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A continuous cycle of hypotheses, data generation, and revision of theories drives biomedical research for-
ward. Yet, the widely reported lack of reproducibility requires us to revise the very notion of what constitutes
relevant scientific data and how it is being captured. This will also pave the way for the unique collaborative
strength of combining the human mind and machine intelligence.
It doesn’t matter how beautiful your

theory is, it doesn’t matter how

smart you are. If it doesn’t agree

with experiment, it’s wrong.—Ri-

chard Feynman

Our scientific understanding of the world

evolves through iterative feedback loops

between theory and experiment. Data in-

forms theory building, theory guides

empirical explorations, new data chal-

lenges old theories, and so on. Resolving

discrepancies between theory and exper-

iment is what propels science forward.

To see how common explanations can

be completely subverted by new empir-

ical evidence, consider the transformation

in our understanding of duodenal and

peptic ulcers. Up until the 1980s, these

disorders were ascribed to stress, poor

diet, smoking, alcohol, and susceptible

genes, with severe forms of the disease

sometimes leading to gastrectomy.

Then, Barry Marshall and Robin Warren

put forth a radically different view of the

disease. If they were right, effective treat-

ments for peptic ulcers were readily avail-

able in the form of antibiotics. In 1982,

Warren discovered a new type of bacte-

ria—Helicobacter pylori—capable of sur-

viving and proliferating in the stomach’s

hostile environment. Biopsying ulcer pa-

tients and culturing the bacteria in the lab-

oratory, Marshall built a carefully curated

dataset, revealing a strong correlation be-

tween ulcers and the presence of H. py-

lori. However, the gastroenterology com-

munity was dismissive of his explanation

as it challenged conventional wisdom.

Marshall then decided to try his hypothe-

sis in the only human patient he could
This is an open access ar
ethically recruit—himself. And indeed, he

did develop a peptic ulcer, which he

then successfully treated with antibi-

otics.1 Marshall’s and Warren’s hypothe-

sis was vindicated, and in 2005 they

were awarded the Nobel Prize for

Medicine.

As the scientific enterprise continued to

expand over the past decades, the effort

has become increasingly data intensive.

Driven by Moore’s law, data acquisition

and processing capabilities have become

more powerful and affordable, and this

trend is expected to continue. These

new technologies enable an exponential

accumulation of scientific data in all disci-

plines. Consider the European Molecular

Biology Laboratory data bank, where

sequence data doubles every 51 months.

Or the Large Hadron Collider, where ex-

periments produce about 90 petabytes

of data every year. The published litera-

ture is also witnessing a rapid expansion;

on average, every two minutes a new sci-

entific paper is indexed in PubMed. This

wealth of data holds an enormous poten-

tial to help scientists refine their under-

standing of nature. However, there are

critical challenges to address before this

promise can truly materialize.

Beyond the quantity of the available

data, it is paramount to consider its qual-

ity. Arguably, the tools used for data stor-

age and distribution have evolved faster

than our tools for and appreciation of

full (meta)data capture and data stew-

ardship. This results in the widespread

distribution of unduly curated data,

which has severe consequences, being

at the core of the ‘‘reproducibility crisis’’

affecting several disciplines, especially
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of this issue was brought to the limelight

in 2011 when German pharma company

Bayer’s research teams looked at

4years’ worth of target validation pro-

jects to find that less than 25% could

be reproduced.2 Often, the reason for

this troubling lack of reproducibility was

the absence of detailed protocols and

(meta)data crucial for experimental

execution. This is not an isolated inci-

dent. It is estimated that every year,

approximately USD 28 billion are spent

on irreproducible laboratory-based

biomedical research in the United States

alone.3

Solving this crisis will require more than

merely improving data management

practices for the results of scientific in-

quiries. The very notion of what consti-

tutes relevant data must be carefully

considered. Frequently, researchers

report only the data and procedures they

consider essential to support their conclu-

sions. Yet, what might appear to them as

inconsequential information—changes in

the laboratory’s temperature during the

experiment, reagent batch numbers,

etc.—omitted from the records can and

will result in experimental discrepancies.

This information (collectively denoted as

metadata) must be captured and ac-

counted for to ensure experimental

reproducibility.

A Cell Commentary4 portraying world-

class laboratories struggling to reproduce

each other’s results lucidly illustrates the

perils of metadata omissions. Two

research groups, from Harvard Medical

School and UC Berkeley respectively,

were collaborating on a project studying
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the heterogeneous nature of breast can-

cer. Despite running seemingly identical

experiments, they continued to see

different results for almost two years.

The discrepancy was buried in unre-

ported metadata; at Berkeley, cells were

prepared with a shaking platform,

whereas at Harvard, more vigorous rota-

tional stirrers were used. This story high-

lights that encompassing stewardship of

data and metadata is an absolute neces-

sity, evenmore so in this era of data-inten-

sive multi-center collaborations.

Over the past few years, awareness of

this challenge has led to efforts to estab-

lish standards and procedures for better

data and metadata collection and sharing

practices. These include the development

of the FAIR principles5 for scientific data

management and stewardship. These

principles stipulate that experimental

data have to be findable, accessible,

interoperable, and reusable and that

they highlight the critical importance of

metadata. Since their publication in

2016, the FAIR guidelines have become

an internationally accepted guidebook

for increasing transparency and

improving reproducibility in research.

Another crucial aspect closely related

to FAIR data practices andmetadata cap-

ture is machine readability. With the expo-

nential increase in scientific data and re-

ports, we are reaching the point where

researchers cannot navigate the vastness

of available data anymore without the

support of machine intelligence. This

means that, first of all, databases must

be suitable for a newmode of exploration.

Moreover, the partial transfer of decision-

making from humans to machines makes

the question of data quality even more

pressing. Artificial intelligence (AI) tools

are highly capable of finding patterns in

datasets. However, if the data used to

train these models is faulty, skewed, or

inaccurate, it can easily lead the models

astray. Therefore, as AI’s role in scientific

discovery grows, the question of data

quality becomes even more important,

and the entire scientific community must

make a concerted effort to ensure that
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only well-curated, reliable, and reproduc-

ible datasets are deployed for AI model

training.

Undoubtedly, scientific endeavours

augmented with AI tools will change how

we approach the scientific discovery pro-

cess in the years to come. Challenges

which stood unsolved for decades are

now starting to yield to promising new ap-

proaches. A noteworthy and very recent

example includes the tremendous ad-

vancesmade in predicting protein folding,

with DeepMind’s AI system AlphaFold 2

showing an impressive performance.6

Looking at biomedical research more

broadly, we can expect the way we

discover and develop new drugs to

change profoundly with the increasing

adoption of AI tools in various parts of

the process, from target identification to

molecule design to clinical trial recruit-

ment and many others. As one prominent

example, Insilico Medicine reported in

2019 that by relying on deep reinforce-

ment learning techniques, they managed

to speed up the generation of lead candi-

dates from the pharma average of 1.8

years to just 46 days.7

We can expect that the unique collabo-

rative strength emerging from the com-

bined power of the human mind and ma-

chine intelligence will lead to impressive

advances over the coming years. For

this promise to come through, machines

will have to play a more active role not

just in finding patterns in existing data,

but in generating and capturing data in

the first place. Using automation to create

machine-readable data at scale, with the

depth, reliability, and annotation neces-

sary for successful AI deployment, will

be game-changing.8 Furthermore, the

increasing adoption of automation will

allow scientists to turn their attention

from manually conducting experiments

to more genuine scientific tasks, such as

experiment planning, data analysis and

interpretation, communication and dis-

cussion of findings, etc. We are facing

an exciting new paradigm built on both

humans and machines which will accel-

erate the iterative feedback loops of hy-
pothesis, experiment, and theory that

are the engine of science.
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