food and
climate [20], both currently used to improve forecasting that
informs management decisions for important fisheries [25].
Our results suggest that changes in nocturnal illumination
(attributable to the lunar cycle and cloud cover) could explain
some of the notoriously high variability in stock-recruitment
relationships observed in many fisheries. This is good news
because the lunar cycle is predictable, and global patterns
of cloud cover (that modify lunar effects) are routinely
measured by satellites; hence, such effects could be incorpor-
ated into existing management frameworks with little
additional cost or effort. What we need is more research
quantifying these lunar effects on marine populations. Our
work also suggests that other factors which can contribute
to variation in nocturnal illumination in the sea, including
artificial light sources (e.g. overspill and/or cloud reflection
from coastal cities [78–80]), suspended sediments [81], and/
or climate change that is predicted to alter geographical dis-
tributions of cloud cover [82–84], have the potential to
disrupt marine ecosystems. Accounting for such effects may
greatly improve forecasts that inform future management
and conservation efforts.
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