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A quantitative evaluation 
of computational methods 
to accelerate the study 
of alloxazine‑derived electroactive 
compounds for energy storage
Qi Zhang1,2,3, Abhishek Khetan1,2 & Süleyman Er1,2*

Alloxazines are a promising class of organic electroactive compounds for application in aqueous redox 
flow batteries (ARFBs), whose redox properties need to be tuned further for higher performance. 
High-throughput computational screening (HTCS) enables rational and time-efficient study of energy 
storage compounds. We compared the performance of computational chemistry methods, including 
the force field based molecular mechanics, semi-empirical quantum mechanics, density functional 
tight binding, and density functional theory, on the basis of their accuracy and computational cost 
in predicting the redox potentials of alloxazines. Various energy-based descriptors, including the 
redox reaction energies and the frontier orbital energies of the reactant and product molecules, 
were considered. We found that the lowest unoccupied molecular orbital (LUMO) energy of the 
reactant molecules is the best performing chemical descriptor for alloxazines, which is in contrast to 
other classes of energy storage compounds, such as quinones that we reported earlier. Notably, we 
present a flexible in silico approach to accelerate both the singly and the HTCS studies, therewithal 
considering the level of accuracy versus measured electrochemical data, which is readily applicable for 
the discovery of alloxazine-derived organic compounds for energy storage in ARFBs.

ARFBs are one of the most attractive candidates for grid-scale energy storage due to the independent scaling of 
their power and energy density1–3. The electrolyte, which contains the electroactive compounds for reversible 
energy storage, is the central component of an ARFB that influences all metrics of battery performance from 
energy density to rechargeability. One of the most popular electrolyte materials for ARFBs is vanadium4–6. 
However, the economic and technical challenges related to its abundance7, high-cost8,9 and sluggish reaction 
kinetics10,11 prevent a widespread commercial adoption of the technology. To overcome these limitations, organic 
electroactive compounds, including quinones12–14, viologens15,16, TEMPO (2,2,6,6-tetramethyl-1-piperidiny-
loxy)17,18 and their derivatives, have been investigated as electroactive materials in ARFBs. Aza-aromatics, which 
contain nitrogen atoms in the aryl rings, have also recently been explored as candidate materials19–24. In par-
ticular, Aziz et al.19 and Kwon et al.23 have independently reported alloxazines (also called flavins) that show 
reversible, radical-free redox cycling in alkaline ARFBs with very high current efficiency (99.7%) and capacity 
retention (> 99.98%) per cycle, as shown in Fig. 1a,b. The battery-relevant physicochemical properties of these 
molecules can further be improved, for instance, by functionalization with –COOH and/or –OH groups to 
comply with the practical requirements of high aqueous solubility for ARFBs. HTCS, particularly when powered 
by quantum chemical calculations, is a promising strategy25 for creating virtual libraries of chemically diverse 
motifs, predicting their performance with descriptors, and for subsequently identifying the most promising 
candidates for further in-depth studies19,26–28. The computational costs associated with the screening of possibly 
millions of candidate compounds by means of quantum chemical simulations, however, are quite large. There-
fore, the performance descriptors for candidate compounds that will be used in a HTCS study need to be chosen 
carefully, and the trade-offs between the accuracy of descriptors and the computational costs for computing 
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these need to be quantified. One of the central properties of research interest is the redox potential between the 
redox couples. To date, HTCS studies on various classes of organic compounds have used density functional 
theory (DFT) calculated reaction energies19 and LUMO energies26–28 as the default descriptors for predicting 
redox potentials. Although DFT is a widely accepted method for performing such calculations, there are other 
computational methods, such as semi-empirical quantum mechanics (SEQM)29–31 and density functional tight-
binding (DFTB)32, that are computationally more affordable, and therefore, worth exploring from the standpoints 
of accuracy and computing efficiency. 

In our recent work on prediction of redox potentials for quinone molecules33, we systematically evaluated 
different computational methods and showed that molecular geometry optimization (OPT) with a low-level com-
putational method followed by DFT calculation of the single point energy (SPE) with implicit aqueous solvation 
offers an equipollent accuracy as the high-level DFT methods, albeit at significantly (~ 103) lower computational 
costs33. To the best of our knowledge, an analysis of the effect of various factors on the accuracy for predicting 
redox potentials for alloxazines, such as the level of theory for OPT, the level of theory for the calculation of SPE, 
and also together with an inclusion/exclusion of solvation effects, has not yet been performed. Furthermore, it 
is worth exploring the relative performance of various chemical descriptors for predicting the redox potentials 
of electroactive compounds in general.

To understand how the aforementioned factors affect the prediction accuracies for alloxazines, the per-
formance of various computational methods corresponding to different levels of theoretical fidelity, such as 
force field (FF)34,35 based molecular mechanics, SEQM, DFTB, and DFT, are systematically evaluated in this 
work. Apart from reaction energies, other energy-based descriptors, such as highest occupied molecular orbital 
(HOMO) and LUMO are independently calibrated against the measured redox potentials to evaluate their 
performances. An optimum combination of methods for an accelerated and robust prediction of alloxazine 
redox potentials is suggested. The results provide insights on the influential factors that affect the efficiency of 
computational methods in predicting the redox potentials, which are often overlooked.

Computational workflow
To make generalizable and consistent comparisons between various computational approaches, we devel-
oped a systematic workflow (Fig. 1c). In this workflow, the starting point for any given molecule is its SMILES 
representation36, which is a widely used form of graph-representation. The SMILES representation is at first 
converted to a two-dimensional (2D) geometrical representation using a SMILES interpreter. Next,

(1)	 The 2D representation is converted to a three-dimensional (3D) geometry by performing OPT with the 
OPLS3e FF and identifying the lowest energy 3D conformer34,35. It is important to note that the FF level 
geometry is the starting point for all considered theoretical approaches here.

(2)	 Next, gas phase OPT is performed on the 3D geometry at three different levels of theory, namely: SEQM, 
DFTB, and DFT. OPT is also carried out separately in the implicit aqueous phase but these are not shown 

Figure 1.   The two-electron–two-proton reaction takes place on (a) the heterocyclic nitrogen atoms of the 
adjacent rings, and (b) the heterocyclic nitrogen atoms of the same ring. (c) A graphical summary of the various 
levels of approximations used for estimating �Erxn , ELUMO and EHOMO in this work. The text boxes with no 
background fill color represent geometry optimizations; the boxes with solid color background represent SPE 
calculations; the boxes with yellow background represent solution phase SPE calculations using an implicit 
aqueous solvent model. 2D molecule representations have been created using ChemDraw Professional [version 
18.0.0.231(4318)] https​://www.perki​nelme​r.com/produ​ct/chemd​raw-profe​ssion​al-chemd​rawpr​o. Figure has 
been created using Microsoft PowerPoint [Version 16.16.27 (201012)] https​://www.micro​soft.com/en-gb/micro​
soft-365/micro​soft-offic​e?rtc=1.

https://www.perkinelmer.com/product/chemdraw-professional-chemdrawpro
https://www.microsoft.com/en-gb/microsoft-365/microsoft-office?rtc=1
https://www.microsoft.com/en-gb/microsoft-365/microsoft-office?rtc=1


3

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4089  | https://doi.org/10.1038/s41598-021-83605-2

www.nature.com/scientificreports/

in Fig. 1c for the sake of simplicity. This step also yields the corresponding SPEs of molecules that have 
been calculated at each level of theory.

(3)	 SPEs of the 3D gas-phase geometries from low-level methods are calculated using various DFT functionals. 
This step yields energy values that are directly comparable but are obtained using geometries that result 
from four different levels of theory.

(4)	 Finally, for the geometries obtained in Step (2), the SPEs are recalculated, this time by including the effect 
of an implicit aqueous medium (SOL) using the Poisson–Boltzmann solvation model (PBF)37,38.

Results and discussions
Comparison of chemical descriptors from DFT.  DFT is the highest level of theory considered in this 
work. Therefore, the performance of the exchange–correlation functionals are discussed first with an aim to 
use them as benchmarks for the low-level methods. We first compare the performance of total internal energy, 
�Urxn , and Gibbs free energy, �Go

rxn , as descriptors for predicting the redox potentials. For this purpose, DFT 
calculations employing the PBE functional were performed for OPT in the gas-phase and then calculating the 
SPE in the implicit aqueous-phase. The calibration performances of �Urxn (R2 = 0.926, RMSE = 0.021 V) and 
�Go

rxn (R2 = 0.919, RMSE = 0.022 V) are very similar, as shown in Supplementary Fig. S1. The inclusion of zero-
point energy (ZPE) in �Urxn , as well as entropic effects, in �Go

rxn , is not better than using only the reaction 
energy �Erxn (R2 = 0.959, RMSE = 0.016 V). Moreover, the inclusion of these effects is detrimental from an HTCS 
perspective, not only because of their lower accuracy but also their high computational costs. Therefore, all the 
following discussions in this work consider only �Erxn as the total energy-related descriptor, besides the orbital 
energy-related descriptors, i.e., the LUMO energy ( ELUMO ) and the HOMO energy ( EHOMO).

Next, according to the three computational schemes discussed in the Computational workflow, a compari-
son of �Erxn , ELUMO, and EHOMO , at the PBE level is shown in Fig. 2a for the alloxazine compounds. Clearly, 
the reactant’s ELUMO (R2 = 0.974, RMSE = 0.013 V) emerges as the best descriptor, which is followed closely by 
�Erxn (R2 = 0.959, RMSE = 0.016 V) and then the product’s �EHOMO (R2 = 0.743, RMSE = 0.040 V), irrespective of 
whether the OPT and SPE calculations are performed in the gas-phase (orange markers) or in the aqueous-phase 
(green markers). This ranking of descriptors was found to be consistent for all the 11 exchange–correlation func-
tionals considered in this work (see Supplementary Fig. S2). These results imply that for HTCS on alloxazines, the 
computational effort can be reduced at least by half simply by using ELUMO as a descriptor for the experimental 
redox potential. Moreover, a large variety of DFT methods are not able to capture either the energetics or the 
geometry of the reduced forms of the alloxazines to a comparable level of accuracy as the oxidized forms of these 
compounds. Furthermore, the ranking of the descriptors considered here are in stark contrast to the descriptors 
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Figure 2.   Scatter plots showing linear correlations of the PBE calculated �Erxn , ELUMO , and EHOMO , versus the 
experimentally measured redox potentials ( Eoexp ) for (a) alloxazine-based compounds, and (b) quinone-based 
compounds. The color orange represents both the OPT and SPE in gas-phase, the color yellow represents OPT 
in gas-phase followed by SPE with SOL, and the color green represents both OPT and SPE with SOL.
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for quinones (Fig. 2b)33. For quinones, �Erxn (R2 = 0.977, RMSE = 0.051 V) is clearly the best descriptor across 
all the three computational schemes, followed by EHOMO (R2 = 0.779, RMSE = 0.158 V) and ELUMO (R2 = 0.748, 
RMSE = 0.168 V). The difference in performance of the descriptors for alloxazines and quinones reveal that 
such comparisons of methods and descriptors are needed for other classes of organic electroactive compounds.

Another key aspect of comparisons is the computational scheme used for the calculations of the descriptors. 
For these comparisons, we ignore EHOMO descriptor, since it performs significantly worse than both ELUMO and 
�Erxn for all the quantum chemical methods (see Supplementary Fig. S2 and Table S2). Three kinds of schemes 
for computing the descriptors have been devised using each of the 11 exchange–correlation functionals, as 
follows: (A) with gas-phase OPT and SPE calculation, (B) with OPT in the gas-phase and the following SPE 
calculation in an implicit aqueous environment (SOL), and (C) with both the OPT and SPE in SOL. The perfor-
mance of the various exchange–correlation functionals are compared using bar plots of RMSE and R2 values, 
as shown in Fig. 3 and Supplementary Fig. S3, respectively. In Fig. 3, the subscript ‘g’ corresponds to scheme 
(A), ‘s’ corresponds to scheme (B), and ‘aq’ corresponds to scheme (C). When compared under the same set of 
approximations, it is observed that:

	 I.	 When using �Erxn in scheme (A), LDAg (R2 = 0.801, RMSE = 0.035 V) and followed closely by PBEg 
(R2 = 0.756, RMSE = 0.039 V) are the two best performing methods. Inclusion of higher order exchange 
effects and parametrizations, such as in HSE06 and M08-HX, are found to have no positive effect on 
the prediction accuracies, which is in clear contrast to the case of quinones that have been reported 
earlier33. With �Erxn in scheme (B) (i.e., a hybrid scheme), PBEs (R2 = 0.959, RMSE = 0.016 V) emerges 
as the best performing method and shows a significant improvement over the gas-phase only scheme. 
A decrease in RMSE upon inclusion of SOL is observed across all the 11 functionals, but to varying 
degrees. Finally, when using �Erxn in scheme (C), BLYP-D3aq (R2 = 0.937, RMSE = 0.020 V) is the best 
performing method that is followed very closely by BLYPaq (R2 = 0.935, RMSE = 0.020 V). Inclusion of 
SOL during OPT was found to worsen the prediction accuracies with respect to the hybrid scheme in 
all cases except for calculations employing B3LYP-D3 and M08-HX. Given the fact this scheme is also 
computationally much more demanding, there is no advantage of using it any further. These findings 
are in accordance with those of the quinone molecules33. An overall conclusion is that at the GGA-DFT 
level (PBE, BLYP), it is possible to use �Erxn as a descriptor to predict Eoexp for alloxazines within a range 
of common experimental errors (i.e. ~ 50 mV).

	 II.	 When using ELUMO in scheme (A), almost all methods show very similar performances. Inclusion of 
higher order exchange effects and parametrizations in the form of DFT functionals is found to have a 
small positive effect on the prediction accuracy. With ELUMO in the hybrid scheme (B), most methods 

Figure 3.   Performance comparison of various exchange–correlation functionals for predicting Eoexp . The bar 
plots (a) and (b) show the RMSEs for descriptors �Erxn and ELUMO , respectively. The color orange represents 
both OPT and SPE in gas-phase, the color yellow represents OPT in gas-phase followed by SPE with SOL, and 
the color green represents both OPT and SPE with SOL.
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show similar and improved performance, with BLYP-D3s (R2 = 0.976, RMSE = 0.012 V) emerging as 
the best performing method that is followed closely by PBEs (R2 = 0.974, RMSE = 0.013 V). A decrease 
in RMSE upon inclusion of SOL is observed across all DFT methods, except for M08-HX. Finally, 
when using ELUMO in scheme (C), BLYP-D3aq (R2 = 0.974, RMSE = 0.013 V) is again the best performing 
method followed closely by PBEaq (R2 = 0.972, RMSE = 0.013 V). Inclusion of SOL during OPT was found 
to worsen the prediction accuracy with respect to the hybrid scheme for the hybrid functionals such as 
B3LYP, HSE06, and M08-HX. Yet again, there is no advantage of using this scheme as it is computation-
ally much more demanding. An overall conclusion is that at the GGA-DFT level, it is possible to use 
ELUMO as a descriptor to predict Eoexp for alloxazines within the range of common experimental errors.

Discussion.  Widely used GGA-level  DFT methods are good enough for predicting the redox potentials of 
alloxazines within the range of common experimental errors, irrespective of whether �Erxn or ELUMO are cho-
sen as the descriptors. Additionally, there is a positive effect on the prediction accuracy due to the inclusion of 
implicit solvation during the calculations of �Erxn and ELUMO . The positive effect is also observed when using 
ELUMO of the reactant as a descriptor, which indicates that the interactions of the reactant’s aromatic rings and 
H-bonds with the surrounding medium are quite influential, as was also observed in the case of quinone-based 
molecules33. The relative performance of the two descriptors doesn’t change when MAE is used as the metric, as 
can be seen at the end of Tables S1a,b. Upon using the benchmark PBE functional, it is found that molecules with 
serial no: 15, 19, and 20, have considerably higher prediction errors than others for both descriptors.

From a theoretical point of view, optimization of geometries and calculation of energies in a solvated envi-
ronment should ideally yield the best answer. However, it is observed that optimizing geometry using the PBF 
implicit solvation model worsens prediction accuracies, even if by a very small amount, across all the DFT 
flavors (LDA, GGA, Hybrid and meta-GGA). Without loss of generality, it can be argued that there can be two 
main sources of errors when using implicit solvation models, namely, erroneous geometry optimization and/
or erroneous energy estimation. In order to determine possible sources of contributions to the overall error, we 
performed additional simulations in which the geometry was optimized with the PBF solvation model, how-
ever, the energy was then calculated in the gas phase. From a modelling perspective, these simulations do not 
correspond to a meaningful approximation of the “real” physics. However, it is very revealing to notice that the 
errors under these approximations are much worse (R2 = 0.681, RMSE = 0.043 V) than the fully gas phase treat-
ment of the molecules (R2 = 0.756, RMSE = 0.039 V) with �Erxn as the descriptor, as seen in Fig. S5a. The same 
observation holds true when using ELUMO as the descriptor although the results are only slightly worse for the 
aforementioned scheme (R2 = 0.953, RMSE = 0.017 V) with respect to the fully gas phase treatment (R2 = 0.956, 
RMSE = 0.016 V), as seen in Fig. S5b. As the energy is calculated in gas phase under both approximations, the 
error most likely originates in the geometry. Based on these observations, it can be argued that the PBF solvation 
model is not accurate enough to improve the gas phase geometry, which is the likely source of error. It is also 
possible that the estimation of geometry is more erroneous for product molecules than the reactant molecules 
because the increase in error when using ELUMO is not as significant as the case of �Erxn.

To investigate the second aspect of the dependence of energy on the implicit solvation model itself, we first 
note that given the availability of several other solvation models in literature, it is possible that they will pro-
duce different results. As an example, in the work of Kim et al.39, it was shown that the prediction of reduction 
potentials of Anthraquinones in aqueous solutions is prone to errors due to overestimation of the intramolecular 
H-bond interactions when using the PCM (Bondi) implicit solvation model. Further, they showed that QM/
MM calculations, with the TIP3P force field used explicitly for the water molecules, alleviate the overestimation 
and lead to a more balanced treatment of solute–solvent interactions. To the best of our knowledge, there are no 
known studies in literature that use high fidelity methods such as QM/MM for prediction of redox potentials of 
alloxazine molecules. Performing QM/MM simulations is not yet suitable from an HTCS perspective and is out 
of the scope of this study. Therefore, it cannot be confirmed if intramolecular H-bond or other interactions also 
influence the accuracy of implicit solvation models for treatment of alloxazines. Nevertheless, we performed 
additional simulations on alloxazines with the PCM (COSMO) model, which is widely used for aqueous systems. 
As can be seen in Fig. S5c,d, the overall conclusions remain the same and the performance of the PCM (COSMO) 
is strikingly similar to that of the PBF model used in this study, under every approximation and for both of the 
descriptors. We believe that systematic improvements in characterization of solvation effect likely need to go 
beyond implicit models. Lastly, there might be a serendipitous cancellation of errors when using the gas-phase 
geometry that is affected by the changes in the geometry due to the implicit solvation model in use. However, this 
claim is not possible to verify given the relatively small calibration set and scope of methods covered in this study.

Nevertheless, these results are important from the standpoint of computational efficiency, because even when 
starting from a DFT computed gas-phase geometry, performing a geometry optimization with implicit solvation 
is computationally about twice more demanding than without it. For the study of alloxazine-based compounds, 
we propose a hybrid scheme of using gas-phase geometries and then performing DFT SPE calculations on 
them to improve the prediction accuracies. The various DFT functionals, in this work, were compared solely 
on the basis of their performance in predicting the measured potentials. Exchange–correlation functionals that 
contain high degrees of empiricism, such as M08-HX40, are aimed at producing improved values for a chosen set 
of physically observable properties. However, such heavily parametrized functionals tend to produce less accurate 
electron densities than the ones with little to no empiricism in their designs, such as PBE functional41. Accord-
ingly, we chose PBE as the benchmark DFT functional among all the compared DFT functionals, as it offers the 
best compromise between the accuracy in results and the cost of calculations. Notably, the PBE functional was 
also found to show very good performance for quinone-based molecules in our recent work33. Accordingly, for 
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the prediction of redox potentials versus RHE at pH = 7, the equation employing the DFT(PBE) calculated ELUMO 
of the reactant alloxazine compound is:

Comparison of chemical descriptors from low‑level methods: FF, SEQM, and DFTB.  After 
establishing the effectiveness of quantum chemical methods as a benchmark, we analyze the computationally 
less costly low-level methods for optimizing geometries and predicting the energies of molecules. As summa-
rized in Fig. 1, various low-level methods, including FF, SEQM, and DFTB, have been employed for calculations. 
Here again, EHOMO is ignored as a descriptor because it performs worse than both �Erxn and ELUMO for all the 
low-level methods. The descriptors are calculated using the following three schemes:

	 I.	 �Erxn and ELUMO are taken directly from the results of low-level method geometry optimizations either 
in gas- or aqueous-phases, with the exception of LUMO energies that are not available from FF calcula-
tions.

	 II.	 �Erxn and ELUMO values are taken from gas-phase DFT calculations employing the PBE functional on 
the molecular geometries obtained through scheme (I). Descriptor values in this scheme are henceforth 
abbreviated as DFT-SPEg.

	 III.	 �Erxn and ELUMO values are taken from DFT calculations employing the PBE functional with implicit 
solvation on the molecular geometries obtained through scheme (I). Descriptor values in this scheme 
are henceforth abbreviated as DFT-SPEs.

From Fig. 4 and Supplementary Fig. S4, several observations are made on comparing the RMSE and R2 data 
across the various method combinations when using either of �Erxn and ELUMO as the descriptor. To simplify, we 
only discuss the best method from each low-level calculation category. The detailed performance metrics of all 
methods and their variations considered in the current work have been provided in Supplementary Tables S3–S7.

Comparisons within scheme (I) using �Erxn.  when comparing predictions using �Erxn to PBEg (R2 = 0.756, 
RMSE = 0.039 V) and to PBEaq (R2 = 0.910, RMSE = 0.024 V) benchmarks, it is observed in Fig. 4a (solid green 
bar) that the best performing SEQM method PM7g shows significantly better performance compared to the FF 

(1)Eo = −0.376[ELUMO] − 1.726

Figure 4.   Performance comparison of low-level methods (FF, SEQM, and DFTB) considered in the current 
work. (a) RMSEs of the descriptors computed at the three low-level methods. (b) RMSEs for the DFT (PBE) SPE 
calculations on the geometries obtained from the three low-level methods. In (a) the solid bars show RMSEs for 
the descriptor �Erxn and the hashed bars show the RMSEs for the descriptor ELUMO . In (b) the solid bars show 
results using SPE without implicit solvation and the hashed bars show the results with it. The horizontal lines 
represent the benchmarks established in Fig. 3.
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method. Aqueous-phase geometry optimization with the COSMO solvation model leads to better prediction 
accuracy for PM7aq , however, both the gas- and aqueous-phase performances are still below than their corre-
sponding PBE benchmarks. The best performing DFTB method GFN1-xTBg shows a very similar performance 
to PM7g . The aqueous-phase geometry optimization with the COSMO solvation model leads to better predic-
tion accuracy for GFN1-xTBaq.

Comparisons within scheme (I) using �ELUMO.  When comparing predictions using reactant ELUMO to PBEg 
(R2 = 0.956, RMSE = 0.016 V) and to PBEaq (R2 = 0.972, RMSE = 0.013 V) benchmarks, it is observed in Fig. 4a 
(hashed green bar) that the gas-phase AM1g and PM7g methods show good prediction accuracies, but they are 
still much worse than the PBEg benchmark. Aqueous-phase PM7aq geometry optimizations with the COSMO 
solvation model improves prediction accuracy. On the contrary, the aqueous-phase AM1aq optimization leads to 
a worse performance. The best performing gas-phase DFTB method GFN1-xTBg shows similar results to AM1g . 
Aqueous-phase GFN1-xTBaq optimization shows a slightly improved performance.

Comparisons within scheme (II) using �Erxn.  When comparing predictions using �Erxn , it is observed in 
Fig. 4b (solid black bars) that DFT-SPEg computations on the gas-phase SEQM geometries show improved pre-
diction accuracies with respect to their counterparts from scheme (I). The best performing method is AM1g , 
with its prediction accuracy being surprisingly better than the PBEg benchmark. DFT-SPEg calculations on 
AM1aq optimized geometries lead to worse predictions when compared to its counterpart from scheme (I). 
DFT-SPEg on DFTB-D3g optimized geometries reach a performance close to the PBEg benchmark. DFT-SPEg 
calculations on aqueous-phase DFTB-D3aq geometries resulted in worse predictions, as was also observed for 
the SEQM methods.

Comparisons within scheme (II) using ELUMO.  When comparing predictions using reactant ELUMO , it is 
observed in Fig. 4b (solid grey bars) that DFT-SPEg calculations on the best performing gas-phase PM7g geome-
tries show significantly improved prediction accuracy with respect to their counterparts from scheme (I), reach-
ing close to the PBEg benchmark. DFT-SPEg calculations on aqueous-phase PM7aq geometries also show better 
performance. DFT-SPEg computations on the best performing gas-phase GFN1-xTBg geometries show slightly 
improved prediction accuracy when compared to their counterparts from scheme (I), but still reaches close to 
the PBEg benchmark. DFT-SPEg computations on aqueous-phase GFN1-xTBaq geometries also result in better 
predictions.

Comparisons within scheme (III) using Erxn.  When comparing predictions using Erxn to the PBEs (R2 = 0.959, 
RMSE = 0.016 V) benchmark, it is observed in Fig. 4b (hashed black bars) that RMSEs are significantly lower by 
0.014 V and 0.018 V for DFT-SPEs calculated on OPLS3eg and OPLS3eaq geometries, respectively, in comparison 
to their gas-phase counterparts from scheme (II). The prediction accuracy for DFT-SPEs calculations on the 
best performing AM1g and AM1aq geometries is improved significantly when compared to its counterpart in 
scheme (II). Similar improvements are observed for DFT-SPEs calculations on the best performing DFTB-D3g 
and DFTB-D3aq geometries.

Comparisons within scheme (III) using ELUMO.  When comparing predictions using reactant ELUMO to the 
PBEs (R2 = 0.974, RMSE = 0.013 V) benchmark, it is observed in Fig. 4b (hashed grey bars) that the performance 
of DFT-SPEs calculations on geometries from all lower level methods show improvements than their counter-
parts from scheme (II), however, these improvements are not as pronounced as those for �Erxn.

Discussion.  Several conclusions can be derived after comparing the performance metrics of low-level compu-
tational methods, including on the basis of DFT(PBE) calculation of SPE on the frozen coordinates, both with 
and without implicit solvation effects. First, similar to the case of DFT methods, the reactant’s ELUMO is a better 
descriptor than the �Erxn of redox reaction for both the SEQM and DFTB methods. Secondly, gas-phase PBE 
calculations of SPE on the frozen coordinates show improved prediction accuracies for all the low-level methods. 
This observation implies that the computationally costly DFT geometry optimizations of the reactant molecules 
are hardly necessary, especially for a first-order screening of a large number of candidate compounds. Thirdly, 
like the case of DFT methods, the computational effort can approximately be halved when the reactant ELUMO 
is used for the prediction of potentials, particularly by using either of the SEQM (PM7, AM1) or DFTB (DFTB-
D3, GFN1-xTB) methods. Lastly, irrespective of the chosen descriptor, for all low-level methods, the inclusion of 
implicit aqueous solvation during the DFT calculation of SPE on the gas-phase geometries leads to an improved 
prediction accuracy that reaches to within 20 meV of the DFT benchmark. From the findings made in this study, 
we recommend SEQM and DFTB as practical methods based on the trade-offs between computational costs and 
prediction accuracies. Accordingly, the equation to predict redox potentials versus RHE at pH = 7, by employing 
the DFTB(GFN1-xTBaq) calculated ELUMO of the reactant alloxazine compound is:

Effects of implicit solvation on the prediction performance.  Figure  5 shows  the decrease in 
error, Δ[RMSE], as a result of including implicit solvation during DFT calculation of SPE (Δs) for the representa-
tive methods from four different methodological levels considered in this work. As shown with solid black bars, 
when �Erxn is used as the descriptor, Δs (in V) are 0.014 (OPLS3e), 0.012 (PM7), 0.011 (GFN1-xTB), and 0.023 

(2)Eo = −0.373[ELUMO] − 3.825
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(PBE). When ELUMO is used as the descriptor, as shown with solid grey bars, Δs are 0.007 (OPLS3e), 0.002 (PM7), 
0.004 (GFN1-xTB), and 0.003 (PBE). Clearly for ELUMO , Δs is smaller at each level of theory when compared 
to the case of �Erxn . We postulate that the reason for this difference is the presence of additional H-bonds in 
the products, due to which the solvation effects become more pronounced. These findings are also expected to 
be useful for improving the cheminformatics and advanced machine learning models that employ a descriptor-
based approach to predict the solubility of compounds in water42.

Methods
Thermodynamic principle.  The thermodynamic basis to predict the redox potentials of electroactive 
alloxazine compounds for ARFBs is the aqueous-phase redox reaction given by Eq. (3):

This redox reaction assumes a rapid and reversible two-electron two-proton mechanism in which 
the product, ZH2, is generated from the reactant, Z. In this work, the calculated reaction energy, 
�Erxn = E(ZH2)− [E(Z)+ E(H2)] , is used as a descriptor for predicting the redox potential, under the same 
set of assumptions as described in our recent work on quinones33. In principle, the reaction Gibbs free energy, 
�Go

rxn , is related to the redox potential, Eo , through the Nernst equation given by Eo = −�Go
rxn/nF . However, as 

discussed above, neither the �Go
rxn nor the internal energy �Urxn that includes the zero-point energy corrections 

to �Erxn , are found to offer improved prediction accuracies in comparison to the �Erxn . Apart from �Erxn , the 
energy corresponding to the LUMO, ELUMO , of the reactant molecule Z is also considered as a key descriptor 
because the reduction of Z implies filling of its LUMO, and because the location of ELUMO with respect to the 
electrode Fermi level indicates the thermodynamic driving for electron transfer. Using similar arguments, the 
energy level corresponding to the HOMO, EHOMO , of the product molecule ZH2 is a key descriptor because the 
oxidation of ZH2 implies emptying of its HOMO. As explained below, we used various computational chemistry 
methods for the calculation of �Erxn , ELUMO and EHOMO , and evaluated their performances in predicting the 
experimentally measured redox potentials.

Computational details.  In this work, the MacroModel program is used for the FF34,35 based configura-
tional searches and OPT, and the Jaguar program38 is employed for DFT calculations, all as implemented in 
the Schrödinger Materials Science Suite (version 2019-2). The SEQM (MOPAC) and DFTB calculations are 
performed using the ADF program43. The molecular structures of redox couples are optimized both in the gas- 
and aqueous-phases using the OPLS3e FF that provides a broad coverage of small compounds34,35. The aqueous-
phase geometry optimizations at FF level use a generalized Born model implemented in the Schrödinger’s Mac-
roModel program. In addition, a FF based exhaustive conformational search over rotatable bonds and torsional 
interactions is performed using the MacroModel program to determine the lowest energy conformers for each 
molecule. These lowest energy conformers are then used as inputs to perform the gas- and aqueous-phase geom-
etry optimizations using nine different SEQM methods, including AM144, MNDO45, MNDOD46, PM347, PM648, 
PM6-D349, PM6-D3H4X29, PM750 and RM151. The gas-phase FF optimized geometries are also used as inputs for 
DFTB level optimizations using the DFTB-D352 and GFN1-xTB53,54 methods. The DFTB-D3 computations are 
performed with a self-consistent charge cycle using the QuasiNANO-201532 parameter set, while the parameters 
for GFN1-xTB are taken from the work of Grimme et al.53,54. The aqueous-phase geometry optimizations at the 
SEQM and DFTB levels are performed using the COSMO-RS solvation model55–57. The choice of this solva-
tion method is constrained by the current availability in the ADF program. Finally, FF minimized geometries 
are used as inputs to perform geometry optimizations in the gas-phase at the DFT level by using local density 

(3)Z+ 2H++2e− → ZH2

Figure 5.   Bar plot showing the decrease in error, Δ[RMSE], due to the inclusion of implicit solvation. A larger 
value of Δs implies higher improvement in the accuracy of the predicted results. The black solid bars represent Δs 
( Erxn ), whereas the grey solid bars represent Δs ( ELUMO).
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approximation (LDA)58, generalized gradient approximation (GGA), hybrid, and meta-GGA functionals, which 
lie on four different rungs of the so-called Jacob’s ladder of accuracy59, and vary drastically in their accounting of 
the exchange–correlation energy. A total of 11 functionals, also including some of the D3 dispersion60 corrected 
variants, are used for OPT and SPE calculations. These functionals include LDA58, PBE41,61, PBE-D360, BLYP62, 
BLYP-D360, B3LYP62, B3LYP-D360, PBE063, PBE0-D360, HSE0664, and M08-HX40. For the geometries that have 
been obtained from FF, SEQM, and DFTB optimizations, the DFT level SPEs are computed in the gas-phase, and 
subsequently in the aqueous-phase using only the PBE functional due to reasons discussed above.

Calibration data and performance metrics.  The experimental redox potential data was collected from 
a total of 21 alloxazine-based redox couples in neutral and alkaline aqueous solutions. For consistency, all meas-
ured redox potentials were corrected to reversible hydrogen electrode (RHE) at pH = 7. In consideration of the 
generality of calibration models, experimental data on both core molecules as well as their derivatives func-
tionalized with various groups, such as –CH3, –Cl, –F, –OMe, –NMe2, –CN, COOH, –OCH3, –OH and –CH3 
(see Supplementary Table S1), has been utilized. Accordingly, the calibration data spans a broad range of redox 
potentials between − 0.359 and − 0.062 V.

It is important to note that the alloxazines synthesized by Rizzo et al.65 and Aziz et al.19 have different pairs 
of heterocyclic nitrogen atoms that react. As shown in Fig. 1, in one group of molecules (from Rizzo et al.) the 
protonation reaction takes place on the heterocyclic nitrogen atoms of the adjacent rings, while in the other 
(from Aziz et al.) it takes place on the heterocyclic nitrogen atoms of the same ring. In the current work, however, 
the two types are not treated distinctly because a generic predictive model is sought. The correlations between 
experiments and calculations are expressed in terms of the commonly used coefficients, namely, the coefficient 
of determination (R2), root-mean-square error (RMSE) and mean absolute error (MAE). R2, RMSE, and MAE 
are calculated using the definitions from the Originlab, in which R2, RMSE, and MAE are given by Eqs. (4), (5) 
and (6), respectively:

 where yi is the experimental measurement made at the ith x-value in the data set, ŷi is the predicted response 
for the measurement, 

−
y is mean of y-value. The x-value in this study refers to either of �Erxn , ELUMO or EHOMO , 

and y-value refers to predicted redox potential as described above.

Data availability
The generated computational data of compounds is provided in Supplementary Tables S1 to S7.
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