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Inflammation status modulates the effect of host
genetic variation on intestinal gene expression in
inflammatory bowel disease
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More than 240 genetic risk loci have been associated with inflammatory bowel disease (IBD),
but little is known about how they contribute to disease development in involved tissue. Here,
we hypothesized that host genetic variation affects gene expression in an inflammation-
dependent way, and investigated 299 snap-frozen intestinal biopsies from inflamed and non-
inflamed mucosa from 171 IBD patients. RNA-sequencing was performed, and genotypes
were determined using whole exome sequencing and genome wide genotyping. In total,
28,746 genes and 6,894,979 SNPs were included. Linear mixed models identified 8,881
independent intestinal cis-expression quantitative trait loci (cis-eQTLs) (FDR < 0.05) and
interaction analysis revealed 190 inflammation-dependent intestinal cis-eQTLs (FDR < 0.05),
including known IBD-risk genes and genes encoding immune-cell receptors and antibodies.
The inflammation-dependent cis-eQTL SNPs (eSNPs) mainly interact with prevalence of
immune cell types. Inflammation-dependent intestinal cis-eQTLs reveal genetic susceptibility
under inflammatory conditions that can help identify the cell types involved in and the
pathways underlying inflammation, knowledge that may guide future drug development and
profile patients for precision medicine in IBD.
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nflammatory bowel disease (IBD), consisting of Crohn’s dis-

ease (CD) and ulcerative colitis (UC), is an immune-mediated

disorder characterized by chronic inflammation of the gas-
trointestinal tract. The etiology of IBD is not fully understood,
and no cure is available, with current treatments only showing
long-term effectiveness in a minority of patients!. Moreover, the
prevalence of IBD is rising in westernized countries?, highlighting
the need to better understand the disease.

IBD is a genetically complex disease, and >240 IBD suscept-
ibility loci have been identified to date?. Genomic variants within
these loci are expected to play a role in the disease pathology, but
clear pathomechanisms have been investigated for only a min-
ority of risk genes, and causality has been proven for just a few*.
Genetic variants can influence the transcription of close-by genes
through cis-expression quantitative trait loci (cis-eQTL). To date,
cis-eQTL studies have primarily been performed on general
population cohorts, which have revealed regulatory modules
within IBD risk loci that point to putative candidate genes within
these loci®-8. However, while it is increasingly recognized that cis-
eQTLs can be tissue-specific*10, the number of studies on
intestinal tissues in IBD is low, and studies on cis-eQTLs in the
context of intestinal inflammation in IBD are particularly scarce
and limited in size.

Here, we hypothesized that the effect of host genetics on gene
expression in IBD is dependent on inflammation status. To
address this, we studied inflammation-dependent cis-eQTLs in
IBD using RNA-sequencing (RNA-seq) data from 299 inflamed
and non-inflamed snap-frozen intestinal biopsies derived from
171 IBD patients (Table 1) for whom we also have whole-exome
sequencing (WES) data combined with genome-wide screening
array (GSA) data to enlarge the reference. We then explored the
functional impacts of these cis-eQTL effects by investigating
regulatory effects and cell type involvement. Taken together, we
pinpoint that intestinal mucosa cis-eQTLs can depend on the
inflammatory status and be influenced by the cell type compo-
sition of the mucosa.

Results

After QC and filtering (“Methods”), we analyzed genotype data of
165 individuals with IBD (UC =68, CD =97) and messenger
RNA (mRNA)-sequencing data of 280 intestinal mucosal biopsy
samples from these patients: 112 samples from inflamed tissue
and 168 from non-inflamed tissue.

Inflamed and non-inflamed intestinal areas show differential
gene expression. Comparing inflamed tissue to non-inflamed
tissue revealed 1131 differentially expressed genes (linear
regression, t test, false discovery rate (FDR)<0.001, > 1.5;
Supplementary Data 1a). Among the top genes in the inflamed
biopsies are CXC chemokines such as CXCL1 and CXCL3, which
are chemoattractants for neutrophils, and CXCL2, which sup-
presses cell proliferation of hematopoietic progenitors. Overall,
genes that are upregulated in inflamed intestinal tissue are enri-
ched for cell communication and interaction pathways such as
“interleukin-4 and -13 signaling” (P value =4.54e — 96) and
“GPCR ligand binding” (P value = 2.88e — 39) and for pathways
involved in reorganization of extracellular matrix such as
“extracellular matrix degradation” (P value = 1.78¢ — 48). Genes
downregulated in inflamed tissue are involved in (membrane)
transport through pathways such as “SLC-mediated transmem-
brane transport” (P value = 7.55e — 96; Supplementary Data 1b).
We performed cell type deconvolution using xCell'! and assessed
28 reference cell types thought to be present in the intestinal
mucosa (“Methods”). This showed an enrichment of M1 mac-
rophages, plasma cells, neutrophils, T-helper type 2 (Th2) cells

Table 1 Cohort description.
Inflamed Non-inflamed P values
dataset dataset
Inflammation, no. (%)
Inflamed 112 [100] 0
Non-inflamed 0 168 [100]
Location, no. (%)
Colon 81[72] 10 [65] sz =0.28
lleum 31[28] 58 [35]
Diagnosis, no. (%)

Crohn's disease 63 [56] 10 [65] PXz =0.29

IBD undefined 12 1] 15 [9]

Ulcerative colitis 37 [33] 43 [26]

Sex, no. (%)

Female 68 [61] 103 [61] PXz =1
Age at biopsy, 42.7 £15.1 42 +15.1 Pwilcoxon = 0.61
mean + SD
Medication, yes (%)

Mesalazines 36 [32] 49 [29] sz =0.69

Steroids 26 [23] 31 18] PXz =0.38

Thiopurines 31 [28] 46 [27] PXz =0.95

Methotrexate 1[01] 4 [2] NA

Anti-TNF 20 [18] 37 [22] sz =0.51
Montreal classification, no. (%)

Within CD
Montreal A
Al: <17 years 9 [14] 14 [13] sz =0.23
A2:17-40 years 40 [63] 81[74]
A3: >40 years 14 [22] 15 [14]
Montreal L
L1 (+L4D o MNM43)1 233 PXz =0.23
[21 (3)]
L2 (+L4) 14 (2) 17 (2) [15 (2)]
[22 (3)]
L3 (+L4) 29 (1) 55 (10)
[46 (1M] [50 (9]
Montreal B [1 missing] [1 missing]
B1 (p) 17 (D 37.(7) PXz =0.49
[27 (7)] [34 (16)]
B2 (P) 16 (9) 23 (16)
[25 (14)] [21 (15)]
B3 (P) 6 (3) 7 (9) [6 (8)]
[10 (5)]
Within UC 4 IBDU
Montreal E [5 missing] [4 missing]
E1 2 [5] 2 [4] PXz =0.93
E2 15 [34] 17 [31]
E3 27 [61] 35 [65]
Montreal S [11 missing] [15 missing] PXz =0.93
S1 0 1[2]
S2 6 [16] 7 [16]
S3 20 [53] 23 [53]
S4 12 [32] 12 [28]
P values of comparing categorical variables between groups are from two-sided 42 test; P values
of comparing continuous variable between two groups are from two-sided Wilcoxon's test.

and T-regulatory cells (Tregs) in the inflamed tissue, whereas the
non-inflamed tissue showed a relative enrichment of M2 mac-
rophages and basophils (two-sided Wilcoxon’s test, FDR < 0.05;
Supplementary Fig. 1). When comparing gene expression
between different disease groups (UC = 107, CD = 173 biopsies),
we found 212 differentially expressed genes (linear regression,
t test, FDR<0.001, $>1.5) between CD and UC samples
(Supplementary Data 2). Comparing transcriptional profiles in
the colon vs. the ileum (colon=191, ileum =89 biopsies)
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identified 2145 differentially expressed genes (linear regression, ¢
test, FDR <0.001, 3> 1.5; Supplementary Data 3). Genes over-
expressed in the ileum included SLC28A1, which is involved in
transport of nutrients, and MALRDI, which has a function in bile
acid regulation.

Intestinal cis-eQTLs in IBD largely overlap with non-disease
intestinal cis-eQTLs. We first set out to investigate general cis-
eQTL effects in intestinal tissue from patients with IBD that are
independent of disease subtype, biopsy location, and inflamma-
tion. This identified 8881 unique genes (eGenes) with a cis-eQTL
effect in human intestinal mucosal tissue (linear regression, t test,
FDR < 0.05; Supplementary Data 4a).

We first compared each significant gene—single-nucleotide
polymorphism (SNP) pair (FDR < 0.05) from our dataset with all
significant cis-eQTL results from the healthy intestinal datasets of
the GTEx project!? and the “CEDAR” cohort study’. GTEx
provides three different RNA-seq-based sources of intestinal cis-
eQTLs: sigmoid, transverse colon, and terminal ileum. Our
eQTLs overlap with 97.48% (1085 out of 1113) of the GTEX
sigmoid cis-eQTLs, with 99.27% (1778 out of 1791) of the GTEx
transverse colon cis-eQTLs and 99.15% (937 out of 945) of the
GTEx terminal ileum cis-eQTLs (Supplementary Fig. 2A-C). The
replication rates in “CEDAR” cohort study, which provides three
array-based intestinal cis-eQTL datasets®, are 92.86% (65 out of
70 in the ileum), 92.25% (119 out of 129 in the transverse colon),
and 94.64% (106 out of 112 in the rectum) (Supplementary
Fig. 2D-F). We then compared the eQTLs reported here with
those found in the pediatric IBD “RISK” cohort study!3 (P<
0.05), a targeted eQTL study on known IBD GWAS variants. We
found that 83.00% of cis-eQTLs have the same direction of effect
(39 out of 47; Supplementary Data 4b). In addition, we compared
our cis-eQTL pairs with the findings of the eQTLGen!4 meta-
analysis, which was performed on blood and found a replication
rate of 81.44% (Supplementary Fig. 2G), suggesting tissue-specific
genetic regulatory effects to exist in our findings.

Interestingly, six eSSNP-eGene pairs have different directions of
effect as compared to the GTEx study (data were not present in
the “CEDAR” study). After a heterogeneity test between these
eQTL pairs and the three GTEx gut datasets, four eQTL pairs
showed significance, which suggests that these intestinal cis-
eQTLs indeed have a different direction of effect in our dataset in
the context of IBD (Q test P <0.05; Supplementary Data 4c and
Supplementary Fig. 3). These four eGenes consist of: PPP2R2D, a
gene involved in the cell cycle by controlling mitosis entry and
exit; RBL2, a gene associated with type 2 diabetes; LIMDI, a gene
involved in several cellular processes including cell-cell adhesion
and cell development; and ZNF593, which modulates DNA
binding. Neither the eGenes nor the eSNPs have previously been
reported to be associated with IBD risk.

Genomic variants within disease susceptibility loci affect
intestinal gene expression. To explore the functional impact of
intestinal cis-eQTLs in gut diseases, we extracted GWAS sum-
mary statistics for six disease traits, (1) IBD, (2) CD, (3) UC, (4)
colon cancer, (5) diverticulitis, and (6) coeliac disease. Using
“coloc”!>, we performed colocalization analysis of the identified
cis-eQTLs and disease GWAS loci to identify potential shared
causal variants. At a posterior probability threshold of having one
shared causal variant (PP4) of >0.5, we discovered 558 coloca-
lizing variants (Supplementary Data 5). For example, our
IBD-based dataset showed 172 eSNPs that colocalized with IBD.
The eGene that most strongly colocalized with IBD is HNF4A
(PP4 = 0.99), the expression of which is known to be decreased in
the intestinal mucosa in patients with IBD and UC!®. Functional

enrichment analysis showed that the eGenes that colocalized with
IBD GWAS loci are enriched for the “olfactory signaling path-
way” (P value =1.4e — 08) and “G alpha (s) signaling events”
(P value =1.6e — 07). Both of these pathways are forms of G
protein-coupled receptor signaling, which is a basic mechanism in
the immune response in IBD17. For colon cancer, we found four
colocalizing eSNPs, and for diverticulitis, we found one coloca-
lizing eSNP. One hundred and two eSNPs colocalize with coeliac
disease, which are enriched for the “ER-phagosome pathway”
(P value = 3.3e — 06) and “nucleotide excision repair” (P value =
7.5e — 06). ER stress pathways are known to play a central
role in IBD inflammation!8, These results suggest that a large part
of intestinal eSNPs are likely to be causal variants in IBD and
coeliac disease.

Intestinal cis-eQTLs are inflammation-dependent. We then set
out to identify genomic variants that differentially affect gene
expression in the presence of intestinal inflammation in IBD. We,
therefore, performed a genetics x inflammation-interaction ana-
lysis (“Methods”), which revealed 1854 inflammation-dependent
cis-eQTLs (linear regression, ¢ test, FDR;,teraction < 0.05), involving
190 unique eGenes (Supplementary Data 6a, b). Subsequently, we
determined whether these interactions could have been observed
by chance. After ten permutations, the number of interaction
eQTLs with an interaction P value below the threshold associates
with an FDR <0.05 in the non-permuted data, suggesting that the
FDR estimates are well calibrated for the 1854 inflammation-
dependent cis-eQTLs (Supplementary Fig. 4). Among these
eGenes are MIR214, associated with progression of UC!?, C6, a
complement protein encoding gene, and the gene encoding
FOLR3, an antimicrobial and antitumor functioning protein20.

The most significantly associated eSNP for each of the 190 eGenes
was selected for further analysis. By assessing the significance of
genotype and interaction items in the model, we found that 166
eGenes are mainly driven by interaction between eSNPs and
inflammation status (linear regression, t test, FDRgenotype > 0.05,
FDRipteraction < 0.05). One inflammation-dependent eSNP is located
close to IBD risk-associated genes: the eSNP rs12582553 (C/T, linear
regression, ¢ test, FDRipteraction = 0.046, FDRgenotype = 1) is posi-
tioned upstream of its eGene IL26 (Fig. la), which encodes an
inflammatory mediator?!. The gene TREML4, involved in Toll-like
receptor signaling in macrophages?2, is upregulated by eSNP
rs4337930 (T/C, linear regression, t test, FDRiyteraction = 0.00046,
FDRgenoype = 1) under  inflammatory  circumstances, while its
expression is independent of genotype in non-inflamed tissues.
We also found that the eSNP rs3808491 (C/T, linear regression,
t test, FDRineraction = 7-23 X 1076, FDRyenioyppe = 1) forms an
inflammation-dependent cis-eQTL with its eGene, LY6D, which is
upregulated in (colorectal) cancer tissue?3. A set of immunoglobulin
genes show cis-eQTL effects that are only present under
inflammatory conditions (linear regression, ¢ test, FDRipteraction <
0.05). These genes (IGHV4-4, IGKVI-13, IGKV2-29, IGHV3-20,
IGKV1D-13, IGKV1D-27, IGKV1D-17) are all involved in antigen
recognition by B cells. Interestingly, the eSNP rs11685391 affects the
expression of three of these genes (IGKV1D-27, IGKVID-17, and
IGKV2-29), suggesting that there is common genetic regulation
(Fig. 1b).

Twenty-four out of 190 cis-eQTLs are dependent on eSNP
genotype and also interact with inflammation. For example, a cis-
eQTL effect between rs6860770 (A/C, linear regression, t test,
FDRgenotype = 2.26e — 16) and gene C6, a complement protein
encoding gene, which plays a role in the innate and adaptive
immune response?4, is observed in the whole sample. However, the
effect size is different in inflamed tissue compared with non-inflamed
tissue (linear regression, f test, FDRiyteraction = 0.014; Fig. 1c).
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Pathway analysis of the 190 inflammation-dependent cis-eQTL
genes revealed top pathways related to membrane protein
anchoring  (“posttranslational ~ modification: ~ synthesis  of
glycosylphosphatidylinositol-anchored proteins,” P = 6.95e — 06),
synthesis of inflammation-signaling proteins (“synthesis of

leukotrienes and eoxins,” P = 2.44e — 04) and bacterial recognition
(“uptake and actions of bacterial toxins,” P=0.0015) (Supplemen-
tary Data 7). These are all factors that can influence an individual
patient’s pathophysiology. Other pathways indicate involvement of
adipocyte differentiation (“transcriptional regulation of white
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Fig. 1 Inflammation-dependent cis-eQTLs. a Three examples of cis-eQTLs only driven by interaction, rs12582553-IL26 (linear regression, t test,
FDRinteraction = 0.046), rs337930-TRENL4 (linear regression, t test, FDRinteraction = 0.00046) and rs3808491-LY6D (linear regression, t test,
FDRinteraction = 5.92e — 05). Top panel: X-axis indicates the genotypes of the eSNPs stratified by inflammation status. Y-axis indicates the scaled
expression levels of the eGenes. Bottom panel: X-axis indicates the genotypes of the eSNPs in all samples combined. Y-axis indicates scaled expression
levels of the eGenes. b Three inflammation-dependent immunoglobulin cis-eQTLs. Panels are similar to (a). € One example of cis-eQTL driven by both
genotype and the interaction, rs6860700-C6 (linear regression, t test, FDRisteraction = 0.014; FDRgenotype < 2.26€ — 16). Box plots show medians and the
first and third quartiles (the 25th and 75th percentiles), respectively. The upper and lower whiskers extend the largest and smallest value no further than

1.5 xIQR (n =280 samples). Source data are provided as a Source Data file.

adipocyte differentiation,” P=1.94e —04) and phagocytosis
(“FGFR2 ligand binding and activation,” P = 2.49e — 04; “Fcgamma
receptor-dependent phagocytosis,” P = 0.0042).

To get a broader functional explanation of the inflammation-
dependent cis-eQTL genes, we explored whole-transcriptome-wide
co-expression patterns for each of the 190 eGenes and found 2466
co-expressed genes (Spearman’s correlation, |r| > 0.5, FDR < 0.05)
(Supplementary Data 8). For example, IL26 is co-expressed with the
IBD-associated gene GPR25 (r=10.51). CHLI-AS2, a noncoding
RNA regulated by eSNP rs11685391, is co-expressed with the gene
CLECI2B (Spearman’s correlation, r=0.51), a pathogen-
recognition molecule in mucosal macrophages. In addition, IL36RN
is co-expressed with SPRR3 (Spearman’s correlation, r=0.51),
together with a set of small proline-rich region genes that include
SPRR2D, SPRR2A, and SPRRIB. These genes have been reported to
be part of the inflammatory response in the epithelial barrier?>2°.
These results indicate that inflammation-dependent cis-eQTLs are
potentially involved in gene-gene interactions.

Cell types likely perturbed by inflammation cis-eQTLs. Since
cell type composition can change depending on inflammation
status?’ and genotype?® and eQTLs may be dependent on cell
type composition?’, we investigated the contribution of the
observed eSNPs to cell type heterogeneity.

To identify which of the 190 inflammation-dependent cis-
eQTLs are related to the enrichment of (one of) the 28 intestinal
cell types, we used xCell, an R package that works with a large
reference base of 1182 transcriptomes!!. Within xCell, cell type-
enrichment scores can be calculated for 28 cell types present in
the intestine. In short, we built interaction models including the
genotype of cis-eQTL, deconvoluted cell type enrichment and
calculated the interaction between these two (“Methods”). Each of
these 28 cell type-enrichment scores showed a significant
interaction (linear regression, t test, FDRipteraction < 0.05) with
one or more inflammation-dependent eSNPs. One hundred and
twenty-five of the 190 inflammation-dependent cis-eQTLs show a
significant interaction (linear regression, ¢ test, FDRyyeraction <
0.05) with cell type enrichment (Fig. 2a and Supplementary
Data 9). We identified significant cis-eQTL effects that are likely
not only driven by genotype but also by a change in the frequency
of specific cell types. For example, significant cis-eQTL effects
were found between variant rs36065697 (G/A, linear regression,
test, FDRgenotype <2.2¢6 —16) and gene IGHV4-4, variant
rs76748970 (C/T, linear regression, t test, FDRgepotype < 2.2€ —
16) and gene HLA-DQA2, which also interact with an enrichment
in macrophage M1 and plasma cells (Fig. 2b). Ninety-six out of
the 125 eGenes only showed cis-eQTL effect with specific
cell enrichment (linear regression, t test, FDRipteraction < 0.05,
FDRgenotype > 0.05). For example, carriers of the TT and TA
genotype of variant rs859739 upregulate IGKVID gene expression
with increasing of conventional dendritic cell (cDC) cell
enrichment, while AA genotype carriers downregulate IGKV1D
expression with decreasing ¢cDC cells (linear regression, t test,
FDRinteraction = 6.65¢ — 06). However, there was no significant
eQTL effect when merging the whole cDC cell populations (linear

regression, t test, FDRgenotype = 0.11). This analysis demonstrates
that inflammation-dependent cis-eQTLs may be partially driven
by enrichment of specific cell types.

Of note, when comparing to the Westra study®, where they
searched for eQTLs that interacted with the proportions of blood
cell subtypes, we find that the interaction effect of the eGene
TREML4 with eSNP rs4337930, in linkage equilibrium (LD) with
rs6921835 (r2=0.97), replicates in this dataset, indicating a
tissue-overarching effect.

Gene regulatory effects of eSNPs. To further uncover the
function of both the intestinal and inflammation-dependent cis-
eQTLs, we set out to explore which eSNPs have a possible gene
regulatory function. Using Haploreg annotation, we found that
the top 200 intestinal eSNPs are enriched in enhancer regions in
various gastrointestinal tissues, such as mucosa of the colon and
the rectum (P<0.05). For example, the eSNP rs2382817, a
potential disease-dependent cis-eQTL with eGene PNKD, flanks
an active transcription start site (TSS) in various gastrointestinal
tissues. The 190 inflammation-dependent eSNPs show an
enrichment for enhancer regions that have been found in blood
immune cells, such as CD4 Th memory cells, monocytes, and B
cells (Supplementary Data 10). Various inflammation-dependent
eSNPs are located in active TSSs. For example, an inflammation-
dependent eQTL for AHSG, rs3733160, flanks an annotated
activated TSS in many tissues, including sigmoid, small intestine,
and T and B cells from peripheral blood. The eGene AHSG is
predicted to have a function in the pathway “GRB2: SOS provides
linkage to MAPK signaling for Integrins,” and rs3733160 might
thus affect integrin signaling towards the intestine. rs144625530,
an eSNP of the eGene MLCI that is involved in the “MAPK-erk
pathway,” is in LD with rs143407472 (r2 = 1), which has active
TSSs in primary Th memory cells from peripheral blood and
colonic mucosa.

Inflammation-dependent eGenes as possible drug targets. The
inflammation-dependent eQTLs are potentially involved in dis-
ease pathways, and targeting them could lead to a therapy that is
highly specific to both tissue and disease status, thereby limiting
side effects. Therefore, we sought to identify currently available
drugs that can target the eGenes. Using the OpenTargets data-
base, we identified five inflammation-dependent eGenes that are
drug targets. For example, LAP3, involved in protein turnover, is
targeted by Tosedostat, which is currently used to treat acute
myeloid leukemia3!. Genes CACNG7, CACNA2D3, RXRG, and
SCN2A are targets of various drugs (Supplementary Data 11).

Discussion

In the current study, we integrated genotype and gene expression
data from the inflamed and non-inflamed intestinal mucosa of
patients with IBD. We confirm that the biopsy location is the
largest contributor (2145 differentially expressed genes) to dif-
ferences in gene expression between samples2-33, and show that
inflammation is responsible for 1131 differentially expressed
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Fig. 2 Associations between inflammation-dependent cis-eQTLs and cell type enrichment. a One hundred and twenty-five out of 190 inflammation-
dependent cis-eQTLs are associated with cell type enrichment. X-axis indicates gene IDs of cis-eQTLs. Y-axis indicates the number of associated enriched
cell types (only n >3 are shown). b Three examples. Left and middle panel, X-axis indicates cell type-enrichment scores derived from xCell. Y-axis indicates
scaled expression levels of cis-eQTL genes. Colors indicate different genotypes. Right panel, X-axis indicates the genotype of cis-eQTL SNPs genotype, and
Y-axis indicates scaled expression levels of cis-eQTL genes. Box plots show medians and the first and third quartiles (the 25th and 75th percentiles),
respectively. The upper and lower whiskers extend the largest and smallest value no further than 1.5 x IQR (n = 280 samples). Source data are provided as
a Source Data file).
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genes. We identify 190 cis-eQTLs that depend on the inflam-
mation status of the tissue. Downstream analyses of the genes we
identified shows that inflammation-dependent cis-eQTL genes are
involved in inflammatory responses to viruses and bacteria and
mainly show interaction with certain subsets of immune cells.
Overall, our results highlight the tissue and inflammation status
specificity of cis-eQTLs.

We identified 8881 intestinal mucosa cis-eQTLs involved in
general metabolic and transcriptional pathways. We also repli-
cated 83.00% of the cis-eQTLs identified in the pediatric CD-
based RISK cohort, indicating that a considerable number of the
cis-eQTLs found in pediatric IBD may also be present in adult
IBD. When comparing the intestinal cis-eQTLs with those iden-
tified in larger, non-disease specific datasets, including GTEx and
CEDAR studies, we found an overlap of >92%, which supports
the robustness of our findings. There are only a few studies on
intestinal cis-eQTLs in IBD, and their findings are currently dif-
ficult to replicate because of differences in reporting4. Interest-
ingly, four of the mucosal cis-eQTLs we identify (LIMDI,
ZNF593, PPP2R2D, and RBL2) showed heterogeneity with inverse
effect directions compared with the GTEx data, indicating that
these four cis-eQTLs may be IBD-dependent. Furthermore, we
showed colocalization of 330 intestinal eSNPs with genetic risk
variants identified in GWAS of six gastrointestinal diseases (CD,
UG, colon cancer, coeliac disease, and diverticulitis). We observed
colocalization of eSNPs influencing the expression of HNF4A,
ATGI6LI1, FUT2, and IRF8, which could be the causal variants of
IBD, thereby linking GWAS findings to functional transcriptional
effects in the intestinal mucosa.

Within the 190 inflammation-dependent eQTLs, we found a
group of immunoglobulin heavy- and light-chain encoding
eGenes (such as IGHV4-4). Immunoglobulins are resident in the
human intestine, where they play an important role in main-
taining the homeostasis between intestinal cells and the micro-
biome and other potentially harmful agents®-3%. Our results
suggest that immunoglobulin production may be disturbed in a
genetically defined subset of patients, possibly resulting in dif-
ferent B cell-mediated IgA/IgG responses to intestinal bacteria
and other triggers.

Expression of the antimicrobial cytokine IL26 is generally
enhanced in the inflamed mucosa of patients with IBD, and it has
been shown to induce pro-inflammatory cytokine expression in
colonic subepithelial myofibroblasts*%4!, We observe that IL26
expression in inflamed tissue depends upon genotype, suggesting
that its antimicrobial defense mechanism might be more (or less)
active in genetically defined subgroups of IBD patients.
This could lead to variable susceptibility to superinfections, or
simply to a difference in the duration of IBD flares. The inter-
action effect of eGene LY6D with inflammation status that we
identified indicates a possible link between genotype, inflamma-
tion, and colorectal cancer, although this should be more thor-
oughly investigated in a dataset featuring both cancer and
inflammation.

There have been earlier reports on inflammation-interaction
cis-eQTLs in IBD tissue, which were found using source data of
lower complexity*2. However, we could not replicate any of the
inflammation-interacting cis-eQTLs these authors reported,
probably due to differences in sample origin, sample preparation,
methods of data generation and analysis strategies.

A Detter understanding of how cell type composition differs under
inflammatory conditions may provide targets for therapy*>#4. Tar-
geting gut mucosal- and inflammation-specific changes should ren-
der a therapy more specific, which would limit its side effects. Using
cell type deconvolution of our bulk mRNA-seq data, we found a
potential enrichment of various T cell subtypes in the inflammatory
state, including Treg cells and Th2 cells. We also see an enrichment

in M1 (inflammatory) macrophages in inflamed tissue and of M2
macrophages in non-inflamed tissue, which is consistent with the
literature?’4>. We assessed the interaction between mucosal cell type-
abundance and inflammation-dependent cis-eQTL effects to map
possible confounding of cis-eQTL results caused by cell type com-
position and found that many inflammation-dependent cis-eQTLs
may be linked to cell type abundance. Around one out of fourth of
the interactions (112 out of 489) are with T cell subtypes, and 100
interactions are with (plasma) B cells. It is well established that T cells
are highly present in the inflamed intestine, but interest in the role of
B cells is growing, especially with respect to their interaction with the
microbiome®¢, To definitively confirm these findings, absolute cell
numbers would have to be determined, preferably accompanied by
the cell type-specific expression patterns, for example, through single-
cell RNA-seq.

We do find drug targets among inflammation-dependent cis-
eQTLs, but not for drugs currently used to treat IBD. One
explanation for this could be that the individuals included in this
cohort use drugs that suppress their targets and therefore the
possible eQTL effect. Another explanation may be that the eQTL
effects of IBD drug targets are cell type-specific and cannot be
found in whole biopsy RNA-seq data. It may also be that no IBD
drugs currently target inflammation-dependent eQTLs.

The gene CXCL5 is an intestinal cis-eQTL. After treatment with
the biological infliximab or vedolizumab, its expression was found
to be downregulated in drug responders but not in non-
responders*®, suggesting a possible genetic predisposition for drug
response. Recently developed biological therapies are effective in
roughly 30% of IBD patients?’, but we currently have no way to
discern which patient will benefit from which therapy. Pharmaco-
genetics could be a way to predict drug effectiveness and toxicity
prior to therapy?8. Based on our cis-eQTL discoveries, we suggest
drug-SNP combinations that could be interesting to investigate in
large cohorts for genotype-dependent effectiveness.

Our study has some limitations. First, we show in silico that
cis-eQTL effects can differ with inflammation status, but to assess
causality, functional follow-up studies are needed. Second, our
source data required correction for confounding factors such as
biopsy location in order to calculate (inflammation-dependent)
cis-eQTLs, which might have limited the number of results.
Ideally, to minimize the amount of bioinformatic correction
required, one would have paired biopsies of the same tissue, both
inflamed and non-inflamed, from the same individuals. In prac-
tice, however, these samples are very difficult to obtain. Third, we
assessed cis-eQTL effects per tissue and not per cell type?.
By using single-cell mRNA transcriptomes for cis-eQTL analysis,
one would be able to discriminate between a cell type-specific cis-
eQTL and a cis-eQTL representing a cell type-enrichment
effect. While we could estimate these effects using cell type
deconvolution and interaction models, this approach cannot
provide the same resolution as single-cell RNA-seq data?.
Evaluating cis-eQTLs on the level of individual cells would be of
great interest.

We have identified 190 inflammation-dependent and 8881
intestinal cis-eQTLs in IBD patients and highlight four potential
IBD-specific intestinal cis-eQTL that, to our knowledge, have not
been described to be associated with IBD. We also show which
cell types likely contribute to these specific gene expression pat-
terns and which regulatory features are potentially influenced by
eSNPs. Our findings reveal that intestinal mucosa cis-eQTLs can
depend on the inflammatory status and be influenced by the cell
type composition of the mucosa. Our results highlight the
importance of both genetics and the cell type composition of
tissues as contributors to disease heterogeneity and provide leads
that can guide drug development and to better profile patients for
precision medicine.
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Methods

Sample collection. At the University Medical Center Groningen, a total of 299
intestinal mucosal biopsies were collected from 171 Dutch patients with a confirmed
IBD diagnosis at the University Medical Center Groningen (Table 1). Biopsies were
immediately snap-frozen on-site by the endoscopy nurse or research technician
present during the endoscopy procedure. Information on biopsy location and mac-
roscopic inflammation status was registered at the time of sample collection. Mac-
roscopic inflammation status was classified based on the aspect of the mucosa during
colonoscopy; inflamed defined as redness and edema with or without ulceration of the
mucosa?’. Blood for DNA extraction was drawn during prior visits to the hospital.

Ethical approval. All participants signed an informed consent form prior to sample
collection. This study was approved by the Medical Ethics Committee of the Uni-
versity Medical Center Groningen (Groningen, The Netherlands, IRB ID 2008.338).

Sample preparation. Biopsies were homogenized in RLT plus buffer containing f-
mercaptoethanol, using the Tissue Lyser with stainless-steel beads (Qiagen NV,
Venlo, The Netherlands). Sample preparation was executed using the BioScientific
NextFlex mRNA Sample Preparation Kit. DNA isolation was done with the
AutoPure LS procedure from Qiagen. RNA was simultaneously isolated using the
AllPrep RNA Mini kit (Qiagen), according to the manufacturer’s protocol.

Genotype data. WES and GSA were performed on DNA derived from blood
samples. WES data were obtained from 170 patients and generated at the Broad
Institute of Harvard and MIT (Boston, USA), using an Illumina Hiseq

2500 sequencer. After quality control (QC) using default parameters (https://
software.broadinstitute.org/gatk/best-practices/workflow?id=11146), reads were
aligned to the b37 human reference genome, and subsequently, 86.06 million high-
quality reads were generated per sample. On average, 98.85% of these reads aligned
to the human genome (hgl9) per sample. 81% of the whole exome reached an
average >30x read depth and was used for further analysis.

GSA data were generated for all 171 IBD patients, using the Infinium GSA-24
v1.0 BeadChip combined with the optional Multi-Disease drop-in panel (http://
glimdna.org/global-screening-array.html; GSA-MD). Genotypes were called using
the OptiCall clustering program (ref. opticall.bitbucket.io), and QC steps were
performed using PLINK 1.9 (www.cog-genomics.org/plink/1.9/) (minor allele
frequency (MAF) > 5%, call rate < 0.99, Hardy-Weinberg equilibrium test
P value <le — 4). Genotype data were phased using the Eagle algorithm and
imputed to the Haplotype Reference Consortium reference panel using the
Michigan Imputation Server (https://imputationserver.readthedocs.io/en/latest/
pipeline/). After imputation, genetic variants were filtered for R2 > 0.4 and MAF >
0.1%. For one sample only, GSA rather than WES was available.

GSA genotype data was combined with WES data using PLINK 1.9, and
genomic variant filtering was performed. Variants with a call rate <0.99, a MAF
<5%, and Hardy-Weinberg equilibrium test P value < le — 6 were removed. The
resulting filtered, combined WES-GSA genetic dataset covered a total of 6,894,979
genomic variants. The kinship matrix was calculated using PLINK 1.9 with
parameters “--distance ibs” for all samples.

Transcription data. Paired-end RNA-seq was performed on all 299 biopsy samples
using the Illumina NextSeq500 sequencer (Illumina). The RNA samples were pseudo-
randomized on plates to mitigate batch effects covering IBD diagnosis, disease
location, and disease activity. Twenty million paired-end 75-bp reads were generated
per sample. The quality of the raw reads was checked using FastQC with default
parameters (v0.11.7). The adaptors identified by FastQC were clipped using Cutadapt
(v1.1) with default settings. Sickle (v1.200) was used to trim low-quality ends from the
reads (length <25 nucleotides, quality <20). Reads were aligned to the human genome
(human_glk_v37) using HISAT (v0.1.6) (two mismatches allowed), and read sorting
was done using SAMtools (v0.1.19). SAMtools flagstat and Picard tools (v2.9.0) were
used to obtain mapping statistics. Eight samples with a low percentage (<90%) of read
alignment were removed. Finally, the gene expression was estimated through HTSeq
(0.9.1) based on the Ensemble version 75 annotation, resulting in an RNA expression
dataset of 28,746 genes. Gene-level expression data were normalized using a trimmed
mean of M values, and log, normalization was applied.

Principal component analysis and confounders. Principal component analysis
was performed on gene expression. Three samples were defined as outliers by
visualization and removed. Two hundred and eighty samples were selected for
further analysis (Table 1).

To account for as many potential confounders as possible in our analysis, we
chose the inflection of the variance curve®>?, (Supplementary Figure 5) as the PC-
correction threshold. The inflection occurs after the first 18 PCs, which together
explain 77% of the total variation. Location of the biopsy (ileum vs. colon) was
captured by the first PC (Spearman’s correlation, r> = 0.64, P = 3.40e — 66),
and inflammation status was captured by the second PC (Spearman’s correlation,
r2=0.41, P =2.64e — 34). Using this method, other potential confounding factors
were visualized and corrected for (Supplementary Fig. 6A, B).

Differential gene expression analysis. To identify genes that were differentially
expressed between disease groups (CD vs. UC), inflammation status groups (inflamed
vs. non-inflamed), and biopsy location groups (ileum vs. colon) (Table 1), we applied
a linear mixed mode using GEMMA®! with identity-by-state matrix as a random
effect for controlling repeated measurements and genetic relatedness, and “group” as
a fixed effect. The first PC was excluded as a covariate when comparing disease and
location groups. The second PC was excluded as a covariate when comparing
inflammation status. By doing so, we corrected for PCs that account for other con-
founders. Our model can be described by the following formula:

differential gene expression between inflammation status
= (intercept) + PCs(1 + 3 ~ 18) + inflammation status + IBS matrix

m

differential gene expression between diseases or sample locations
= (intercept) -+ PCs (2 ~ 18) + disease/location + IBS matrix

Twenty-eight IBD unclassified samples were grouped with UC samples for
further analyses.

@

Cis-eQTL analysis. For transcriptome-wide cis-eQTL mapping, we included SNPs
located within 500 kb of a gene center, based on Ensemble v.75 annotation. The best
guess of genotypes of the SNPs was used and encoded as 0, 1, or 2 to represent the
number of the three genotypes. A linear mixed model was applied using GEMMA to
identify intestinal cis-eQTLs. We corrected for confounders by regressing out the
effect of the first 18 PCs. Our model can be described by the following formula:

gene expression for cis-eQTL analyses = (intercept) 4+ PCs(1 ~ 18) 4+ SNP + IBS matirx

3)

Comparison to other cis-eQTL data. To assess the robustness of our approach and
dataset, significant cis-eQTLs (FDR < 0.05) were aligned to three publicly available
datasets: (1) GTEx significant cis-eQTL (q value < 0.05) summary statistics'2 for
Colon_sigmoid (n = 124), Colon_transverse (n = 169), and Small_intestine (n =
77), 2) significant intestinal eQTLs (FDR < 0.05) of the “CEDAR” study® (n = 323),
including ileum, transverse colon and rectum, (3) significant eQTLGen!* blood
eQTLs (FDR < 0.05) from 37 population-based cohorts (n = 31,684) (https://www.
eqtlgen.org/), and (4) the pediatric IBD “RISK” cohort results!? (n = 245) with
nominal P value < 0.05. Proportional overlap was calculated as the proportion of
significant cis-eQTLs deriving from our dataset, which replicated in these publicly
available datasets with 8 in the same direction. Heterogeneity test was performed
using package “metafor”? in R (v.3.5.0). Furthermore, eSNPs (SNPs with a cis-
eQTL effect) within IBD loci were compared to the results from the UC patients
and familial adenomatous polyposis study of Kabakchiev and Silverberg3*
(n=173).

Inflammation-dependent cis-eQTL analysis. To identify inflammation-
dependent cis-eQTLs, we used gene—environment interaction function “-gxe” in
GEMMA by adding an additional inflammation covariate to the model, and an
interaction term between this covariate and genotype:

gene expression for inflammation-dependent cis-eQTL analysis
= (intercept) + PCs(1, 3 ~ 18) 4+ SNP + inflammation + SNP (4)
x inflammation + IBS matrix

We calculated P values for the interaction terms and applied FDR correction.
However, only f, standard errors, and P values of the interaction term were
obtained from GEMMA by default. To get the full summary statistics of the whole
model, we re-calculated the significant inflammation-dependent cis-eQTLs using
“Imedqtl” R package. The FDR was calculated for the P values of coefficients for
variable genotype, inflammation, and the interaction terms separately. The
significant threshold was FDRjperaction < 0.05.

Colocalization of cis-eQTL SNPs with diseases GWAS. We extracted all variants
that were used for each significant intestinal cis-eQTL gene and performed colo-
calization analysis using coloc (v.3.2)!° R package. GWAS summary statistics of six
diseases were downloaded from https://www.ebi.ac.uk/gwas/, including IBD (ebi-a-
GCST004131), CD (ebi-a-GCST004132), UC (ebi-a-GCST004133), coeliac disease
(ukb-b-8631), diverticulitis (ukb-b-14796), and colon cancer (ukb-b-20145). For

each test, we used the posterior probability of a model with one common causal
variant (PP4) > 0.5 as colocalization evidence between eSNP and GWAS variants.

Co-expression analysis. Transcriptome-wide co-expression analysis was done for
all inflammation-dependent cis-eQTL genes after adjusting for PCs. Co-expressed
genes with FDR < 0.05 and the absolute value of Spearman’s correlation coefficient
>0.5 were selected.

inflammation-dependent cis-eQTL gene = PCs(1 ~ 18) + gene + IBS matrix (5)

Cell type-specific analysis. To order to define the cell types most likely to be
driving or perturbed by inflammation-dependent cis-eQTLs, we calculated the
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interaction between the cis-eQTL effect and a cell type-enrichment score. We used
the xCell package (https://github.com/dviraran/xCell) for cell type-enrichment
analyses, stratifying the following cell types that can be present in the intestinal
mucosa: cDCs, pDCs, M1 Macrophages, M2 Macrophages, NK cells, naive CD4+
T cells, central memory CD4+ T cells, effector memory CD4+ cells, naive CD8+
T cells, central memory CD8+ T cells, effector memory CD8+- cells, Tyd cells,
Thl cells, Th2 cells, Tregs, NKT cells, naive B cells, plasma cells, memory B cells,
class-switched memory B cells, basophils, MAST cells, neutrophils, eosinophils,
endothelial cells, epithelial cells, fibroblasts and smooth muscle cells. The healthy cell
type marker genes as published by Smillie et al.2” were used to assess cell-marker
enrichment.

inflammation-dependent cis-eQTL gene
= (intercept) + PCs(1 ~ 18) 4 SNP +- cell type-enrichment score + SNP  (6)
x cell type-enrichment score + IBS matrix

We calculated P values for the genotype, cell type-enrichment score, and the
interaction terms using “Ime4qtl” R package®® and applied FDR correction
separately. An interaction between cell type enrichment and a cis-eQTL was
considered significant if the FDRyteraction < 0.05. We compared our results to those
of the Westra et al. study, which uncovered eQTL-cell type-proportion interactions
in blood3". Results were considered overlapping when the eQTLcell type
associations were significant in both cohorts.

Functional annotation. We performed a series of downstream analyses to further
characterize the inflammation-dependent cis-eQTLs we had identified.

Pathway analyses. We used GeneNetwork (https://genenetwork.nl/) to provide
functional enrichment analyses and report the top-20 upregulated pathways.

Drug-target comparison. To assess whether the cis-eQTL genes we identified are
potential drug targets, we overlapped cis-eQTL genes with DrugBank and Open-
Targets (https://www.drugbank.ca/, www.opentargets.org).

Regulatory feature annotation. We used Haploreg v4.1 (https://pubs.broadinstitute.
org/mammals/haploreg/haploreg.php) to annotate regulatory features of

eSNPs, and to calculate the number of SNPs that can be analyzed is limited,

we restricted the number of SNPs used for the enrichment calculations to

the top 200.

Statistics. All results were corrected for multiple testing using the “p.adjust”
function (FDR, Benjamini-Hochberg method) in R (v.3.5.0), hereafter called
“FDR.” Because we did not have a replication set for the inflammation-interaction
cis-eQTL analysis, we validated the FDR threshold by randomly assigning the
inflammation status ten times and performing transcriptome-wide inflammation-
dependent cis-eQTL analyses. For each permutation, we determined the interaction
term P values, applied the FDR, and determined the number of interaction effects
with an FDR < 0.05. If this number was <0.05x the number of interaction results,
the FDR threshold used was considered adequate.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The raw gene expression table and full eQTL summaries data generated in this study
have been deposited in the Genome-phenome Archive data repository database under
accession code EGAS00001002702 (“Multi-omics data of 1000 Inflammatory Bowel
Disease patients,” datasets numbers: EGAD00001006789, EGAD00001006790,
EGAD00001006791, EGAD00001006792, and EGAD00001006798). Due to participant
confidentiality, the raw sequencing data and clinical phenotype data are available upon
request of a letter of intent to the 1000IBD Data Access Committee UMCG. The publicly
available datasets used in this study include: six diseases GWAS summary statistics were
downloaded from https://www.ebi.ac.uk/gwas/, including IBD (ebi-a-GCST004131), CD
(ebi-a-GCST004132), UC (ebi-a-GCST004133), coeliac disease (ukb-b-8631),
diverticulitis (ukb-b-14796), and colon cancer (ukb-b-20145); GTEx significant cis-eQTL
summary statistics were derived from (https://gtexportal.org/home/datasets,
GTEx_Analysis_v7_eQTL.tar.gz); the “CEDAR” study intestinal eQTLs were
downloaded from https://www.nature.com/articles/s41467-018-04365-8; eQTLGen blood
eQTLs are obtained from https://www.eqtlgen.org/; the pediatric IBD “RISK” cohort
eQTLs results are downloaded from https://www.nature.com/articles/ng.3936. The
remaining data are available within the Article or from the authors upon request. Source
data are provided with this paper.

Code availability
Codes used for the following data processing and analysis are publicly available at: https://
github.com/WeersmaLabIBD/RNA-SEQ (https://doi.org/10.5281/zenodo.4304528).
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