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Gastrointestinal microbiota composition predicts
peripheral inflammatory state during treatment of
human tuberculosis
Matthew F. Wipperman 1,2,11, Shakti K. Bhattarai3,11, Charles Kyriakos Vorkas 1,4, Venkata Suhas Maringati3,

Ying Taur 5, Laurent Mathurin6, Katherine McAulay7, Stalz Charles Vilbrun6, Daphie Francois6, James Bean1,

Kathleen F. Walsh 7, Carl Nathan8, Daniel W. Fitzgerald7, Michael S. Glickman 1,4,8✉ &

Vanni Bucci 3,9,10✉

The composition of the gastrointestinal microbiota influences systemic immune responses,

but how this affects infectious disease pathogenesis and antibiotic therapy outcome is poorly

understood. This question is rarely examined in humans due to the difficulty in dissociating

the immunologic effects of antibiotic-induced pathogen clearance and microbiome alteration.

Here, we analyze data from two longitudinal studies of tuberculosis (TB) therapy (35 and 20

individuals) and a cross sectional study from 55 healthy controls, in which we collected fecal

samples (for microbiome analysis), sputum (for determination of Mycobacterium tuberculosis

(Mtb) bacterial load), and peripheral blood (for transcriptomic analysis). We decouple

microbiome effects from pathogen sterilization by comparing standard TB therapy with an

experimental TB treatment that did not reduce Mtb bacterial load. Random forest regression

to the microbiome-transcriptome-sputum data from the two longitudinal datasets reveals

that renormalization of the TB inflammatory state is associated with Mtb pathogen clearance,

increased abundance of Clusters IV and XIVa Clostridia, and decreased abundance of Bacilli

and Proteobacteria. We find similar associations when applying machine learning to per-

ipheral gene expression and microbiota profiling in the independent cohort of healthy indi-

viduals. Our findings indicate that antibiotic-induced reduction in pathogen burden and

changes in the microbiome are independently associated with treatment-induced changes of

the inflammatory response of active TB, and the response to antibiotic therapy may be a

combined effect of pathogen killing and microbiome driven immunomodulation.
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There is mounting evidence that the gut microbiome has an
important role in the modulation of host physiology, with a
wealth of studies having associated microbiome composi-

tion and functions with differential inflammatory, neurological,
and even behavioral activity1. Gastrointestinal colonization by
specific taxa with particular metabolic capacities has been shown
to differentially modulate host biology2. For example, colonization
by a subset of Clostridia enhanced anti-inflammatory phenotypes
in mice3, and enrichment in specific members of the Bacteroides
and Parabacteroides genera induced CD8+ T cell responses and
anticancer activity in mice and marmosets4, as well as correlating
with the abundance of these immune effectors in humans5.
A multitude of experiments in mice have allowed for the deter-
mination of mechanisms by which gastrointestinal mucosal-
associated bacteria affect host physiology at the epithelial interface
and systemically throughout their host6,7.

Despite these observations, it is unknown whether, and to what
degree, microbiome changes are associated with systemic changes in
inflammatory responses in humans. This knowledge gap is due in
part to the difficulty of isolating the microbiome dependent effects
from other aspects of human physiology and in discerning the
direction of causality in human studies. As microbial communities
in the gut promote the development and maintenance of innate and
adaptive immune responses8, including microbiota-educated
immune cells and many small molecules that circulate throughout
the periphery9, we would expect to observe both localized and
systemic host effects upon major microbiome alterations such as
treatment with antibiotics, which we can measure using technologies
such as shotgun RNA sequencing (RNAseq)10 of peripheral blood.

Individuals infected by Mycobacterium tuberculosis (Mtb) and
having active TB disease (the 9th leading cause of death on Earth11)
has been shown to have a markedly different systemic gene
expression profiles compared to people with latent disease, other
respiratory diseases, or no known infection11–13. Specifically,
infection with Mtb leads to heightened expression of inflammatory
pathways, most notably the Type I and Type II interferon path-
ways14–17, with this pattern resolving with antibiotic therapy14,17,18.
A recent meta-analysis combining microarray and RNAseq data
from studies aimed at identifying active TB transcriptional sig-
natures, confirmed the findings about a specific set of peripheral
blood transcripts that are biomarkers of active TB disease, relative
to healthy individuals or those with latent TB infection (LTBI)19.
Antibiotic treatment for active TB involves combination therapy
with narrow (HZE), and semi-broad (R) spectrum, and prodrug
(HZ) agents with mostly Mycobacterial-specific targets. HRZE is
given for two months and is then followed by an HR-only
administration for an additional four months, in order to achieve
over 95% likelihood of cure20. The disruptive effect of HRZ(E)
therapy on the intestinal microbiome was demonstrated in a
longitudinal study in mice21 and cross-sectional study in humans22,
which indicated that the major phyla perturbed are from the class
Clostridia, a group of obligate anaerobes in the gut with well
described immunomodulatory effects on the host2,3,23,24.

Given that HRZE treatment causes GI microbiota shifts that
include the depletion of many Clostridia species, and given the
role that these species play in modulation of host biology in mice
and humans, we reasoned that there could be a connection
between the microbiome alterations observed during HRZE
therapy and the resolution of systemic inflammatory responses to
TB. However, because HRZE therapy rapidly reduces the burden
of Mtb in the early phase of treatment, it is difficult to uncouple
the immunologic effects of pathogen killing from microbiota
perturbation without a control group that has either pathogen
killing or microbiome perturbation, but not both.

To address these questions, we combined three independent
clinical datasets for which we had gathered microbiome profiling

via 16S ribosomal DNA (rDNA) sequencing, peripheral blood
transcriptomics, and Mtb abundance in the sputum (in 2 of 3
datasets). The first dataset (Fig. 1A, B) consists of the secondary
endpoint data from a longitudinal and interventional clinical trial
(NCT02684240) that compared the early bactericidal effect (EBA)
of standard tuberculosis (TB) therapy isoniazid (H), rifampin (R),
pyrazinamide (Z), and ethambutol (E) (HRZE, arm 1) to the
antiparasitic drug nitazoxanide (NTZ, arm 2), shown to possess
antimycobacterial activity in vitro25,26. The analyzed data inclu-
ded the 29 subjects in the trial, whose primary endpoint results
along with randomization procedures, statistical plan, and other
details, were recently reported in Walsh et al.26, and six additional
individuals that gave informed consent for the pilot pre-
randomization phase of the study, which was run to verify
assays and collection protocols (leading to a total N= 35 for
Cohort 1). We note that compared to Walsh et al.26 in where 20
people received NTZ we were able to collect stool and blood
specimen for only 19 of them to be used in this study. The second
dataset (Cohort 2, N= 20 at baseline) consisted of an indepen-
dent 6-month longitudinal and observational HRZE treatment
cohort (Fig. 1A, B). We used these two Cohorts to first char-
acterize short (for both HRZE and NTZ treatments) and long-
term (for HRZE only) effects on the gastrointestinal microbiota
and peripheral gene expression. More importantly we used these
two cohorts’ data to answer our underlying questions by training
Random Forest Regression models to assess the changes in
expression of peripheral inflammatory pathways as a function of
changes in microbiota species abundances and simultaneous
changes in Mtb in the sputum (Fig. 1C). Finally, we validated the
determined microbiota-peripheral-gene expression relationships
using a cross-sectional and observational cohort of healthy Hai-
tian community controls (CC) and healthy household contacts
(or Family Contacts, FC) of TB patients (for a total N= 55), some
previously described5 (Fig. 1A, B).

Results
Gut microbiome diversity is depleted after two weeks of HRZE
or NTZ treatment. As detailed elsewhere, the GHESKIO centers in
Port au Prince, Haiti conducted a prospective, randomized, early
bactericidal activity (EBA) study in treatment-naive, drug-
susceptible adult patients with uncomplicated pulmonary tubercu-
losis (TB) (ClinicalTrials.gov Identifier: NCT02684240)26. 30 par-
ticipants were randomized to receive either NTZ, 1000mg po (oral)
twice daily, or standard oral therapy with isoniazid 300mg daily,
rifampin 600mg daily, pyrazinamide 25mg/kg daily, and etham-
butol 15mg/kg daily (referred to as HRZE) for 14 days (Figs. 1A,
2A), and 5 participants were prescreened to receive HRZE. These
five additional individuals had given informed consent for the pilot
pre-randomization phase of the study (see above) The primary
endpoint of the trial was sputum bacterial load (measured by time
to culture positivity, TTP) in a BACTEC liquid culture system, as a
quantitative microbiologic measure of disease resolution. Sputum
was collected from 6 p.m. to 9 a.m. every other day to quantify
mycobactericidal activity of each treatment regimen.

HRZE resulted in a predictable increase in the TTP (corre-
sponding to reduced bacterial load) over the first two weeks of
therapy compared to baseline TTP (p < 0.001) for the linear
mixed-effect model TTP � Sex þ Ageþ Timeþ Treatment þ
Time : Treatment þ 1jID where Time: Treatment is the interac-
tion term and 1|ID is the subject-level random effect. NTZ was
used as the reference level for treatment (see Methods and
Supplementary Data 2 for exact p-values) (Fig. 2B). NTZ, despite
its potent in vitro activity27, did not have any significant effect on
TTP after 14 days (p > 0.05) (Fig. 2B, Supplementary Data 2)26.
This lack of NTZ antimicrobial effect was traced to a failure of the
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drug to penetrate the sputum26. All patients were subsequently
switched to HRZE standard of care treatment.

We have previously reported22 that HRZE therapy depletes
members of the order Clostridiales, but the cross-sectional design of
that study did not allow for conclusions about the rapidity of this
effect, and most importantly, did not include pretreatment samples
to allow for the assessment of baseline microbiome composition. To
investigate microbiome changes induced by HRZE or NTZ, we
extracted and amplified bacterial and archaeal DNA using V4–V5
16S rDNA sequencing (see “Methods” section). Stool samples were
collected at baseline before the start of treatment and on day 14 of
therapy (Fig. 1A). Using Principal Coordinate Analysis (PCoA)

with Bray–Curtis distances, we found that that the component
accounting for the greatest variation in the microbiome data
qualitatively represented changes in microbiome community
structure that occur after two weeks of NTZ treatment (Fig. 2C)
(see Supplementary Data 4). Inspecting Axis 2 of Fig. 2C, we found
that the observed separation correlates with sequencing batch.
Therefore, for any subsequent statistical modeling analysis (i.e.,
differential microbiota and gene expression modeling), sequencing
batch information has been controlled for by including it as a fixed
effect in the modeling statement.

To compare the effect of the two treatments to microbiome
alpha diversity we calculated the Inverse Simpson Diversity

Fig. 1 Overview of cohorts, subjects, timepoints, samples, and hypotheses in this study. A This study investigates microbiome-transcriptome
relationships in three separate cohorts of individuals in Haiti. Cohort 1 (2-week longitudinal and interventional clinical trial) consists of secondary analysis
of a randomized clinical trial of study volunteers, where we collected disease severity measurements (Mtb bacterial load, TTP), microbiome profiling, and
peripheral transcriptomics in active TB patients at baseline, before randomization to either HRZE (arm 1) (standard of care TB treatment), or Nitazoxanide
(NTZ) (arm 2). Cohort 2 (6 month longitudinal and observational study) consists of study volunteers who were followed throughout the course of
6 months of TB treatment, where we collected TTP, microbiome, and transcriptomics data. Finally, Cohort 3 (cross sectional and observational) consists of
healthy volunteers. These healthy volunteers were enrolled separately. Around half are healthy and TB-negative household or family contacts (FC) of active
TB-patients, and the other half are community controls (CC), with no know TB exposure. We performed microbiome profiling and peripheral
transcriptomics on these individuals as well. B Numbers of individuals in this study. C Diagram showing the major questions investigated in this study.
Supplementary Data 1 provides a table with dates of first and last enrollment for every Cohort.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21475-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1141 | https://doi.org/10.1038/s41467-021-21475-y | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Index for every microbiome sample28. We then regressed the
Inverse Simpson Diversity Index via linear mixed-effect
modeling as Diversity � Sex þ Ageþ Batchþ Treatmentþ
Timeþ Treatment : Timeþ 1jID (see “Methods” section). We
found that there were no differences in alpha diversity at
baseline between the two arms, while both treatments
significantly reduced microbial diversity (p < 0.01, see Supple-
mentary Data 3), with NTZ treatment not having a significantly
different effect compared to HRZE (p > 0.05, for the interaction
term, See Supplementary Data 3) (Fig. 1D).

Taxonomic alterations in microbiome composition induced by
antibiotics are more pronounced in NTZ-treated individuals.
To identify phylotypes significantly affected by each of the two
treatments, we modeled the abundance of each sequencing

variant identified via dada2 (ASV) via linear mixed-effect mod-
eling as ASVi countsð Þ � Sex þ Batchþ Groupþ 1jID using
Limma/Voom29 (see “Methods”section). This model statement
enables quantifying sex and sequencing batch-dependent effects
in addition to establishing effects that are due to treatment group
(pre-treatment, HRZE, NTZ). We used the 1|ID random effect to
control for baseline differences among individuals. ASVs sig-
nificantly affected by the treatments were determined using a
Benjamini–Hochberg false discovery rate (FDR) adjusted p-value
of 0.05 (see “Methods” section).

This analysis indicates that the HRZE effect on the gastro-
intestinal microbiota consisted of depletion of 82 ASVs, many
belonging to genera from the Order Clostridiales (FDR < 0.05)
(see Supplementary Data 5). Notably, many of these ASVs (e.g.,
Blautia spp., Butyrivibrio spp., Clostridium spp., Eubacterium
spp., Faecalibacterium spp., Gracilibacter spp., Oscillibacter spp.,

Fig. 2 Both HRZE and NTZ perturb the gut microbiota after two weeks of therapy, but only HRZE reducesM. tuberculosis bacterial load. A Schematic of
the clinical trial comparing bactericidal effect of HRZE and NTZ. B Paired M. tuberculosis sputum time to positivity (TTP) at day 0 and day 14 for the NTZ
treatment arm and HRZE treatment arm. Data are displayed as range (minimum and maximum) of two-three technical replicates; n= 16 biologically
independent individuals for the HRZE arm and n= 19 biologically independent individuals for the NTZ arm. Linear mixed effect modeling was used to
determine significance of difference in post/pre treatment in each arm as TTP � 1þ Sexþ Ageþ Treatmentþ Timeþ Treatment : Timeþ 1jID, where
Treatment indicates the arm (NTZ or HRZE), Time indicates Pre or Post antibiotic administration, and : indicates the interaction term. For each individual we
use as TTP measurement the average of the relative technical measurements. NTZ treatment is associated with no difference in TTP between day 0 and
day 14 (p > 0.05 for the coefficient of variable Time, see Supplementary Data 2), whereas HRZE significantly reduces bacterial load (p < 0.05 for the
coefficient of variable Treatment : Time see Supplementary Data 2). Data for TTP were obtained fromWalsh et al.26. C Principal Coordinate analysis (PCoA)
with Bray–Curtis distance showing differences in microbiome community structure between individuals before and after 14 days of either HRZE or NTZ
treatment. The gray line connects baseline and day 14 treatment paired samples. PCoA1 clearly discriminates samples post NTZ treatment (pink triangles)
from those at baseline or after HRZE treatment. PERMANOVA analysis was used to reject (p= 0.001, see Supplementary Data 4) the null hypothesis that
the centroids and dispersion of the groups (pretreatment, after NTZ and after HRZE) are equivalent for all groups (see Supplementary Data 4).
D Microbiota alpha diversity plotted using the Inverse Simpson Diversity index; n= 16 biologically independent individuals for the HRZE arm and n= 19
biologically independent individuals for the NTZ arm. Linear mixed effect modeling was used to determine the significance of difference of treatment on
diversity. We fitted the model Diversity � 1þ Sexþ Ageþ Treatment : Timeþ 1jID. The symbol: indicates the interaction term. HRZE was used as the
reference level. No significant difference between the two treatment at baseline was observed. Both groups (p < 0.05 for the coefficient of variable Time
corresponding to HRZE treatment and p < 0.05 for the coefficient of variable Treatment:Time corresponding to NTZ treatment in this model) display
significantly reduced Inverse Simpson diversity after 14 days of treatment (see Supplementary Data 3). Source data are provided as a Source Data file.
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Roseburia spp., Ruminococcus spp., Sporobacter spp.) are known
to be involved in a number of health-associated functions such as
SCFA production30 or bile acid transformation31 (Fig. 3A, B).
NTZ had a more substantial disruptive effect, indicated by
depletion of 387 ASVs and enhancement of 16 ASVs. NTZ caused
a reduction of a larger swath of Clostridiales, which included all
but one of the ASVs depleted by HRZE, as well as many other
additional Firmicutes, (FDR < 0.05). In addition, NTZ caused an
expansion of pathobionts including, K. pneumoniae, E. coli, C.
freundii, S. alactolyticus, and E. faecium32 (FDR < 0.01) (Fig. 3A,
B). These representatives of the Order Bacilli and of the family
Enterobacteriaceae have been shown to be positively selected by
antibiotic treatment as a result of higher antibiotic-induced Redox
Potential, which includes an increased gut epithelial oxygena-
tion33–35. For this reason, both in the literature and in this paper
are referred to as oxygen-tolerant pathobionts (see32).

Taken together, these results demonstrate that NTZ, despite
having no effect on Mtb bacterial load, causes a perturbation of
the gastrointestinal microbiota which is more pronounced
compared to that caused by HRZE. This includes the depletion
of a large number of Clostridia, and the selection for known
disease-associated, oxygen-tolerant pathobionts.

HRZE and NTZ uniquely affect host peripheral gene expres-
sion. As the above results highlighted a differential effect on TB
disease resolution and gastrointestinal microbiota composition of
the two antimicrobials tested, we recognized that this presented a
unique opportunity to infer possible relationship between
microbiome composition, Mtb bacterial load, and peripheral gene
expression. As the patients were randomized at baseline before
being assigned to the two treatments, we used linear mixed-effect
modeling with Limma/Voom to model the abundance of each
host transcript as Genei Countsð Þ � Sex þ Batchþ Groupþ 1jID
(See “Methods” section).

We determined the functional pattern of treatment-induced
changes in overall transcript abundance by performing gene set
enrichment analysis (GSEA)36,37 (See “Methods” section) on the
ranked limma/voom expression data for the baseline vs post-NTZ
or post-HRZE treatment contrasts. We used GSEA to estimate
enrichment for the MiSigDB Hallmark pathways36,38, which are
intended to give a broad overview of biological pathways that may
be expressed. In individuals undergoing HRZE treatment, we
observed a significant (FDR < 0.05, see Supplementary Data 6)
depletion at day 14 of inflammatory response, IFNα response,
IFNγ response, TNFα signaling via NFκB, and IL6 JAK STAT3,
all of which are consistent with the broad immunologic effects of
antibiotic induced reduction in the levels of a bacterial
pathogen14,17,39 (Fig. 4A). In contrast, and to our surprise,
NTZ treatment showed the opposite effect. Inflammatory
signaling pathways reduced by HRZE, including TNFα signaling,
IFNγ signaling, and type 1 interferon signaling were all
significantly enriched by NTZ treatment at day 14 (Fig. 4A).
Several other pathways such as hypoxia, apoptosis, and reactive
oxygen species (ROS) that are considered hallmarks of immune
dysregulation40, were also enriched by NTZ treatment. As NTZ
was found to perturb the microbiome while keepingMtb bacterial
load in the sputum (TTP) substantially unchanged, we hypothe-
sized that the NTZ effect was likely a partial function of
microbiome alteration (Supplementary Data 6).

To gain a deeper understanding of gene signatures affected by
each of the two drugs, we first focused our analysis on a set of
published transcriptomic markers of active TB from multiple
human cohorts across sequencing platforms (microarray and
RNAseq) that are differentially abundant between LTBI, active
TB, and healthy control individuals19. In our study, we detected

363 of these 373 transcripts in pretreatment, active TB subjects.
We defined three classes of changes to these transcripts with two
weeks of HRZE or NTZ treatment: (1) renormalization
(transcripts whose pre–post HRZE/NTZ fold change in expres-
sion displays the same sign, or direction, of the previously-
reported fold-change between active TB and control/LTBI from
ref. 19); (2) unchanged (transcripts with no change in expression
between pre-post HRZE/NTZ administration); and (3) exacerba-
tion (genes whose pre–post HRZE/NTZ fold-change sign is
opposite to the previously-reported fold-change between active
TB and control/LTBI from ref. 19). 157 of these active TB
signature genes were significantly affected by HRZE (FDR < 0.05)
(Fig. 4B, Supplementary Data 7). Of these 157 affected genes, 144
(92%) were found to renormalize with the treatment (i.e.,
displaying the same direction of the fold change reported for
active TB vs. control individuals), while 13 (8%) were found to
exacerbate (i.e., opposite direction of the fold change). On the
other hand, only four of these TB-related inflammatory genes
were found to be affected by NTZ, and all of them (100%) were in
the exacerbation category (Fig. 4C, Supplementary Data 8).

Because NTZ perturbs the microbiome without affecting Mtb
disease resolution, we hypothesized that there may be other
subsets of host transcripts that are linked to microbiome-
dependent immunity that could be responsive to the observed
microbiome perturbations. To test this, considering the already
well-established link between microbiome dysbiosis and autoin-
flammatory conditions such as Inflammatory Bowel Disease
(IBD)42, we selected a recently published panel of 880 genes
differentially expressed in colon biopsies from IBD patients
compared to asymptomatic controls41. Of these 880 genes, 364
were detected in our dataset (expected given that we are profiling
whole blood transcriptomics, rather than colon tissue). We
defined renormalization as those genes that have a post/pre fold
change due to antimicrobial treatment of the same sign as
control/active IBD. Despite the more limited effect on the
microbiome compared to NTZ, HRZE administration was found
to be responsible for a change in 117 of these genes (FDR < 0.05)
(Fig. 4D, Supplementary Data 9), while NTZ was found to be
responsible for a change in 55 of them (FDR < 0.05) (Fig. 4E,
Supplementary Data 10). These data suggest that there may be
microbiome related changes in the peripheral inflammatory state
that are induced by HRZE and NTZ.

Microbiota and peripheral inflammatory profiling of a long-
itudinal, observational HRZE treatment cohort. To validate the
observations obtained after two weeks of HRZE and to identify
effects that may occur with increased treatment length, we
enrolled a longitudinal treatment cohort (20 individuals) to
measure disease resolution over the course of the 6 months of
HRZE treatment, with periodic sampling of sputum for TTP,
stool for microbiome profiling, and peripheral blood for RNA
sequencing (Fig. 5A). All participants received standard of care
HRZE therapy (isoniazid 300 mg daily, rifampin 600 mg daily,
pyrazinamide 25 mg/kg daily, and ethambutol 15 mg/kg daily).
Sputum mycobacterial load (TTP) was collected at baseline, day
7, day 14, 1 month, 2 months, and 6 months at the completion of
treatment. Stool from microbiome profiling was collected at each
of these timepoints as well. Whole blood was collected at baseline,
day 14, and 2 months. Stool and peripheral blood samples were
processed for microbiome and transcriptomic profiling as for the
clinical trial described above (See “Methods” section).

Similar to our observations in the HRZE arm of the HRZE/
NTZ trial, TTP was significantly higher compared to baseline
after two weeks of treatment (p < 0.05). TTP also significantly
increases after two months compared to the two-week timepoint,
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Fig. 3 Overlapping and distinct microbiome perturbation induced by NTZ and HRZE. A Volcano plots indicating the post (day 14) vs pretreatment
(baseline) differences at the ASV level for HRZE and NTZ. The color of each ASV is according to the phylogenetic Order. A single linear mixed effect model
for each ASV of the form ASVi countsð Þ � Sexþ Batchþ Groupþ 1jID was fitted to determine differences due to treatment while accounting for sequencing
batch and sex. ASVs significantly affected by the treatment were those determined to have a Benjamini-Hochberg false discovery rate (FDR) adjusted p-
value less than 0.05 for the variable Group in the limma/voom model (see “Methods” section). The horizontal dotted lines indicate FDR < 0.05 and vertical
dotted lines indicate |log2FC| > 1.5. BWithin-arm unsupervised hierarchical clustering of the abundances of 404 ASVs found to be significantly affected by
HRZE or NTZ treatment (FDR < 0.05, see Supplementary 5). The heatmap columns are split by arm membership (including baseline randomization group),
and the heatmap rows are split by ASV phylogenetic Phylum, and within the Phylum, the Order is colored as in A. The right annotations (HRZE and NTZ)
indicate whether each ASV was significantly perturbed by treatment. P value in y axis is adjusted according to Benjamini–Hochberg (FDR). Source data are
provided as a Source Data file.
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confirming the expected additional sterilization effect of anti-
biotics on Mtb (p < 0.05, linear mixed-effect modeling, see
“Methods” section) (Fig. 5B, see Supplementary Data 11).
Longitudinal analysis of microbiome composition revealed that
diversity drops after just 7 days of treatment, increases after
1 month of treatment but remains significantly lower compared
to baseline at the 6-month follow-up timepoint (p < 0.05, linear
mixed-effect modeling, see “Methods” section) (Fig. 5C, see
Supplementary Data 12).

We performed Limma/Voom differential analysis to deter-
mine effects of treatment and time on the microbiome and
peripheral host transcriptomics using the same approach as
above. As observed above and in our previous work22, HRZE
was found to depress Clostridiales after one week of treatment,
with most of these Clostridiales ASVs remaining significantly
depressed compared to baseline, even at the 6-month follow-up
time point (Fig. 5D, see Supplementary Data 13). Overall, at day
7 compared to baseline, 19 ASVs were depleted and 3 were
increased in abundance, at day 14 compared to baseline, 61
ASVs were depleted and 2 were increased in abundance, at one
month compared to baseline, 83 ASVs were depleted and none
were increased in abundance. Thus, during the first month of
treatment, microbiome depletion relative to individual baseline
samples was evident, however, later in the course of treatment,
we observed a different trajectory. Relative to baseline,

compared to day 0 at two months of HRZE, we observed 11
ASVs depleted in abundance, while 53 ASVs increased in
abundance. At the 6-month mark of HRZE treatment,
compared to day 0 we observed 3 ASVs depleted in abundance
while 327 ASVs increased in abundance (Fig. 5D, see
Supplementary Data 13). The increased abundance of specific
ASVs at the two month and 6-month mark appeared to be
relatively heterogeneous between individuals. Importantly, only
7 and 2 Clostridia ASVs that were depleted in the first month of
treatment did not recover at 2 and 6 months, respectively, with
all other returning at a level not significantly different from day
0. In addition, a number of Clostridia ASVs which were
undetected at day 0 appears to be enriched at the two later time
points. Overall, this longitudinal analysis suggests that after one
month of HRZE therapy, most ASVs that would be affected by
therapy are depleted but also recover between two and six
months of treatment (see Supplementary Data 13). In addition,
it shows that there may be a replacement in community
membership by phylogenetically-related ASVs that were
undetected at day 0 (see Supplementary Data 13).

With respect to the peripheral host inflammatory profiling, we
observed distinct changes in gene signatures at two weeks (day
14) and two months of treatment, compared to baseline (see
Supplementary Data 14). We observed a similar decrease in
common inflammatory pathways in the Hallmark pathway
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dataset described in the HRZE/NTZ trial (Fig. 5E, see
Supplementary Data 15). Interestingly, comparing Day 56 to
baseline or to Day 14, we see additional reduction in
inflammatory gene signatures, potentially explained in part by
the further increase in TTP (reduction of bacterial load) at Day 56
(Fig. 5F–K, see Supplementary Data 16, 17).

Multi-omics-constrained mathematical modeling to decouple the
contribution to peripheral inflammatory signature of gastro-
intestinal microbiota and Mtb. We next sought to determine the
relative contribution of gastrointestinal microbiota and Mtb
dynamics in predicting the changing dynamics of peripheral
inflammatory gene signature. As a granular reflection of the TB
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inflammatory disease state, we reasoned that the resolution of this
state would likely be influenced by the combined upstream factors
of pathogen killing and microbiome perturbation. We hypothe-
sized that modeling these relationships could be achieved by both
leveraging individual variability in response to HRZE treatments,
as well as by leveraging the data from the NTZ arm of the HRZE/
NTZ trial. This is because the NTZ arm is effectively a “natural”
experimental control as it provides for examples in where we
observe both gastrointestinal microbiota and gene-expression
changes in the absence of changes in Mtb. Specifically, our aim
was to identify microbiota members for which changes in
abundance associates with significant changes in inflammatory
pathways in the three groups of antibiotic-treated individuals. To
do this, for each inflammatory hallmark pathway identified to be
significantly affected by HRZE or NTZ via linear mixed effects
modeling, we first computed the change in normalized enrich-
ment score between two consecutive time points tψ and tψþ1 for

individual s as
yltψþ1s

�yltψ s
tψþ1�tψ

i
l¼1¼ L

. We then regressed this quantity

against the corresponding fold change in abundance for every

ASV v in the same interval
xvtψþ1 s

xvtψ s

�

v¼1¼N

and against the corre-

sponding fold change in TTP,
ptψþ1s

ptψ s
. Using change from baseline

values accounts for the random effect of each subject without
having to incorporate this into the model statement. We solved
this regression problem using Random Forest regression as in
ref. 44. To train the models, we used all the observations from the
HRZE/NTZ trial and from the longitudinal observational cohort
for a total of 34 paired samples (Fig. 1). We fit a model for each
inflammatory pathway using all the data from the two long-
itudinal cohorts (HRZE/NTZ trial, and HRZE longitudinal
observational cohort) because we wanted to find patterns that are
general across multiple datasets. Each model was trained using
5000 trees and with a train-validation partitioning of 80–20% of
the data. We reasoned that this approach was appropriately suited
for this type of “large p, small n” multi-omics dataset common in
clinical research45. Importantly RFR modeling has significant
advantages compared to traditional multi-linear regression tech-
niques, because it is agnostic to model structure (e.g., non-
parametric regression), it does not need to meet common
assumptions underlying classical regression techniques, and is
able to intrinsically perform ranked feature selection. Impor-
tantly, while the interpretation of RFR is apparently less
immediate compared to traditional regression (e.g., there are per-
se no regression coefficients or betas), downstream analysis,
which includes Permutated Importance46 and Accumulated Local

Effects (ALE) calculations47 (see “Methods” section) allows for
the estimation of the significance of predictors (e.g., TTP,
microbiome constituents, etc.) and of their effects on the
dependent variable (e.g., host peripheral inflammatory markers).

When plotting the average slope of the ALE curves for
predictors with significant Permutated Importance values (p <
0.05, see Supplementary Data 18), our analysis identifies the
increase in TTP (and therefore a decrease of Mtb in the sputum)
and the increase in abundance of ASVs from Clostridia, especially
members from the Cluster IV and XVIa groups48, which have
been shown to induce anti-inflammatory responses (e.g., Treg-
induction)2,3 through SCFA production49 including E rectale, F.
prausnitzii, G. formicilis, E hallii, O ruminantium, D. formicerans,
S. variable, B. faecis, and B. obeum. The abundance of these
microbiome components was associated with reduction in
peripheral proinflammatory response including INFγ, INFα,
Inflammatory Response, IL6 JAK STAT3 Signaling (Fig. 6). In
contrast, increased abundances of E. coli and E. faecium were
associated with inflammatory exacerbation (Fig. 6), consistent
with a large body of literature demonstrating that gastrointestinal
overgrowth of these species is the hallmark of gastrointestinal
dysbiosis and inflammation50,51 and often associates with adverse
clinical outcome52,53.

Taken together, our data and related computational analyses
show that the changes in inflammatory gene expression that
accompany treatment of TB correlate with the anti-microbial
activity of the drugs that lead to pathogen clearance and with
antibiotic-induced changes in microbiome composition. Based on
this modeling result, we propose two modules of microbiome-
inflammatory effects. The first would be the exacerbation of TB-
associated inflammation by depletion of Clostridia (especially
Cluster IV and XIVa), which is evident in both the HRZE and
NTZ groups. In addition, the enhancement of pathobionts such
as E. faecium, S. alactolyticus, and E. coli, which only occurs with
NTZ, may also exacerbate inflammatory pathway expression
within an individual. Importantly, as our model explicitly
accounts for the abundance of all treatment-affected ASVs (i.e.,
we are controlling for the presence and abundance of all bacteria
by including them in the model as predictors), the fact that these
pathobionts’ abundance correlates with inflammatory response
exacerbation suggests that the identified microbiome-immune
associations may not solely reflect Clostridia dynamics.

Based on this modeling, we hypothesize that successful disease
resolution may be associated with preservation of Clostridia,
whereas their depletion and consequent enhancement of
dysbiosis-associated Enterobacteriaceae or Bacilli pathobionts might
slow resolution or even support inflammatory exacerbation54.

Fig. 5 Longitudinal profiling of HRZE treatment induced changes of microbiome composition and peripheral gene inflammatory expression. A.
Schematic diagram of Cohort. B. Time to positivity was measured at baseline (n= 19 biologically independent samples), day 14 (n= 14 biologically
independent samples), one month (n= 5 biologically independent samples), and two months (n= 9 biologically independent samples). To determine
statistical significance of differences in TTP at different time points we fit the linear mixed-effect model TTP � Sexþ Ageþ Timeþ 1jID. We inspected the
p-value associated by running contrasts for the variable Time to determine significant (p-value for the contrast <0.05) differences in TTP. C Microbiome
diversity was computed for each study volunteer at baseline (n= 20 biologically independent samples), day 7 (n= 7 biologically independent samples), day
14 (n= 19 biologically independent samples), one month (n= 13 biologically independent samples), two months (n= 13 biologically independent samples),
and 6 months (n= 13 biologically independent samples). Microbiome α diversity was measured using the Inverse Simpson index43. To determine statistical
significance of differences in α diversity at different time points we fit the linear mixed-effect model Diversity � Sexþ Ageþ Timeþ 1jID. We inspected the
p-value associated by running contrasts for the variable Time to determine significant (p-value for the contrast <0.05) differences in microbiota diversity
D Volcano plots showing significance of differences in microbiome composition vs. fold change from baseline at Day 7, Day 14, Day 30, Day 56, and Day
180. E Normalized enrichment scores calculated for the Hallmark Pathway list for Day 14 vs. Baseline, Day 56 vs Day 14, and Day 56 vs. Baseline. F–H
Volcano plot showing TB transcripts from ref. 19 at Day 14 vs. Baseline at Day 56 vs. Day 14, and at Day 14 vs. Baseline. I–K Volcano plot showing transcripts
from Palmer et al.41 of IBD cases vs. controls detected in this study for Day 14 vs. Baseline, Day 56 vs. Day 14, and Day 56 vs. Baseline. Source data are
provided as a Source Data file.
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Relationship of the microbiome and peripheral gene expres-
sion in a healthy control validation cohort. The results from our
machine learning modeling on the data from both longitudinal
treatment cohorts provide support to the hypothesis that specific
gastrointestinal microbiota members are associated with immune-
related peripheral blood gene signatures in humans. Specifically,
higher abundance of Clostridia is negatively associated with
inflammation (e.g., INFα, INFγ, IL6/JAK/STAT3, Inflammatory
Response gene signatures), while higher abundance of common

oxygen-tolerant pathobionts is associated with exacerbation of
these signatures. To assess the generality of these findings we
hypothesized that, even in healthy individuals, different levels of
colonization by these bacteria would associated with different
levels of immune-related peripheral blood gene signatures.

To test this hypothesis and to ultimately validate the finding
from the modeling, we analyzed a set of human data from two
healthy control cohorts. A subset of these data was reported in
previous work from us5, and come from a cross-sectional study of
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TB negative healthy household contacts of active pulmonary TB
patients (termed Family Contacts, FC) and healthy unexposed
donors from the same community in Haiti (termed Community
Controls, CC) (see “Methods” section). For these two cohorts we
have a total of 55 healthy control individuals (19 FC and 36 CC)
for which we gathered both microbiome 16S rRNA sequencing
data and peripheral blood transcriptomics.

We first wanted to validate our findings that peripheral blood
transcriptomic patterns that renormalize after HRZE treatment
and exacerbate after NTZ treatment (which were determined
from our comparison to published Control/Active TB gene
signatures datasets) remain valid when comparing to peripheral
inflammatory profiling in our validation FC and CC control
cohorts (Cohort 3). To link transcript abundance to immune
pathway enrichment we utilized single-sample gene set enrich-
ment analysis with the GSVA package in R (see “Methods”
section)55. We first performed unsupervised clustering on the
samples-by-pathway NES scores for all samples in this study and
found that individuals from different cohorts have broad
qualitative differences in distinct biological pathways (Fig. 7A).
We then regressed the Euclidean distance between every pair of
FC/CC and pre-treatment or during treatment samples against
Time, Treatment and patient ID using linear mixed effect
modeling for the HRZE/NTZ trial and the long-term observa-
tional cohort independently (see “Methods” section). We found
that in both the HRZE/NTZ trial and the long-term observational
cohort, HRZE significantly reduced the distance to FC/CC
samples (p value for HRZE in HRZE/NTZ trial <1e−20, p value
for Day 14 longitudinal, observational HRZE treatment cohort
<1e−10, p value for Day 56 longitudinal, observational HRZE
treatment cohort <0.05, Supplementary Data 19 and Supplemen-
tary Data 20) compared to pre-treatment (Day 0), confirming a
peripheral inflammatory renormalization trend. In contrast, NTZ
was found to increase the distance to FC/CC compared to pre-
treatment p value for NTZ in HRZE/NTZ trial < 1e−10, see
Supplementary Data 19), again validating an NTZ-induced
inflammatory exacerbation.

We performed RFR (see “Methods” section) for each pathway
against the microbiome space, and summarized the findings in
Fig. 7B. Surprisingly, we found the abundance of a large number
of Firmicutes and particularly Clostridia to be associated with a
number of the characterized Hallmark molecular pathways (see
Supplementary Data 21). Even more intriguingly we found that
higher abundance of ASVs that are mapped to health-associated
Clostridia including F. prausnitzii, Rumonoccocus spp., and
C. catus, are associated with a reduction in proinflammatory
pathways including INFα, and INFγ. This independent analysis in
homeostatic conditions is consistent with the findings obtained
from the application of our modeling analysis on the HRZE/NTZ
clinical trial and on the longitudinal, observational HRZE
treatment cohort (Fig. 6). These results, performed in a cohort
of 55 volunteers from the Haitian community, thus reinforces the
hypothesis that the relative abundance of specific gastrointestinal
microbiota members, which we find to be perturbed by TB
therapy, correlates with inflammatory peripheral gene expression
in humans.

Discussion
Since the advent of high-throughput microbiome characteriza-
tion, it has become clear that antibiotics are one of the most
common and severe perturbing influences on human microbiome
composition, with both acute and longer lasting effects56,57. It
also has become evident that the specific microbiome constituents
have specific effects on host immunity, including influencing the
abundance and function of immune cell subsets24. Significant

prior data have documented the effects of antibiotics on micro-
biome composition and function and the consequent influence of
these microbiome factors on immune cell populations58, with the
majority of these findings derived using in vivo mouse models.
While there is no doubt that microbiota dynamics affect host
immunity6, it remains unknown to what degree antibiotic
induced perturbation of the microbiome may modify the out-
come of treatment of infection, or what relationships exist in
humans between gut microbiota composition and peripheral gene
expression. It is conceivable that antibiotics work to clear infec-
tion both due to direct pathogen killing and by immune mod-
ulation through the microbiome. It is also possible that the
pathogen killing effect of antibiotics may be partially counteracted
by detrimental immune effects induced by microbiome pertur-
bation. Such dynamics may be particularly relevant to the treat-
ment of chronic infections such at tuberculosis, in which
antibiotic therapy is prolonged and the disease manifestations
reflect a mixture of pathogen burden and the balance of inflam-
matory mediators that cause tissue destruction and chronic
symptomatology59,60.

Antibiotic-sensitive tuberculosis is treated with six months of
antibiotics with predominantly mycobacterial specific agents. In
this study we report the early and late microbiome effects of
HRZE therapy in subjects with active TB and demonstrate that
the same changes observed in a human cross-sectional study of
TB treatment22 (comparing vs. cured and LTBI individuals) were
present after just two weeks of treatment. As previously shown22,
we conclude that HRZE treatment has a rapid and narrow effect
on the gastrointestinal Class of Clostridia, a finding that was also
demonstrated in mice21,61. We note that given the mycobacterial-
specific nature of TB drugs, and the combinatorial nature in
which small molecules interact to affect the microbiome, it was
difficult to predict that primarily Clostridia, in the Phylum Fir-
micutes, would be targeted by HRZE therapy, whereas Actino-
bacteria, the phylum to which Mtb belongs, are relatively
unaffected. Experiments in mice have demonstrated that this
anti-Clostridia effect is primarily driven by rifampicin/PZA21.
Clostridia are immunologically active components of the micro-
biota through their production of metabolites such as short chain
fatty acids and other compounds2,5,6,62,63.

The NTZ/HRZE study allowed us to dissect the relative con-
tributions of pathogen killing and microbiome perturbation to
disease resolution because one treatment arm, standard therapy,
both reduced Mtb bacterial burden and perturbed the micro-
biome, whereas NTZ had no effect on average Mtb burden, but
did perturb the microbiome in a fashion that overlapped with
HRZE. We extended these findings in the longitudinal dataset
which followed subjects with active TB for one week, two weeks,
one month, two months, and 6 months post treatment. These
analyses may provide support to the hypothesis that antibiotic
perturbation of the microbiome has systemic effects on peripheral
gene expression. Further, we speculate that the large hetero-
geneity in the rapidity of treatment response in TB may be a
partial function of heterogeneity in the effects of antibiotics on
the microbiome.

To validate the inferred microbiome-host inflammatory rela-
tionship, we mined microbiome and blood transcriptomic pro-
filing from an independent human cohort of healthy Haitian
individuals. Remarkably, despite the reduced peripheral levels of
inflammatory pathways compared to subjects with active TB, we
again observe that higher abundance of members of Clostridium
IV and XIVa is associated with a reduction in the expression in
pro-inflammatory pathways. This result supports our conclusion
that microbiome composition sets the tone of systemic inflam-
mation, both in disease states and in homeostatic conditions.
Further, it is consistent with the prior findings in both humans
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and animals that Clostridia have been associated with induction
of anti-inflammatory states64,65.

Finally, given the challenge of explaining the relationship
between microbiome composition and peripheral gene expression
with paired samples, randomized to drug combinations with
vastly different effects on both body systems, we strove to use
appropriate mathematical approaches for this type of analysis.

For single-omic microbiome and RNAseq data, we chose to use
limma/voom to model changes in these data given their ability to
model many effects while using subject’s baseline values as ran-
dom effects. For multi-omics integration, we used Random Forest
Regression. While there are a variety of statistical and machine
learning techniques able to investigate relationships between
complex multiparametric datasets (“large p”: microbiome

HRZE/NTZ Trial

pretreatm
ent

immune

proliferation

pathway

cellular component

signaling

development

DNA damage

metabolic

Long. Observat.

pretreatm
ent

HRZE/NTZ Trial

Day 14 - NTZ

Long. Observat.

Day 56 - HRZE

Interferon alpha response
Interferon gamma response

Il6 jak stat3 signaling
Inflammatory response

Complement
Coagulation

Allograft rejection

Myc targets v2
E2f targets

G2m checkpoint
Myc targets v1
Mitotic spindle

P53 pathway

Hypoxia
Apoptosis

Reactive oxygen species pathway
Protein secretion

Unfolded protein response

Apical junction
Apical surface

Peroxisome

Wnt beta catenin signaling
Kras signaling dn
Kras signaling up

Estrogen response late
Estrogen response early

Il2 stat5 signaling
Hedgehog signaling

Notch signaling
Tnfa signaling via nfkb
Pi3k akt mtor signaling

Mtorc1 signaling
Androgen response

Tgf beta signaling

Pancreas beta cells
Spermatogenesis

Myogenesis
Angiogenesis

Epithelial mesenchymal transition
Adipogenesis

Dna repair
Uv response up
Uv response dn

Heme metabolism
Oxidative phosphorylation

Bile acid metabolism
Fatty acid metabolism

Xenobiotic metabolism
Glycolysis

Cholesterol homeostasis

Fam
ily 

Contact

NES

−1
−0.5
0
0.5
1

A

B

HRZE/NTZ Trial

Day 14 - HRZE

Long. Observat.

Day 14 - HRZE

dev
elo

pm
en

t

im
m

une

pat
hway

Com
m

unity 

Control

pro
lif

er
at

io
n

sig
nali

ng

Proteobacteria

Firmicutes

Actinobacteria

Bacteroidetes

Spirochaetes

Haemophilus parainfluenzae  ASV 182 
Escherichia coli  ASV 15 

Blautia faecis  ASV 124 
Clostridium hylemonae  ASV 285 

Kineothrix alysoides  ASV 261 
Fusicatenibacter saccharivorans  ASV 55 

Gemmiger formicilis  ASV 616 
Gemmiger formicilis  ASV 17 

Herbinix luporum  ASV 471 
Dehalobacter restrictus  ASV 475 

Blautia schinkii  ASV 369 
Gracilibacter thermotolerans  ASV 338 

Lachnospira pectinoschiza  ASV 382 
Oscillibacter ruminantium  ASV 840 

Sporobacter termitidis  ASV 370 
Eubacterium hallii  ASV 179 

Ruminococcus faecis  ASV 18 
Sporobacter termitidis  ASV 239 

Oscillibacter ruminantium  ASV 85 
Oscillibacter ruminantium  ASV 90 

Ruminococcus bromii  ASV 23 
Intestinibacter bartlettii  ASV 37 

Terrisporobacter petrolearius  ASV 44 
Ruminococcus callidus  ASV 72 

Faecalibacterium prausnitzii  ASV 10 
Fournierella massiliensis  ASV 446 

Bulleidia extructa  ASV 1215 
Ruminococcus gnavus  ASV 48 

Erysipelatoclostridium ramosum  ASV 71 
Gracilibacter thermotolerans  ASV 366 

Butyrivibrio crossotus  ASV 121 
Colidextribacter massiliensis  ASV 478 

Hungatella effluvii  ASV 150 
Faecalibacterium prausnitzii  ASV 6 

Coprococcus eutactus  ASV 164 

Bifidobacterium longum  ASV 11 
Bifidobacterium adolescentis  ASV 7 

Bacteroides ovatus  ASV 213 
Prevotella copri  ASV 45 

Massiliprevotella massiliensis  ASV 100 
Prevotella copri  ASV 46 

Prevotella stercorea  ASV 202 
Prevotella copri  ASV 2 

Prevotella stercorea  ASV 157 
Prevotella paludivivens  ASV 335 

Treponema succinifaciens  ASV 36 

PA
NCREAS B

ETA
 C

ELL
S

IN
TERFERON A

LP
HA R

ESPONSE

IN
TERFERON G

AM
M

A R
ESPONSE

PROTEIN
 S

ECRETIO
N

APOPTO
SIS

UNFOLD
ED P

ROTEIN
 R

ESPONSE

M
IT

OTIC
 S

PIN
DLE

PI3
K A

KT M
TO

R S
IG

NALI
NG

M
TO

RC1 
SIG

NALI
NG

Order
Bifidobacteriales
Bacteroidales
Clostridiales
Erysipelotrichales
Enterobacterales
Pasteurellales
Spirochaetales

Relation
Negative
Positive

Fig. 7 Analysis of microbiome and blood peripheral gene expression in an independent healthy control human cohort validates association between
specific microbiome members and host peripheral gene expression. A NES scores of 50 Hallmark pathways from the MiSigDB on a per-sample basis for
all cohorts in this study. NES score was calculated using the variance stabilized transformed counts from DSEeq, calculated with the GSVA package in R,
and plotted after scaling (Z score) across all samples. Columns are split based on arm or group membership and rows are split based on Hallmark pathway
categorization. B Random forest regression results associating specific microbial taxa with Hallmark pathways. Only pathways identified in the RFR model
are shown. The ‘Relation’, calculated by taking the first derivative of the ALE plot for each relationship, is positive if the pathway positively associates with a
particular ASV, or negative if the pathway negatively associates with a particular ASV. Source data are provided as a Source Data file.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21475-y

12 NATURE COMMUNICATIONS |         (2021) 12:1141 | https://doi.org/10.1038/s41467-021-21475-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


composition, RNAseq data, clinical metadata, randomization
cohort, paired-sample baseline normalization, etc., and a “small
n” of individuals in early phase clinical trials), Random Forests
are adequate for microbiome purposes, as they have been shown
to outperform Support Vector Machines in some instances,
especially for continuous variable data, and need initialization of a
smaller set of parameters compared to other deep-learning
methods. We believe that our results highlight the utility of these
models in two ways: (1) By providing evidence for or against a
particular hypothesis about clinically significant relationships
between many potentially related parameters, and (2) By pro-
viding hypothesis-generating relationships between the multi-
omic constituents (i.e., features) of these models, which can be
further tested in mice, validation cohorts, or other model systems.

One of the major goals of this study was to evaluate our ability
to infer associations between microbiome, pathogen, and host
inflammatory state in humans by using measurements that are
rapid and not invasive (i.e., stool DNA sequencing, sputum
bacterial load, and blood RNA sequencing). The underlying
rationale is that identification of these associations could lead to
follow-up mechanistic work both in vitro and in vivo aimed not
only at validating them but also at prototyping microbiome
intervention strategies that could improve inflammatory resolu-
tion during TB treatment. By doing so however, we made the
implicit assumption that TTP is a sufficient predictor variable to
account for the effect that the disease has on the systemic
immune response. Another caveat to consider is our lack of
quantitation of cellular immunity. While this information can be
obtained from in vivo experiments which, for example, have
shown that the impact of microbiome dysbiosis from TB treat-
ment is at the level of alveolar macrophages, thus suggesting that
gut microbiome alterations may have not only impact systemic
inflammatory responses but also affect lung-resident immune
cells, it is something that is at the moment not doable in the types
of field settings on which we are basing our analysis. We therefore
acknowledge that TTP quantitation as a window in the disease
state is not a perfect parameter, that our results need to consider
this as a possible caveat and point to the fact that future work
may be geared to consider developing non-invasive and rapid
assays for other correlates that could provide additional levels of
information on host disease state. In addition, we acknowledge
that any associations observed in this study may not account for
latent variables or confounding factors that may explain
microbiota-inflammatory-pathogen relationships. Finally, we
acknowledge that, despite being performed on an independent
cohort, our analysis to validate the identified microbiome-
peripheral gene expression associations was applied on a heal-
thy control cohort. Validation of signatures on people who do not
have the target condition but suffer from other diseases may be
expected to produce false-positive results more often than
otherwise healthy individuals66. As such, future work will be
geared to determine presence of the identified relationships in
new independent TB treatment cohorts.

Despite the above caveats, our data indicates that within the
first 14 days of treatment of TB, resolution of the active inflam-
matory response of TB (as measured by peripheral blood tran-
scriptomics) may be affected both by reducing Mtb burden, as
well as through antimicrobial-induced microbiome perturbations
that may act directly on systemic immune function. Among the
pathways tightly correlated with both factors are the signature
activated pathways of active TB disease: IFNγ, type I interferon,
and TNFα14. There is growing evidence that the outcome of
active TB reflects a mixture of pathogen burden and cytokine
networks that include IL-1 and IFNγ, with the latter acting to
exacerbate disease59. Our findings indicate that the microbiome
perturbation that accompanies TB treatment is a predictor of the

normalization of these same pathways during early treatment,
suggesting that microbiome perturbation could modify or predict
the rapidity of disease resolution. In the first two weeks of
treatment, pathogen killing is the dominant factor, but
microbiome-dependent modulation of inflammatory responses
during treatment may assume an important role during the later
phases of treatment when pathogen killing slows. The validation
of the relationships between microbiome composition and per-
ipheral gene expression in a healthy control cohort, especially for
the collective expression of these same pro-inflammatory and
anti-inflammatory pathways, suggests that these relationships
may extend into other populations. Whether these relationships
are causal, or biomarkers of another state, will remain at the
forefront of future study design. Future work will be directed to
applying the analytical tools and study design presented here to
later time points in the TB treatment course to examine whether
microbiome perturbation during treatment associates with clini-
cally relevant treatment outcomes, and whether the abundance of
Clostridia correlates with rapidity of Mtb sterilization or the
resolution of the inflammatory response that accompanies active
TB. Such data might help support trials to test microbiome
monitoring as a predictor of TB treatment outcome or help
understand interindividual heterogeneity in treatment outcomes.

Methods
Ethical statement and study approval. All volunteers provided written informed
consent to participate in this study. All human studies were reviewed and approved
by the IRBs of both Weill Cornell Medicine and Groupe Haitien d’etude du Sar-
come de Kaposi et des Infections Opportunistes (GHESKIO) Centers (Port-au-
Prince, Haiti). Participants provided informed consent prior to peripheral blood
draw for whole blood collection and stool collection for 16S rDNA sequencing. All
methods and procedures were performed in accordance with the relevant institu-
tional guidelines and regulations. Supplementary Data 1 provides a table with first-
last day of enrollment for each Cohort.

Donor recruitment and protection of human subjects
Secondary analysis of published HRZE/NTZ Clinical trial NCT02684240. All ran-
domization procedures, statistical plan including power calculation and all other
details of the NCT02684240 trial are reported in Walsh et al.26. All the details about
pre-randomization enrollment into HRZE to test the methods for the six additional
individuals that gave informed consent for the pilot pre-randomization phase of
the study are also reported in Walsh et al.26. Importantly we could not collect stool
and blood specimen from one individual from the NTZ arm of the trial and hence
only 19 of the 20 NTZ-treated individuals were include in this study’s analysis.

Estimation ofMtb load from sputum. The protocol for estimation of Mtb load from
the sputum has been reported in in Walsh et al.26. Briefly, Mtb was quantified by
the number of hours to positive signal using a Bactec 960 automated liquid culture
system (Becton and Dickenson [BD], Franklin Lakes, NJ) according to the man-
ufacturer’s instructions. This approach has been validated and shown to be com-
parable to determination of CFU counts67. The minimum amount of overnight
sputum sample required for Mtb quantification was 5 ml, and all overnight sputum
samples collected exceeded that amount. Sputum samples were decontaminated via
a 20-min incubation, with vortexing, with 5 ml of NALC–NaOH (3% sodium
hydroxide, 0.5 to 0.6% N-acetyl-l-cysteine, 1.47% sodium citrate). The endpoint
was positive fluorescent signal indicating microbial growth. The reported TTP is
the average of the two individual liquid cultures (e.g., technical replicates).

Six-month longitudinal and observational treatment cohort. Donors were enrolled
through the Clinical Trials Unit at GHESKIO. Pulmonary TB was diagnosed by
clinical symptoms, chest radiograph consistent with pulmonary TB, and positive
molecular testing. No other formal enrollment criteria were required, like prior
antibiotic treatment. All participant samples were deidentified on site using a bar-
code system before they were shipped to Weill Cornell Medicine (WCM)/Memorial
Sloan Kettering Cancer Center (MSKCC) for analysis. All clinical metadata was
collected on site and managed through the REDCap data management system.68

Human healthy controls. We recruited families of active pulmonary TB patients
where at least two siblings within the family were diagnosed with active TB. These
criteria were designed to select for households with high risk of transmission ofMtb.
Household contacts were then recruited if they had been sleeping in the same house
with a TB case for at least one month during the six months prior to the TB case
diagnosis. Contacts underwent clinical screening for active TB symptoms and IGRA
testing. Healthy donors without history of TB contacts or disease were recruited

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21475-y ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1141 | https://doi.org/10.1038/s41467-021-21475-y | www.nature.com/naturecommunications 13

www.nature.com/naturecommunications
www.nature.com/naturecommunications


from the same community as a control group for exposure and also underwent
clinical screening for active TB symptoms and IGRA testing. All donors provided
informed consent prior to peripheral blood donation for whole blood collection for
RNAseq and stool submission for DNA extraction and 16S rDNA sequencing.

Microbial DNA extraction from stool. DNA extraction from stool was performed
as described.22 Stool specimens were collected and stored for less than 24 h at 4 °C,
aliquoted (~2 ml each), frozen at –80 °C, and shipped to WCM/MSKCC. About
200–500 mg of stool from frozen samples was suspended in 500 μl of extraction
buffer (200 mM Tris-HCl [Thermo Fisher Scientific], pH 8.0; 200 mM NaCl
[Thermo Fisher Scientific]; 20 mM EDTA [MilliporeSigma]), 210 μl of 20% SDS,
500 μl of phenol/chloroform/isoamyl alcohol (25:24:1; MilliporeSigma), and 500 μl
of 0.1-mm–diameter zirconia/silica beads (Biospec Products). Samples were lysed
via mechanical disruption with a bead beater (Biospec Products for 2 min, followed
by 2 extractions with phenol/chloroform/isoamyl alcohol [25:24:1]). DNA was
precipitated with ethanol and sodium acetate at –80 °C for at least 1 h, resuspended
in 200 μl of nuclease-free water, and further purified with QIAamp DNA Mini Kit
(Qiagen) according to the manufacturer’s protocols. DNA was eluted in 200 μl of
nuclease-free water and stored at –20 °C.

16S rDNA sequencing and bioinformatic analysis. Primers used to amplify
rDNA were: 563F (59-nnnnnnnn-NNNNNNNNNNNN-AYTGGGYDTAAAGN
G-39) and 926R (59-nnnnnnnn-NNNNNNNNNNNN-CCGTCAATTYHTTTR
AGT-39). Each reaction contained 50 ng of purified DNA, 0.2 mM dNTPs, 1.5 μM
MgCl2, 1.25 U Platinum TaqDNA polymerase, 2.5 μl of 10× PCR buffer, and
0.2 μM of each primer. A unique 12-base Golay barcode (Ns) preceded the primers
for sample identification after pooling amplicons. One to 8 additional nucleotides
were added before the barcode to offset the sequencing of the primers. Cycling
conditions were the following: 94 °C for 3 min, followed by 27 cycles of 94 °C for
50 s, 51 °C for 30 s, and 72 °C for 1 min, where the final elongation step was
performed at 72 °C for 5 min. Replicate PCRs were combined and were subse-
quently purified using the Qiaquick PCR Purification Kit (Qiagen) and Qiagen
MinElute PCR Purification Kit. PCR products were quantified and pooled at
equimolar amounts before Illumina barcodes and adapters were ligated on using
the Illumina TruSeq Sample Preparation procedure. The completed library was
sequenced on an Illumina Miseq platform per the Illumina recommended protocol.

Forward and reverse 16S MiSeq-generated amplicon sequencing reads were
dereplicated and sequences were inferred using dada2.69 Potentially chimeric
sequences were removed using consensus-based methods. Taxonomic assignments
were made using BLASTN against the NCBI refseq_rna database. These files were
imported into R and merged with a metadata file into a single Phyloseq object.

Peripheral blood transcriptomics. Collection of peripheral blood and evaluation
of host gene expression follows our previous published work70. Briefly, peripheral
blood was collected into Tempus™ Blood RNA tubes (Applied Biosystems) for the
HRZE/NTZ trial cohort, as well as the control cohort. RNA was extracted using the
Tempus™ Spin RNA Isolation Kit (Ambion), with addition of on-column DNase
treatment (AbsoluteRNA, Ambion). For the EBA longtidunal cohort, PAXgene
tubes were used to collect blood according to the manufacturers protocol. RNA was
ribo-depleted by polyA selection and libraries were generated using TruSeq (Illu-
mina, San Diego, CA). Paired-end RNA sequences (50 × 50PE) were generated
with HiSeq 2500 (Illumina) with at least 50 million reads per sample. Sequence
integrity was verified using FastQC (Babraham Bioinformatics). Sequences were
aligned to the human genome (version hg38) using STAR aligner71 and transcript
counts were estimated using featurecounts72. Quality of aligned and counted reads
was assessed using Quality of RNA-Seq ToolSet (QoRTs)73.

Statistical and computational analysis. All statistical and computational analysis
was performed in R v.3.6.1 (2019-07-05) with Platform: x86_64-pc-linux-gnu (64-
bit), running under: Ubuntu 16.04.6 LTS. The following R packages were used: nlme
(v.3.1-141), reshape2 (v.1.4.4), ALEPlot (v.1.1), vita (v.1.0.0), randomForest (v.4.6-
14), GSVA (v.1.32.0) msigdbr (v.7.1.1), fgsea (v.1.10.1), Rcpp (v.1.0.5), forcats
(v.0.5.0), purrr (v.0.3.4), readr (v.1.3.1), tidyr (v.1.1.2), tibble (v.3.0.4), tidyverse
(v.1.3.0), RColorBrewer (v.1.1-2), ggthemes (v.4.2.0), hues (v.0.2.0.9000), edgeR
(v.3.26.8), variancePartition (v.1.14.1), scales (v.1.1.1), foreach (v.1.5.1), limma
(v.3.40.6), circlize (v.0.4.10), ComplexHeatmap (v.2.0.0), gtools (v.3.8.2), ggplot2
(v.3.3.2), stringr (v.1.4.0), ifultools (v.2.0-5), data.table (v.1.13.0), yingtools2
(v.0.0.0.62), dplyr (v.1.0.2), phyloseq (v.1.28.0), DESeq2 (v.1.24.0), Summar-
izedExperiment (v.1.14.1), DelayedArray (v.0.10.0), BiocParallel (v.1.18.1), matrix-
Stats (v.0.56.0), Biobase (v.2.44.0), GenomicRanges (v.1.36.1), GenomeInfoDb
(v.1.20.0), IRanges (v.2.18.3), S4Vectors (v.0.22.1), BiocGenerics (v.0.30.0).

Linear mixed effect models. For the clinical trial, to identify the significance of the
influence of sex, age, treatment groups (HRZE and NTZ), and time of treatment on
time to positivity (TTP), we implemented a linear mixed effect model as
TTP � Sex þ Ageþ Time � Treatment þ 1jID. Similarly, to associate the sig-
nificance of the effect of sex, age, treatment groups (HRZE and NTZ), sequencing
batches, and time of treatment on microbiota diversity (Inverse Simpson), Inverse

Simpson was modeled as
Diversity � Sex þ Ageþ Batchþ Time � Treatment þ 1jID, where:
● 1|ID is used as a random effect to account for individual differences
● Sex represents if an individual is male or female
● Time indicates Day 0 and Day 14
● Treatment indicates HRZE or NTZ group
● Batch represents the sequencing batch information

Alpha diversity indices were computed using phyloseq package in R and the
implementation of linear mixed effect models were carried out using nlme
package in R.

For the longitudinal observational HRZE treatment cohort, to identify the
significance of the influence of sex, age, and treatment time on time to positivity
(TTP), we implemented linear mixed effect model as
TTP � Sex þ Ageþ Timeþ 1jID. Similarly, to identify the significance of the
influence of sex, age, and treatment time on microbiota diversity on microbiota
diversity (Inv Simpson), we performed linear mixed effect modeling
Diversity � Sex þ Ageþ Timeþ 1jID.

Differential analysis for microbial ASVs and host genes: Both raw 16Sr rRNA
microbiota ASVs and peripheral blood RNAseq gene-expression counts were
modeled using the limma/voom pipeline.29 This allowed us to use linear mixed-effect
modeling of gene/ASV counts as of Count � Sex þ Batchþ Groupþ 1jID. This
model statement enables quantifying sex and sequencing batch-dependent effects in
addition to establishing effects that are due to treatment group (pre-treatment, HRZE,
NTZ). We included the Batch variable as a fixed effect because every treatment group
(pre-treatment, HRZE, NTZ) is similarly represented in each sequencing batch. For
the six-month longitudinal and observational treatment cohort, we used similar
differential analysis approach as the clinical trial by modeling gene/ASV counts as
Count � Sex þ Batchþ Timeþ 1jID, where Time represents the Day 0, Day 14, and
Day 56 time points. The advantage of limma is that we could use 1|subject as a
random effect to control for baseline differences among individuals, important in this
clinical setting. Significance of ASVs affected by the treatment were determined using
a Benjamini–Hochberg false discovery rate (FDR) adjusted p-value of 0.05 from the
modeling-produced contrast lists (e.g., HRZE vs. Pre, NTZ vs. Pre, Day 0–six-month
longitudinal and observational treatment cohort vs. Day 14–six-month longitudinal
and observational treatment cohort)29. We note that the longitudinal nature of these
samples, and having a pretreatment sample allows us to account for other unknown
factors (e.g., prior antibiotic use).

To determine how the anti-TB treatment affects both microbiome and
peripheral gene expression profiles we performed differential analysis on the counts
data obtained by microbiome DNA and peripheral blood RNA sequencing. As the
primary endpoint of the clinical trial was powered to determine differences in Mtb
load (TTP), we determined the statistical power available to identify significant
differences in the abundance of both microbiota ASVs, and in the expression of
peripheral genes. We ran power calculations to determine that with 16 pre and 16
post treatment microbiome samples and 8 pre treatment and 8 post treatment
RNAseq samples for the HRZE cohort, with 80% power at a significance level (α) of
0.05, we could detect a fold change of 1.4 for microbiome difference and a fold
change of 1.8 for mRNA transcripts. In the NTZ cohort, with 18 pre treatment and
18 post treatment microbiome samples and 14 pre and 14 post treatment RNAseq
samples, with 80% power at α < 0.05, we can detect a fold change of 1.4 for
microbiome differences and a fold change of 1.6 for mRNA transcripts. In the
longitudinal cohort with 20 baseline, 10 day 7, 18 day 14, 13 one month, 13 two
month, and 11 six month follow up microbiome samples, with 80% power at a
significance level (α) of 0.05, we can detect a fold change of 1.4 (day 7), 1.36 (day
14), 1.4 (1, 2, and 6 months). In the six-month longitudinal and observational
treatment cohort with 19 baseline, 19 day 14, and 13 two-month RNAseq samples,
with 80% power at a significance level (α) of 0.05, we can detect a fold change of 1.4
for mRNA transcripts at day 14, and 1.5 at two months. Power calculations were
performed with the RNAseqPower package in R. For microbiome data we
calculated a biological coefficient of variation of 0.3, and for RNAseq, we used a
coefficient of variation of 0.4. We estimated the expected minimum fold change
that we could observe for each group based on the sample size, sequencing depth,
and an α of 0.05. To visualize trends of transcript fold changes, we used scatter
plots and calculated post-vs-pre fold changes for all transcripts throughout.

Host-Microbiome-Mtb modeling. We assessed the relative contribution of the gas-
trointestinal microbiota and Mtb dynamics towards peripheral gene expressions using
Random forest regression (RFR). Instead of modeling each gene/transcript profile as a
function of microbiome and TTP, we mapped our gene expression data to a set of 50
Hallmark Pathways via GSVA. To avoid having correlated samples from same indi-
vidual in a model, we instead modeled the changes in normalized enrichment score of
Hallmark pathways at two time points (Day 0 and Day 14) as a function of change in
microbiome and TTP at corresponding timepoints. For each Hallmark pathwayli-
dentified to be significantly affected by HRZE (HRZE/NTZ trial or six-month long-
itudinal and observational treatment cohort) or NTZ via linear mixed effects modeling,
we first computed the change in normalized enrichment score ΔNESl between two
consecutive time points Day 0 and Day 14 as ΔNESl=NESl14 – NESl0 for each
individual. We then regressed this quantity against the corresponding Log2 fold
change of normalized counts value (NEV) of every ASV v as Log2(NEVv

14/NEVv
0) in
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the same interval and against the log2 fold change in TTP i.e., Log2 (TTP14/TTP0).
Normalized expression value (NEV) is the CPM (counts per million) obtained by
normalizing the raw counts by the library sizes and multiplying by one million. To
train the models we used observations from the clinical trial and from the longitudinal
EBA cohort for a total of 34 paired samples. We fit a model for each significant
pathway using all the data from the three patients’ group (HRZE clinical trial, NTZ
clinical trial, and HRZE EBA) because we wanted to find patterns that are general
across multiple datasets. Each model was trained using 5000 generated trees and a
train-validation partitioning of 80–20% of the data.

Permutated importance46 measure is used to assess the importance and
significance of predictors (e.g., TTP, microbiome constituents, etc.) towards the
dependent variable (e.g., pathways). The higher the permutation importance of a
predictor, the higher is the association towards the outcome variable. Accumulated
Local Effects (ALE) plots47 are used to estimate the relationship between the
predictors towards the outcome variable. To simplify the effect of predictors on
pathways into a monotonic relationship, we computed the slope of a fitted straight
line of ALE plots and summarize the direction of the slope into a positive/negative
effect of predictors towards outcome variable.

Random Forest Regression Analysis of control cohort: To investigate
microbiome-pathway relationships in the FC and CC cohort, we modeled the
normalized enrichment score (NES) of each Hallmark pathway as a function of
normalized expression value (NEV) of ASVs for corresponding samples. Each RFR
model was trained using 5000 generated trees and a train-validation partitioning of
80–20% of the data. Permutated importance46 and (ALE) plots47 were used to
assess the importance and relationship of ASVs towards pathways.

Within sample GSEA analysis: The ssGSEA (single sample gene set enrichment
analysis) method74 was used to profile within-sample differences between pathways
from the MiSigDB Hallmark pathways list38, or other MiSigDB lists (e.g., KEGG),
with the GSVA package in R55. The MiSigDB Hallmark pathway list is a well
validated set of general curated biological pathways that give insight into specific
biological and cellular processes. In addition, we obtained a list of well validated
active TB signatures from the TBSignatureProfilier R package (https://github.com/
compbiomed/TBSignatureProfiler). Variance stabilized transformed (vst) counts
derived from DESeq2 were used as input into the GSVA function in the GSVA R
package with default parameters (kcdf= “Gaussian”) and scaled Normalized
Enrichment Scores (NES) were plotted as heatmaps. Importantly, unlike classical
GSEA, this analysis is agnostic to sample phenotype.

Identification of differential pathways post antibiotic treatment in both the
HRZE/NTZ trial and longitudinal observational HRZE treatment cohort was
performed using linear mixed effect model where we modeled the normalized
enrichment score (NES) of each pathways as NES � sex þ batchþ groupþ 1jID
and NES � sex þ batchþ Timeþ 1jID, respectively. Significance of pathways
affected by the treatment were determined using a Benjamini–Hochberg false
discovery rate (FDR) adjusted p-value of <0.05. Significant pathways in both trials
were used as outcome/dependent variables for the RFR models.

To finally confirm that HRZE treatment was renormalizing peripheral
inflammatory pathways while NTZ was causing exacerbation we applied mixed
effect modeling to predict the pairwise distance in NES between every CC/FC
sample and every sample before or after treatment from the HRZE/NTZ trial and
the longitudinal observational HRZE treatment cohort independently. In the first
case we fit the model Distance � sex þ batchþ groupþ 1jID in the second we fit
Distance � sex þ batchþ Timeþ 1jID. P-value and sign of the coefficient
associated with group.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data on Time to Positivity where obtained from Walsh et al.26 and are available on
Github at https://wipperman.github.io/TBRU/. 16S rDNA sequencing data is deposited
with the SRA under accession no. PRJNA445968 (https://www.ncbi.nlm.nih.gov/
bioproject/PRJNA445968). Peripheral blood transcriptomic data are deposited with the
SRA under accession no. PRJNA445968 (https://www.ncbi.nlm.nih.gov/bioproject/
PRJNA445968). All the results from the machine learning and statistical calculations are
available as Supplementary Data. All the metadata and code to analyze the data presented
in this manuscript and to reproduce all of the figures and results is available on Github at
https://wipperman.github.io/TBRU/TB_paper_2020/. Source data are provided with
this paper.
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