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Repurposing mesalazine against cardiac fibrosis in vitro
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Abstract
Cardiovascular diseases are exacerbated and driven by cardiac fibrosis. TGFβ induces fibroblast activation and differentiation
into myofibroblasts that secrete excessive extracellular matrix proteins leading to stiffening of the heart, concomitant cardiac
dysfunction, and arrhythmias. However, effective pharmacotherapy for preventing or reversing cardiac fibrosis is presently
unavailable. Therefore, drug repurposing could be a cost- and time-saving approach to discover antifibrotic interventions. The
aim of this study was to investigate the antifibrotic potential of mesalazine in a cardiac fibroblast stress model. TGFβwas used to
induce a profibrotic phenotype in a human cardiac fibroblast cell line. After induction, cells were treated with mesalazine or
solvent control. Fibroblast proliferation, key fibrosis protein expression, extracellular collagen deposition, and mechanical
properties were subsequently determined. In response to TGFβ treatment, fibroblasts underwent a profound phenoconversion
towards myofibroblasts, determined by the expression of fibrillary αSMA.Mesalazine reduced differentiation nearly by half and
diminished fibroblast proliferation by a third. Additionally, TGFβ led to increased cell stiffness and adhesion, which were
reversed by mesalazine treatment. Collagen 1 expression and deposition—key drivers of fibrosis—were significantly increased
upon TGFβ stimulation and reduced to control levels by mesalazine. SMAD2/3 and ERK1/2 phosphorylation, along with
reduced nuclear NFκB translocation, were identified as potential modes of action. The current study provides experimental
pre-clinical evidence for antifibrotic effects of mesalazine in an in vitro model of cardiac fibrosis. Furthermore, it sheds light on
possible mechanisms of action and suggests further investigation in experimental and clinical settings.
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Introduction

Fibrosis is the excessive deposition of extracellular matrix
(ECM) proteins, leading to organ dysfunction, morbidity
and finally death. Worldwide, the burden of fibrosis is
substantial, as 25% of the population are affected and ap-
proximately 45% of deaths in the Western world can be
attributed to diseases involving fibroproliferation (Artlett
2012; Zhao et al. 2020).

The human heart is particularly vulnerable to fibrotic
remodeling, as lost cardiomyocytes do not regenerate and
thus are replaced by ECM proteins (Uygur and Lee 2016).
Therefore, most cardiovascular diseases are accompanied
by fibrosis (Murtha et al. 2017; Hinderer and Schenke-
Layland 2019). In health, cardiac fibroblasts safeguard
the ECM homeostasis by well-balanced secretion and
degradation of ECM proteins, ensuring optimal tissue me-
chanical properties. Thereby, they protect the heart from
rupture due to high mechanical load without negatively
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affecting cardiac function (Tallquist and Molkentin 2017).
In disease, however , act ivat ing st imul i such as
transforming growth factor beta 1 (TGFβ) induce a phe-
notypic transition of fibroblasts towards α-smooth muscle
actin (αSMA)-positive myofibroblasts (Baum and Duffy
2011; Tallquist and Molkentin 2017), which excessively
secrete collagen and release cytokines leading to local
inflammation, cardiac dysfunction, and arrhythmias such
as atrial fibrillation (Jalife and Kaur 2015; Künzel et al.
2020).

Recent clinical therapeutic approaches towards cardiac
fibrosis concentrate on the modulation of the renin-
angiotensin-aldosterone system with angiotensin-
converting enzyme inhibitors, angiotensin-II receptor
subtype-1 blockers, and aldosterone or renin inhibitors
(Jia et al. 2018; Park et al. 2019). Furthermore, inflamma-
tion modulators targeting tumor necrosis factor alpha (e.g.,
infliximab), statins like rosuvastatin and peroxisomal
proliferator–activated receptor agonists like fenofibrate
have been tested to ameliorate cardiac fibrosis but failed
to provide convincing results in several clinical studies
(Fang et al. 2017). As of today, there are no drugs available
that reliably prevent or substantially reverse fibrosis (Zhao
et al. 2020).

Current research has focused on the experimental mod-
ulation of the TGFβ, extracellular signal-regulated kinases
1 and 2 (ERK1/2), and SMAD2/3 pathways in cardiac
(myo)fibroblasts (Evans et al. 2003; Fan and Guan 2016;
Khalil et al. 2017; Luo et al. 2017). Given the substantial
costs and extensive timeline of de novo drug development
to specifically modulate these pathways, repurposing of
established compounds with known safety profiles could
be an attractive and low-risk approach to providing
antifibrotic therapy (Paul et al. 2010; Sertkaya et al.
2016; Pushpakom et al. 2019).

Aminosalicylates, like aspirin, have shown promising
results in the experimental treatment of cardiac fibrosis
(Liu et al. 2017). However, the translational value of this
finding might be limited because dose-dependent systemic
side effects such as bleeding or gastric ulcer are common
with aspirin (Weil et al. 1995; Huang et al. 2011).
Mesalazine (5-aminosalicylic acid) is structurally compa-
rable to aspirin (Desreumaux and Ghosh 2006), but can be
administered in high daily doses with good tolerability
(Clemett and Markham 2000). While its mode of action
is still under debate, experimental evidence suggests that
orally administered mesalazine reduces the expression of
profibrotic cytokines (Ramadan et al. 2018), predisposing
the compound for further investigation into antifibrotic
drug repurposing. In this study, we investigate the effect
of mesalazine on fibrotic phenotype conversion of cardiac
fibroblasts, using a previously described in vitro model
(Künzel et al. 2020).

Materials and methods

Cell culture

All experiments were performed with the recently in-house
developed human atrial fibroblast cell line HAF-SRK01
(HAF) (Künzel et al. 2020) (RRID:CVCL_ZG36). Cells
were cultured under controlled conditions (37 °C, 90%
humidity, 5% CO2) in non-coated cell culture dishes
(Sigma-Aldrich; USA; Techno Plast ic Products ,
Switzerland) containing as culture medium Dulbecco’s
modified Eagle’s medium with high glucose (4500 mg/L;
Sigma-Aldrich, USA), 10% fetal calf serum, and 1% pen-
icillin-streptomycin.

TGFβ stress model andmesalazine treatment protocol

TGFβ is one of the most potent inductors of virtually all
types of fibrosis (Rockey et al. 2015). Unless stated other-
wise, 24 h after seeding, the cells were stimulated with
TGFβ (10 ng/mL in medium) (100-21C, Peprotech,
USA) for 72 h, followed by either 72 h of medium (solvent
control) or 10 mmol/L mesalazine (A3537, Sigma-Aldrich,
USA) solved in medium (Fig. 1). TGFβ treatment follow-
ed by solvent control is stated as “TGFβ” in the results,
whereas TGFβ treatment followed by mesalazine is stated
as “TGFβ + Mesa.” Medium and drugs (TGFβ and
mesalazine) were changed daily.

Functional fibroblast characterization

Proliferation As described above, 1 × 104 cells/well were
seeded in 12-well plates with daily change of medium and
drugs. Cells were harvested and counted after 5 and 10
days using 0.25% trypsin and a Buerker counting chamber.
Results were calculated as cells × 104/mL.

Myofibroblast differentiation To evaluate myofibroblast dif-
ferentiation, immunocytochemistry (ICC) for fibrillary
αSMA was conducted as described previously (Poulet
et al. 2016; Künzel et al. 2019). For this purpose, 0.5 ×
104 cells/well were seeded on glass coverslips in 24-well
plates. Stimulation and treatment were performed as de-
scribed above. Pictures of independent coverslips were
randomly taken and the percentage of myofibroblasts was
calculated in relation to the total number of counted nuclei.
A minimum of 50 cells/coverslip was analyzed. Table 1
provides the primary and secondary antibodies that were
used to detect the proteins of interest.

NFκB translocation Cells (0.5 × 104/well) were seeded on
coverslips in 24-well plates. The next day, the cells were
cultured in drug-free medium as a control or stimulated
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with TGFβ (10 ng/mL) for 1 h, followed by drug-free
medium or mesalazine (10 mmol/L) for an additional 2 h.
After fixation, cells were permeabilized using Triton-X
100 (0.5%). Subsequently, ICC for NFκB was performed
and nuclei were stained with DAPI. To evaluate the nucle-
ar translocation of NFκB, images were quantified using
CellProfiler™-Software (Broad Institute, Cambridge,
USA) (McQuin et al. 2018). The results are presented as
nuclear NFκB intensity normalized to nuclear area per an-
alyzed cell.

Collagen secretion and deposition

For assessment of collagen deposition on the growth surface,
cells were first seeded on glass coverslips in standard culture

medium at a density of 10 × 104 cells/cm2. Twenty-four hours
after seeding, the medium was changed to DMEM high glu-
cose supplemented with 0.5% FCS, 1% penicillin/streptomy-
cin, 0.5 mmol/L ascorbic acid (AAcid), and the indicated
drugs. After 48 h, cells were fixed in 4% para-formaldehyde.
Deposited collagen was visualized using ICC against collagen
Iα1. Imaging was performed on a Leica SP8X line-scanning
confocal microscope using a × 40 water-immersion objective.
For image analysis, an in-house macro for FIJI (Schindelin
et al. 2012) was used. In short, a maximal intensity projection
of all planes was performed after background subtraction. A
uniform intensity–based threshold was then used to identify
the collagen-positive area. The overall collagen–covered area
was then normalized to the number of nuclei in the respective
image.

Table 1 Antibodies

Protein Dilution Conjugate/
source

Product-Nr. Usage

Primary antibodies

αSMA 1:200 (ICC)
1:1000 (WB)

Mouse A5228 ICC1 and WB2

Collagen 1 1:10.000 Rabbit ab34710 WB

SMAD 2/3 1:1000 Rabbit #3102 WB

Phospho-SMAD 2 1:1000 Rabbit #8828 WB

ERK 1/2 (p42/44) 1:1000 Rabbit #9102 WB

Phospho-ERK 1/2 (p42/44) 1:1000 Rabbit #9101 WB

EEF2 1:50.000 Rabbit ab40812 WB

GAPDH 1:50.000 Mouse sc-365062 WB

Collagen 1 A1 1:100 Goat MBS316282 ICC

NFκB (p65) 1:400 Rabbit 8242s ICC

Secondary antibodies

Goat-anti-mouse 1:10.000 Peroxidase A3682 WB

Goat-anti-rabbit 1:10.000 Peroxidase 111-035-045 WB

Alexa fluor 546 (goat-anti-mouse) 1:400 Streptavidin Z25004 ICC

Alexa fluor 546 (goat-anti-rabbit) 1:400 Streptavidin Z25304 ICC

Alexa fluor 555 (donkey-anti-goat) 1:500 None A32816 ICC

1 Immunocytochemistry
2Western blot

Fig. 1 Schematic illustration of the TGFβ stress model and mesalazine treatment protocol
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Cell mechanical properties

The mechanical properties of cells in response to the indicated
treatments were assessed using the Chiaro nanoindenter system
(Optics11, Amsterdam, the Netherlands) as described previous-
ly (Emig et al. 2019). Briefly, a spherical tip with a 3-μm radius,
attached to a calibrated cantilever with a spring constant of 0.03
N/m, was used to indent the sample while the bending of the
cantilever was tracked by interferometry (Fig. 3a). On each cell,
indentations were performed at three different places, excluding
the nuclear region. The force applied to the cantilever was then
calculated as the product of cantilever bending and spring con-
stant. Sample indentations of 2–4 μm were performed at a
displacement speed of 5 μm/s. The effective Young’s modulus
(EEff) was derived using a Hertzian model (red curve in Fig. 3b)
for contact mechanics (Hertz 1882) under the assumption of a
Poisson’s ratio of 0.5 for incompressible materials, commonly
used for mechanical testing of cells and tissue (Guz et al. 2014).
Throughout this manuscript, EEff is referred to as stiffness.
Additionally, stress relaxation of the cells in response to inden-
tation was calculated from the remaining load after holding the
indenter at maximal compression for 2 s and is given as per-
centage of the maximal load. Cell adhesion to the indenter tip
was estimated from the maximum negative force that was re-
corded upon cantilever retraction. Data analysis was performed
using the DataViewer software (V2.3.0, Optics11, Amsterdam,
the Netherlands) and in-house MatLab scripts (R2019a).

SDS-PAGE, western blotting, and immunodetection

Protein was extracted from whole-cell lysates using
radioimmunoprecipitation assay buffer (30 mM Tris,
0.5 mM EDTA, 150 mM NaCl, 1% NP-40, 0.1% SDS) sup-
plemented with 10% protease and phosphatase inhibitors
(Roche, Switzerland). To ascertain protein concentration, a
bicinchoninic acid kit (Thermo Fischer, USA) was used.
Western blots were performed as described previously (El-
Armouche et al. 2008). A 20 μg of a whole-cell protein was
separated on a 10% polyacrylamide gel and then transferred to
a nitrocellulose membrane. Immunodetection was performed
with a Fusion FX device (Vilber Lourmat Deutschland
GmbH, Germany). Table 1 provides a list of antibodies and
respective concentrations used in this study.

Data analysis

For data analysis and graphic representation, Prism 8
(GraphPad, USA) was used. Data are presented as single data
points and mean ± standard error of the mean (SEM). For
comparisons between two conditions, Student’s t test was
used with Welsh’s correction if appropriate. When comparing
three or more conditions, a one-way ANOVA with Tukey
posttest was performed. Two means were considered signifi-
cantly different with p values < 0.05. A single asterisk (*),

Fig. 2 Mesalazine reduces
TGFβ-induced myofibroblast
differentiation and fibroblast pro-
liferation. a Quantification of
myofibroblast differentiation in
HAF by immunohistochemical
assessment of αSMA myofila-
ments (red). Myofibroblast dif-
ferentiation was induced with 10
ng/mL TGFβ for 72 h.
Subsequently cells were treated
with mesalazine or solvent con-
trol (5 ≤ n ≤ 8-independent cov-
erslips). b Representative immu-
nofluorescence images for fibril-
lary αSMA (red), nuclei were
stained with DAPI (blue), scale
bars = 20 μm. c Fibroblast prolif-
eration curves under control con-
ditions and with 10 mmol/L
mesalazine treatment which was
continuously applied for the du-
ration of the experiment (n = 6 per
condition). Cells were harvested
and counted after 5 and 10 days.
The cell count was calculated in a
resuspension volume of 1 mL
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double asterisk (**), and triple asterisk (***) indicate p values
below 0.05, 0.01, and 0.001, respectively.

Results and discussion

Mesalazine reverses fibrotic phenotype conversion

Resident cardiac fibroblasts are primarily responsible for the
fibrotic remodeling of the heart (Khalil et al. 2017). As the
availability of primary human cardiac fibroblasts is limited,
we recently established the human atrial fibroblast cell line
HAF-SRK01 (Künzel et al. 2020) (HAF), which was
employed in this study to test potential antifibrotic effects of
mesalazine. In our model, we induced a profibrotic phenotype
by treating fibroblasts with 10 ng/mL TGFβ, a major regula-
tor of fibrosis (Meng et al. 2016). Myofibroblast differentia-
tion was determined by the expression of fibrillary αSMA
which is characteristic for myofibroblasts (Baum and Duffy
2011).

After the 72 h TGFβ induction phase, followed by 72 h
in control medium, cultured fibroblasts displayed a fibrotic
phenotype, as determined by ICC for fibrillary αSMA
(Fig. 2a and b): 43.6 ± 6.5% of cells were identified as
myofibroblasts, compared to 7.7 ± 1.2% in the absence of
TGFβ treatment (p < 0.001). This fibrotic effect of TGFβ
was reduced to levels that were not significantly different
from control by mesalazine treatment, to 23.0 ± 1.8% (p <
0.05) (Fig. 2a and b).

Fibroblast proliferation is another prominent indicator of a
profibrotic phenotype. In parallel to lowering αSMA expres-
sion, mesalazine treatment also significantly reduced prolifer-
ation to roughly half of that seen under control conditions (P <
0.001; Fig. 2c).

To control cardiac fibrosis, reduction of both excess
fibroblast proliferation and myofibroblast differentiation
are essential (Fan and Guan 2016). Our results are in line
with previous studies showing general antiproliferative ef-
fects of mesalazine in mucosal cells of the large bowel and
colorectal cancer cells (Reinacher-Schick et al. 2000;

Fig. 3 Mesalazine reverses TGFβ-induced changes in HAF mechanical
properties. a Schematic representation of the nanoindenter probe before
(left) and during (right) cell indentation, adapted from Optics11. b and c
Representative load/indentation curve used to calculate cell stiffness
(Eeff), stress relaxation, and cell adhesion of individual HAF cultured
under control conditions, with TGFβ (10 ng/mL) and with TGFβ follow-
ed by mesalazine (10 mmol/L) treatment (whole curve (b) and with each
phase shown separately for the 3 conditions (c; note that relaxation is
plotted as relative values). d Cell stiffness measured under control

conditions, with TGFβ (10 ng/mL) and with TGFβ followed by
mesalazine (10 mmol/L) treatment (n = 54, 54, and 62 respectively from
4 independent experiments). e Cell relaxation measured under control
conditions, with TGFβ (10 ng/mL) and with TGFβ followed by
mesalazine (10 mmol/L) treatment (n = 55, 57, and 67 respectively from
4 independent experiments). f Cell adhesion measured under control con-
ditions, with TGFβ (10 ng/mL) and with TGFβ followed by mesalazine
(10 mmol/L) treatment (n = 55, 54, and 67 respectively from 4 indepen-
dent experiments)
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Carmine Stolfi and Francesco Pallone 2008). Effects on
cardiac fibroblast proliferation and differentiation were
previously unknown.

Mesalazine affects mechanical properties of HAF

After finding that mesalazine treatment affects the expression
of αSMA in HAF, we aimed to assess its effect on the remod-
eling of the cytoskeleton from a more general perspective. To
do so, we analyzed the mesalazine effects on cell mechanical
properties, which depend directly on cytoskeleton composi-
tion and organization. When fibroblasts are activated, the cy-
toskeleton is remodeled, which contributes to a number of cell
functions (Hinz et al. 2001; Hinz et al. 2019). Using nanoin-
dentation (Fig. 3a), load indentation curves (Fig. 3b and c)
were obtained and used to quantify cell stiffness, relaxation
and adhesion (Fig. 3c–f) Compared to control conditions, av-
erage cell stiffness increased from 0.71 to 1.10 kPa in response
to TGFβ (p < 0.001). Subsequent mesalazine treatment re-
duced average cell stiffness to 0.83 kPa (p < 0.001), a level
not different from control conditions (Fig. 3 c left panel and d).
In line with increased cell stiffness, stress relaxation of TGFβ-
treated cells was lower than in control cells (38.3 vs. 45.7%,
respectively; p < 0.01). In response to mesalazine treatment,
stress relaxation was not significantly different from both the

control condition and TGFβ, highlighting an increased scat-
tering with more cells showing relaxation values not different
from control (Fig. 3 c middle panel and e).

Fibrosis and myofibroblast differentiation have been linked
to an increased presence of cell adhesion molecules
(Yoshizaki et al. 2010; Schroer and Merryman 2015).
Therefore, we assessed the adhesive properties of HAF in
response to TGFβ stimulation and subsequent mesalazine
treatment by determining the maximal negative force that
was recorded during cantilever retraction. TGFβ treatment
significantly increased the adhesion to the indenter tip com-
pared to control (3.15 nN vs. 4.19 nN, p < 0.001; Fig. 3d).
Mesalazine treatment reduced the adhesive force of the cells to
3.37 nN (p < 0.01), a level not significantly different from
control conditions (Fig. 3 c right panel and d).

Our findings are in keeping with previous studies relating
TGFβ signaling to cell adhesion via integrin signaling (Walsh
and Young 2011, p. 1).

Mesalazine ameliorates key fibrosis protein
expression and collagen deposition

Collagen 1 is the predominant type of collagen in cardiac
fibrosis (Zhao et al. 2020), and it was therefore used as a
readout for determining the effectiveness of the antifibrotic

Fig. 4 Mesalazine ameliorates key fibrosis protein expression and
collagen deposition after TGFβ treatment. a Quantification of collagen
1 protein expression in HAF under control conditions, TGFβ and
sequential TGFβ-mesalazine treatment (n = 4 per condition). b
Quantification of αSMA protein expression in HAF fibroblasts under
control conditions, TGFβ and sequential TGFβ-mesalazine treatment

(n = 4 per condition). c Representative western blots for (a) and (b).
EEF2, eukaryotic elongation factor 2. dQuantification and representative
immunofluorescence images (collagen, red; DAPI-stained nuclei, blue) of
extracellular collagen deposition of HAF under control conditions, TGFβ
and sequential TGFβ-mesalazine treatment (77 ≤ n ≤ 70)
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intervention. Having demonstrated that mesalazine reverses
TGFβ-induced changes in differentiation, proliferation, and
cell mechanical properties, we studied the effects of
mesalazine on intracellular collagen 1 and αSMA expression
to extend the ICC observations.

TGFβ treatment led to enhanced intracellular collagen 1
and αSMA protein expression by approximately 6- and 8-
fold, respectively (p < 0.001). Mesalazine treatment abolished
the TGFβ-induced increase in HAF intracellular collagen ex-
pression (p < 0.001; Fig. 4a–c) and reduced the level of
αSMA protein expression (p < 0.01, Fig. 4a–c).

Extracellular matrix production is a complex process
and tightly regulated at different levels. After finding that
mesalazine treatment reduced intracellular collagen 1 ex-
pression, we determined if the deposition of fibrillary col-
lagen 1 in the extracellular space was affected by
mesalazine. ICC further revealed that TGFβ treatment of
HAF increased extracellular collagen deposition (p <
0.001, Fig. 4d), which was also abolished by subsequent
mesalazine treatment (p < 0.001, Fig. 4d).

Mesalazine acts as a dual inhibitor of SMAD2/3 and
ERK1/2 phosphorylation and reduces nuclear translo-
cation of NFκB

Although mesalazine has been in clinical use for decades,
its mode of action is still a matter of debate. Therefore, we
aimed to identify mechanisms by which mesalazine exerts
its antifibrotic effects in the experimental setting of in vitro
fibrosis.

Inhibition of the proinflammatory NFκB-signaling
pathway by mesalazine in inflammatory bowel disease is
a widely accepted concept (Desreumaux and Ghosh
2006). We investigated whether NFκB translocation to
the nucleus was affected by TGFβ and subsequent

Fig. 5 Mesalazine inhibits TGFβ-induced SMAD2/3 and ERK1/2 phos-
phorylation and reduces nuclear NFκB translocation. a Quantification
and representative immunofluorescence images of NFκB (NFκB (p65)
red; DAPI-stained nuclei blue) under control conditions, TGFβ and se-
quential TGFβ-mesalazine treatment (18 ≤ n ≤ 43 cells from each 4
independent coverslips). b Quantification of SMAD2/3 phosphorylation

(pSMAD2/3) in HAF under control conditions, TGFβ and sequential
TGFβ-mesalazine treatment (n = 4 per condition). c Quantification of
ERK1/2 phosphorylation (p ERK1/2) in HAF fibroblasts under control
conditions, TGFβ and sequential TGFβ-mesalazine treatment (n = 4 per
condition). d Representative western blots for (b) and (c)

Table 2 Selected adverse effects of mesalazine

Event Frequency

Nausea/vomiting Common

Headache Common

Abdominal pain Common

Skin exanthema Common

Interstitial nephritis Less common

Pancreatitis Less common

Blood dyscrasias Rare
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mesalazine treatment in cardiac fibroblasts. In response to
TGFβ stimulation, we found a significant increase in nu-
clear NFκB, which was restored to control levels by
mesalazine (p < 0.05, Fig. 5a). This is particularly inter-
es t ing , s ince NFκB has been shown to induce
myofibroblast differentiation and fibrosis in pulmonary
and hepatic fibrosis (Luedde and Schwabe 2011; Dong
and Ma 2019).

SMAD2/3 and ERK1/2 activation by TGFβ are central
mechanisms of the fibrotic signaling cascade (Khalil et al.
2017; Khalil et al. 2017; Luo et al. 2017) and modulation
of these pathways has been proposed to affect cardiac and
non-cardiac fibrosis (Rosenbloom et al. 2013; Cheng et al.
2016; Khalil et al. 2017; Li et al. 2018). In a murine
model of pressure overload, selective block of SMAD2/3
signaling drastically attenuated fibrosis (Khalil et al.
2017). Also, ERK1/2 inhibition attenuated fibrotic remod-
eling after myocardial infarction (Luo et al. 2017).
Although the structurally similar aspirin has been shown
to suppress ERK1/2 and SMAD2/3 signaling (Li et al.
2018; Zhang et al. 2020), systemic side effects might
overshadow the potential benefits. For this reason, we
explored the effects of mesalazine on SMAD2/3 and
ERK1/2 activation.

TGFβ stimulation led to a significant increase of both
SMAD2/3 and ERK1/2 phosphorylation (p < 0.01, Fig.
5b–d). After mesalazine treatment, SMAD2/3 and ERK1/
2 phosphorylation were reduced to control levels (p <
0.01, Fig. 5b–d). These results underline the potential
of repurposing mesalazine against cardiac fibrosis, as it
restores SMAD2/3, ERK1/2, and NFκB homeostasis in
cardiac fibroblasts, opening up new therapeutic
directions.

Suitability of other aminosalicylates against cardiac
fibrosis?

Besides mesalazine, sulfasalazine is frequently used to treat
inflammatory bowel disease and rheumatoid arthritis.
Sulfasalazine consists of sulfapyridine and mesalazine, which
both have been shown to exert anti-inflammatory effect
(Chávez et al. 2012). Sulfasalazine prevented induced hepatic
fibrosis in a rat model by inhibiting nuclear NFκB transloca-
tion and the TGFβ pathway (Chávez et al. 2012). Therefore, it
could be hypothesized that antifibrotic effects are also con-
ceivable in the heart. However, there is currently no data avail-
able to support or refute this hypothesis. Irrespective of these
similarities to mesalazine, the contained sulfapyridine fre-
quently causes allergic reactions and is considered responsible
for most of the side effects of sulfasalazine (Thornton and
Mason 2012). Moreover, severe hematological side effects
(blood dyscrasias), hepatitis, and male infertility have been
reported more frequently than with mesalazine alone
(Toovey et al. 1981; Ransford and Langman 2002). In sum-
mary, mesalazine appears therefore to be the more promising
drug and our results indicate that mesalazine alone is sufficient
for significant antifibrotic effects in vitro.

Study limitations

Using a cell line, beside its advantage of being phenotypically
stable over many passages, always raises the question of how
closely the immortalized cells are to native primary cardiac
fibroblasts. Additionally, it is difficult to project towards sys-
temic effects of drugs, judging from in vitro experiments.
Table 2 summarizes common adverse effects of mesalazine
used to treat inflammatory bowel disease (Ransford and

Fig. 6 Schematic illustration of mesalazine’s proposed mechanism of
antifibrotic action in fibroblasts. Upon stimulation with TGFβ,
SMAD2/3, and ERK1/2 are activated, which is reflected by increased
protein phosphorylation. Additionally, NFκB translocates from the cyto-
sol to the nucleus, where it may induce fibrotic gene expression.

Together, these mechanisms lead to myofibroblast differentiation and
collagen deposition, which are hallmarks of fibrosis. Mesalazine treat-
ment inhibits SMAD2/3 and ERK1/2 phosphorylation and prevents nu-
clear translocation of NFκB, making it an attractive candidate for
antifibrotic intervention.
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Langman 2002; Klotz 2012; Böhm and Kruis 2014). Future
research has to focus on the effects of mesalazine in vivo to
determine cardiac antifibrotic benefits and potential systemic
side effects. Despite these limitations, we are optimistic that
mesalazine is a promising candidate for antifibrotic drug
repurposing.

Conclusion

Here, we suggest that mesalazinemay positively affect cardiac
fibrosis—one of the most common causes of morbidity and
mortality worldwide (Artlett 2012; Zhao et al. 2020). We
found that mesalazine reduces fibroblast proliferation,
myofibroblast differentiation, and collagen deposition after
TGFβ induction. Furthermore, mesalazine ameliorated
TGFβ-induced changes in fibroblast mechanical properties,
such as cell stiffness, stress relaxation, and cell adhesion.
Finally, we shed new light on the molecular mechanisms of
mesalazine: we propose dual inhibition of SMAD2/3 and
ERK1/2 phosphorylation as a novel concept by which
mesalazine may prevent cardiac fibrosis (Fig. 6).
Additionally, we were able to validate the accepted mecha-
nism of inhibiting NFκB activity. With years of documented
clinical use, a favorable risk profile and low cost, we believe
that mesalazine is an exciting candidate for further studies on
drug repurposing to finally treat fibrosis.
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