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Bioinspired multisensory neural network with
crossmodal integration and recognition
Hongwei Tan 1✉, Yifan Zhou 1, Quanzheng Tao 2, Johanna Rosen2 & Sebastiaan van Dijken 1✉

The integration and interaction of vision, touch, hearing, smell, and taste in the human

multisensory neural network facilitate high-level cognitive functionalities, such as crossmodal

integration, recognition, and imagination for accurate evaluation and comprehensive under-

standing of the multimodal world. Here, we report a bioinspired multisensory neural network

that integrates artificial optic, afferent, auditory, and simulated olfactory and gustatory

sensory nerves. With distributed multiple sensors and biomimetic hierarchical architectures,

our system can not only sense, process, and memorize multimodal information, but also fuse

multisensory data at hardware and software level. Using crossmodal learning, the system is

capable of crossmodally recognizing and imagining multimodal information, such as visua-

lizing alphabet letters upon handwritten input, recognizing multimodal visual/smell/taste

information or imagining a never-seen picture when hearing its description. Our multisensory

neural network provides a promising approach towards robotic sensing and perception.
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The human multisensory system that integrates the five
primary senses, vision, touch, hearing, smell, and taste, as
well as their interactions via neural networks in the brain,

enables people to explore, learn, and adapt to the world1–9. In the
human multisensory neural network, sensory receptors (rods and
cones, mechanoreceptors, cochlea, smell receptors, taste recep-
tors) convert environmental information into potential changes
and encode the potential changes into spike trains with neural
spike coding in the cell body. Subsequently, interneurons convey
the spike trains from the receptors to the brain’s cerebral cortex,
where the information is decoded into sensory perceptions for
further processing.

Different from centralized processing in modern computation,
which is accurate for repeated tasks and man-made functional-
ities, distributed processing in biological hierarchical architectures
is adaptive and cognitive for efficient analysis of complex multi-
modal information. Recently, inspired by human sensory pro-
cessing and perceptual learning, neuromorphic sensing and
computing systems with sensors and machine learning algorithms
have been demonstrated to sense and process visual10–12, tac-
tile13–18, auditory19,20, and smell and taste information21,22, as
well as to combine visual and haptic information18,23. However, a
multisensory system that integrates multiple senses and utilizes
crossmodal learning to recognize and imagine multimodal
information across different sensory modalities is still absent.

Here, we present a bioinspired spiking multisensory neural
network (MSeNN) that integrates artificial vision, touch, hearing,
and simulated smell and taste senses with crossmodal learning via
artificial neural networks (ANNs). Our MSeNN system senses
and converts multimodal physical stimuli to potential changes
through various detectors, encodes the potential changes to
optical spikes for communication using spike encoders, and
decodes, filters, and memorizes environmental information by
photomemristors. Finally, ANNs integrate the crossmodal signals
with associative learning. The hierarchical and cognitive MSeNN
is capable of not only sensing, encoding, transmitting, decoding,

filtering, memorizing, and recognizing multimodal information,
but it also enables crossmodal recognition and imagination
through crossmodal learning for robotic sensing and processing.

Results
Artificial MSeNN system with hierarchical processing. As the
world is multimodal, people learn from and adapt to their envir-
onment by sensing, interpreting, and most importantly, associating
and learning the crossmodal information they perceive2,4–9. Making
robotic sensing more human-like requires artificial multisensory
systems with high-level cognitive sensing and processing of multi-
modal environmental information. Figure 1a schematically com-
pares the human and our artificial MSeNN. Both systems consist of
five sensory subsystems and neural networks for multisensory data
fusion. Inspired by the human distributed and hierarchical sensor
networks (Fig. 1b and Supplementary Fig. 1), we fabricated an
artificial MSeNN using Si-based photodetectors (vision), MXene-
based pressure sensors (touch), and sound detectors (hearing) to
convert multimodal information into voltage signals. The olfactory
and gustatory receptors (smell and taste) are simulated by nine
(etherish, fragrant, sweet, spicy, oily, burnt, sulfurous, rancid,
metallic) and five (sweet, sour, salty, bitter, umami) receptor
potentials, respectively. The potentials of the five senses are encoded
into optical spikes using spike encoders for communication16. The
conversion to optical spikes avoids voltage degradation and para-
sitic resistance issues in sensory data communication, and allows
accurate encoding with various spike coding principles, including
rate coding, temporal coding, or a combination of both. Spike
coding is more robust than voltage amplitude coding and it is
capable of carrying larger data volumes and distinguishing multiple
inputs with a single detector. In our MSeNN system, photo-
memristors integrate the optical spikes and decode the multisensory
information. Each photomemristor works as an artificial optoelec-
tronic (OE) synapse that receives signals from a sensory nerve and
produces a post-synaptic current (PSC) at the optical spiking rate
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Fig. 1 Schematic of the human and artificial MSeNN. a Inspired by the five primary sensory systems (vision, touch, hearing, smell, taste) in the
human MSeNN and their interaction via neural networks, the artificial MSeNN consists of five artificial sensory systems and their integration via ANNs.
b Operational diagram of the artificial MSeNN. Sensors (photodetectors, pressure sensors, sound detectors, and simulated smell and taste receptors)
convert external stimuli to potentials. Spike encoders encode potentials into optical spikes for communication. The transmitted information is decoded,
filtered, and memorized by photomemristors, and the signals are crossmodally integrated and associated by ANNs for crossmodal recognition and
imagination.
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(number of spikes per second). Sensory inputs change the spiking
rate and PSC of a photomemristor at run-time through a persistent
photoconductivity effect, providing built-in memory of sensory
information16. In the artificial MSeNN, PSC signals representing
weighted sensory information are integrated into ANNs to interact
with other sensory inputs. Through crossmodal learning, the ANNs
construct an associative memory for crossmodal recognition and
imagination (Fig. 1b). More details on the individual sensory sys-
tems of the artificial MSeNN can be found in the section Methods
and Supplementary Note 1.

Before describing the cognitive functionalities of the artificial
MSeNN, we first report on the system’s ability to regulate the
built-in memory of sensory information. In biology, a sensory
gating effect prevents brain overload by filtering out redundant
information (Fig. 2a)1,3. Figure 2b illustrates the implementation
of sensory gating in the artificial vision system of our MSeNN.
In the experiment, a photodetector array, functioning as an

electronic retina, detects optically projected letters. Spike
encoders encode the sensory information into optical spikes
and a 5 × 5 array of photomemristors detect the spike trains. Each
photomemristor consists of an indium tin oxide (ITO)/ZnO/Nb-
doped SrTiO3 (NSTO) Schottky barrier junction. During optical
illumination, a persistent photoconductivity effect in the photo-
memristor produces a PSC signal. The values of the PSC signal
vary with the bias voltage across the Schottky barrier (Fig. 2c, d),
providing gating-dependent memory of visual information. In
contrast, the PSC spiking rate depends only on the sensory input,
enabling real-time sensing irrespective of the bias condition. As
an example, we demonstrate correct sensing of the optical letter
‘A’ by the photomemristor array using spiking-rate mapping at
three bias voltages (Fig. 2e), while the same information is
memorized only in the PSC-value map at 2 V (Fig. 2f). Figure 2g–i
further illustrates the realization of an attention-dependent

memory. Here, ‘attention’ (high bias) is paid only to the first letter
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Fig. 2 Bioinspired sensory gating in the artificial vision system. a, b Schematic diagrams of the human and artificial vision systems with attention-
dependent information filtering and memory. In the artificial system, built-in memory of visual information detected by photodetectors (PD) is controlled by
bias voltages across the photomemristors (PM). c PSC signal of a photomemristor in the artificial vision system recorded with different bias voltages (1 V,
1.5 V, 2 V) while the photodetector array is illuminated by the same optical image (letter ‘A’) for 2 s. d Spiking rate (number of spikes per second) and PCS
value read at t= 6 s (3 s after illumination) derived from the signals in (c). The dashed line is a fit to the data assuming Schottky emission. The error bars
indicate standard deviations in 12 repeated measurements. e, f PSC spiking-rate and PSC-value maps recorded by a 5 × 5 photomemristor array
using different bias voltages (1 V, 1.5 V, 2 V) at t= 6 s (3 s after the illumination). The optical input ‘A’ is generated by a blue LED and a shadow mask.
g–i Simulated input image, PSC spiking-rate map, and PSC-value map of the optical input ‘VISION’. Attention is paid only to the first letter of the word
‘VISION’ (2 V bias), whereas all other letters are detected at lower bias voltage (1 V).
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of the word ‘VISION’, while the subsequent letters are filtered
from the memory by lowering the bias voltage across the
photomemristors. All other sensory subsystems of the MSeNN
use the same photomemristors as the artificial vision system and,
thus, also provide sensory gating capabilities.

Bioinspired multisensory neuron with crossmodal integration.
Multisensory neurons in the midbrain’s superior colliculus
directly integrate spikes from different senses to initiate a neu-
ronal response to multimodal environmental events (Supple-
mentary Fig. 2)24–26. This cognitive capability raises the
awareness and helps people to stay safe. To illustrate this con-
cept with a simple example, we consider a person crossing a
road (Fig. 3a). In real life, the person assesses the situation by
integrating visual and auditory information, making a well-
informed decision on whether to cross the road or not (Fig. 3b).
Inspired by this functionality, we implement multisensory
neuronal integration by temporally integrating optical spikes
from artificial vision and auditory systems using a single pho-
tomemristor (Fig. 3c). The vision system acting as the artificial
optic nerve consists of a photodetector and a spike encoder with
rate coding. The auditory system acting as the artificial auditory
nerve comprises a sound detector and a spike encoder with rate

coding. As proof-of-principle, we consider weak, medium, and
strong sensory inputs (marked by 1, 2, and 3), representing the
three car positions in Fig. 3a. Under integrated visual and audio
input, the photomemristor produces a larger number of PSC
spikes within the actuation period (0.2 s) compared to uni-
sensory activation (Fig. 3d). Here, the spike number under
combined audio-visual stimulation is smaller than the sum of
spikes recorded during individual audio and visual actuation
because of randomly overlapping optical spikes (Fig. 3e).
Assuming a neuronal threshold of 20 spikes in our system,
Fig. 3e illustrates that the artificial multisensory neuron would
detect the car at medium distance (position 2), whereas the
input signal needs to be strong (position 3) if vision or sound are
used separately. Also, although the PSC spiking threshold
number is reached at position 3 for both multi- and unisensory
processing, the multisensory neuron reaches the threshold
condition more quickly (Fig. 3f,g), triggering a faster response in
the case of an emergency. In this example, the visual and audio
signals are integrated based on temporal association only,
without evaluation of their spatial congruence. Spatial-temporal
congruence may be implemented through crossmodal learning
before the integration of multisensory signals. Multisensory
neuronal integration enables robotic evaluation and action.
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Fig. 3 Bioinspired multisensory neuron with crossmodal integration. a Simulated situation of a person crossing a road. The person sees and hears an
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combined auditory-visual (AV) stimulation. c Artificial multisensory neuron integrating visual and auditory sensory neurons. Three signal levels, weak (1),
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Tactile-visual crossmodal learning and recognition. To com-
prehensively understand the multimodal world, humans utilize
crossmodal learning to adaptively connect and associate multi-
modal information in the high-level cortical areas of the brain for
crossmodal recognition and imagination. Inspired by crossmodal
learning, we consider the reproduction of simple images triggered
by touch in an integrated tactile-vision system (Fig. 4a, b). In the
experiments, tactile and vision information from the same event
are detected, encoded, transmitted, decoded, filtered, and mem-
orized in their own subsystem and a trained ANN associates the
two data streams. As proof-of-principle, we write the letters of the
alphabet by hand onto a 5 × 5 pressure sensor array (Supple-
mentary Fig. 3) and process the input signals using five photo-
memristors (one for each row of five sensors), thus simplifying
the analysis of tactile information to five data streams through
dimensionality reduction16. The spiking proportions of the PSC
signals that the five photomemristors produce during hand-
writing (Supplementary Fig. 3) are used as ANN inputs. Training
of the integrated system by tactile input is supervised by the
vision memory of the same alphabet letters. The vision memory
comprises the PSC states of 25 photomemristors recorded after
projecting the optical images of alphabet letters onto an array of
5 × 5 photodetectors for 2 s (Supplementary Fig. 4 shows an
example for the letter ‘A’ and statistical analysis of the photo-
memristors). The vision memory of each alphabet letter is shown
in Fig. 4c, and the second and sixth row of Fig. 4d. After training,

the tactile-vision system is capable of recognizing handwritten
alphabet letters and reproducing their visual image with an
accuracy of 92% (Supplementary Fig. 5). The fourth and eighth
rows of Fig. 4d depict the A–Z images that the tactile inputs
produce when a letter is written without seeing (Fig. 4e shows a
2-dimensional map of the result). Crossmodal learning in the
artificial tactile-vision system, inspired by the ability of humans27

and animals28 to reproduce visual information upon touch,
facilitates robotic touch-vision coding, learning, and memory.

Auditory-visual/olfactory/gustatory crossmodal learning,
recognition, and imagination. Besides tactile-visual association,
humans are also capable of crossmodally reproducing image/
smell/taste information when hearing a description of an
object29–31. Inspired by auditory-visual/olfactory/gustatory sen-
sory interactions and data fusion, we characterize an integrated
auditory-vision/olfactory/gustatory system (Fig. 5a, b). In this
system, sound detectors pick up the audio input, and Mel spec-
trograms convert the audio signals into 39-dimensional feature
vectors (see Methods). The vision memories of images projected
onto a 12 × 12 array of photodetectors (Fig. 5c), and the smell/
taste vectors (Supplementary Fig. 6) are automatically converted
into 12-dimensional feature vectors by an autoencoder in an
unsupervised manner (Supplementary Fig. 7). The learned
12-dimensional representations containing the image/smell/taste
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Fig. 4 Tactile-visual crossmodal recognition. a Illustration of the human ability to recognize and visualize tactile input. b Schematic of the artificial tactile-
visual system. Tactile inputs from an array of 5 × 5 pressure sensors are dimensionally reduced to five data streams (one photomemristor per five sensors).
The visual data stream consists of 25 channels. The ANN consists of five input, thirteen hidden, and 25 output neurons. c Vision memory
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eight rows show the images of alphabet letters that are recognized and reproduced by handwritten inputs after ten training epochs. e Summary of
reproduced vision vectors. The data correspond closely to the vision memory shown in (c), demonstrating tactile-visual sensory integration and
crossmodal recognition.
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information supervise the training of the ANN with audio input.
Figure 5d demonstrates the successful reproduction of multi-
sensory data (image/smell/taste) upon hearing. In this example,
we trained the auditory-vision/olfactory/gustatory system to
produce the representations with encoded image, smell, and taste
information when hearing the words ‘apple’, ‘pear’, and ‘blue-
berry’ pronounced by people (male, female, child) with different
British and Chinese accents. We also played the song ‘My heart
will go on’ from the movie ‘Titanic’ and associated it with an

image of a heart. Additionally, barking by a Labrador Retriever
and Cocker Spaniel is associated with an image of a dog. During
training, we used 1980 sets of audio signals, including ‘apple’,
‘pear’, ‘blueberry’ with random accents, music fragments, and dog
barking, as input under the supervision of the learned repre-
sentations (Supplementary Fig. 7) with encoded image/smell/taste
information of the ‘apple’, ‘pear’, ‘blueberry’, ‘heart’, and ‘dog’.
The test results depicted in Fig. 5d are obtained after learning and
decoding, demonstrating the potential of overall semantic
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recognition. The accuracy and loss of the auditory-vision/olfac-
tory/gustatory system during training and testing are plotted in
Supplementary Fig. 8. Here, accuracy is defined as the recognition
rate of the 12-dimensional representations learned by the auto-
encoder in each epoch. Loss is defined by the mean square error
function (Supplementary Note 1). Random test results demon-
strate successful audio-visual recognition for different accents and
two dog-barking sounds (Supplementary Fig. 9a). Additionally, to
assess whether the network recognizes audio inputs not used
during training, we trained another network using several accents
and tested the system with a completely new accent. The results
shown in Supplementary Fig. 9b demonstrate that high recogni-
tion accuracy is attained irrespective of the accent used during
training and testing.

In the previous demonstrations, the recognized images have
been ‘seen’ before during autoencoding and ANN training.
However, based on past experience and memory, the human
brain can also imagine the picture of an object that was never
seen before, or even does not exist in reality, when hearing its
description. This crossmodal sensory imagination capability
allows people to speculate about environmental information
and to create new concepts or objects with only limited
knowledge4,32. Inspired by this higher level cognitive function-
ality, we train our artificial auditory-vision system to imagine the
picture of an object upon audio input. As demonstrator, we
consider a blue apple. After learning the colors ‘red’, ‘green’, and
‘blue’, as well as the fruits ‘red apple’ and ‘green apple’ (Fig. 5e),
the auditory-vision system is able to imagine the picture
representation of a blue apple when hearing /bluː, ˈapəl/ without
ever hearing or seeing it (Fig. 5f and Supplementary Fig. 10).
Artificial imagination in our MSeNN offers cognitive flexibility
and holds the potential of self-learning and robotic creativity.
Finally, Supplementary Fig. 11 summarizes the interactivity
between the five primary senses in our artificial MSeNN.

Discussion
We presented an artificial MSeNN system that integrates five
artificial senses with multimodal sensing, spike encoding, mem-
ristive processing, and crossmodal recognition. The MSeNN uses
multiple sensors to sense, spikes to encode sensory information,
and arrays of photomemristors to interpret, filter, integrate, and
memorize multisensory information at hardware level. The built-
in memory and information filtering properties of photo-
memristor arrays facilitate supervised training of an ANN, which
provides associations between the five senses, enabling high-level
cognitive capabilities including crossmodal recognition of vision/
smell/taste information upon tactile or audio input, and cross-
modal imagination of a never-before-seen picture when hearing
its description. Although the demonstrations are simple com-
pared to biological systems, the hierarchical architectures, prin-
ciple concepts, and cognitive functionalities of our MSeNN
system allow for straightforward extensions to other sensory
integrations, providing a promising strategy toward robotic sen-
sing and cognition.

While the concepts and functionalities of the artificial MSeNN
with five integrated senses provide a fundamental and essential
step toward robotic sensing and perception, practical applications
require more human-like sensors. For instance, the modular
structure of the MSeNN allows the integration of visual sensors
that behave like biological retinas10 or tactile gloves with a high
density of pressure sensors14. The larger data streams that such
sensors produce demand more photomemristors and an extended
ANN. Both the hardware and software of the MSeNN can be
scaled for such tasks. Moreover, dimensionality reduction, as
demonstrated in the tactile-vision system and the use of an

autoencoder, effectively condenses the sensory information.
Besides improvements on the sensor side, it would also be
interesting to explore other coding schemes in future works.
Compared to recent artificial multisensory systems (see Supple-
mentary Table 1), the spiking rate and temporal coding principles
employed in this work allow for flexible processing of sensory
information (e.g., sensory gating, dimensionality reduction) and
crossmodal learning via ANNs. It is also noteworthy that, based
on this research, complex overall semantic recognition for
robotics could be realized by using more complex multimodal
autoencoders33 for the encoding of large volumes of multisensory
data.

Methods
Artificial vision system. The artificial vision system consists of a silicon-based
photodetector array, spike encoders, and photomemristors (Supplementary
Fig. 1b). The photodetector array is made of Au/Si junctions bonded to a PCB
board with Wire Bonder Delvotec 53XX. The Au/Si junctions were fabricated by
atomic layer deposition (ALD), photolithography, etching, and magnetron sput-
tering. The photodetector array has a pixel size of 100 μm× 100 μm. In the
experiments, we used 5 × 5 pixels for the detection of alphabet letters (Fig. 4) and
12 × 12 pixels for the imaging of apples, pears, blueberries, hearts, and dogs (Fig. 5).
The spike encoders consist of a commercial ring oscillator, edge detector, amplifier,
and light-emitting diode (LED). The ring oscillator uses three NOT gates to form
an oscillating signal. The frequency of the oscillation scales with the amplitude of
the input signal, enabling biomimetic rate coding of sensory information. The edge
detector consists of two NOT gates, one AND gate, one resistor, and one capacitor.
It detects the edge of the signal and generates voltage spikes with a fixed width of
1 ms. The amplifier is used to adjust the amplitude of the spikes to the working
voltage of the LED. The LED produces 1 ms optical spikes with encoded sensory
information16. Photomemristors detect and memorize the information encoded in
the optical signals. The photomemristor array is made of ITO/ZnO/NSTO junc-
tions fabricated by ALD, photolithography, etching, and magnetron sputtering.
Conductive NSTO substrates function as the bottom electrode of the photo-
memristors. To form a Schottky barrier, photosensitive ZnO films with a thickness
of 60 nm were deposited by magnetron sputtering (5.8 × 10−3 mbar, Ar 16 sccm, O
4 sccm, power 60W) on top of the NSTO substrates. Transparent and conductive
ITO top electrodes were grown by magnetron sputtering (3.4 × 10−3 mbar, Ar
10 sccm, power 50W) through a metal shadow mask. The photomemristors have a
working area of 100 µm × 100 µm. More information about the optoelectronic
properties of the photomemristors are given in Fig. 2 and Tan et al.16.

The performance of the artificial vision system was characterized by Keithley
2400, Keithley 4200, and Agilent B1500 instruments. The input images were
projected onto the photodetector array using red/green/blue LEDs and shadow
masks. PSC signals of the photomemristors were recorded with an Agilent
B1500 semiconductor device parameter analyzer while projecting optical images
onto the photodetector array for 2 s. During image detection, the visual input is
firstly converted into potential changes, then encoded to optical spike trains by the
spike encoders, and finally decoded in the form of the PCS spiking rate, and if
required, memorized by the photomemristors in the form of the PSC state.
Operation of the artificial vision system is demonstrated in Fig. 2, which illustrates
the system’s ability to filter information through sensory gating.

Artificial tactile system. The artificial tactile system consists of pressure sensors,
spike encoders, and photomemristors (Supplementary Fig. 1b). The pressure sensor
array is made of MXene on flexible substrates. MXene is a 2-dimensional metal
carbide/nitride34,35 exhibiting conductivity changes in response to external pres-
sure36–39. For its derivation, we prepared an etchant by adding 0.8 g of LiF to 10
mL of 9 M HCl and left it under continuous stirring for 5 min. A total of 0.5 g of
Ti3AlC2 powder (450 mesh) was gradually added (over the course of 5 min) to the
etchant, and the reaction was allowed to run for 24 h at room temperature. The
acidic mixture was washed with deionized H2O first via centrifugation (1 min per
cycle at 1860 g) for 2 cycles. After each cycle, the acidic supernatant was decanted
as waste followed by the addition of fresh deionized H2O before another cen-
trifuging cycle. Then 3M HCl and 1M LiCl were used for additional washing via
centrifugation (each for 3 cycles, 1 min per cycle at 1860 g). Finally, the mixture
was washed with deionized H2O for another 2 cycles. These washing cycles were
repeated until a pH of 4−5 was reached. The final sediments were re-dispersed in
deionized H2O (0.2 g MXene per 50 mL of water), deaerated with N2, followed by
sonication for 20 min. The mixture was then centrifuged for 30 min at 1046 g, and
the supernatant was collected.

The pressure sensors were fabricated by patterning Au/Ta electrodes with a
thickness of 50 nm/5 nm on flexible substrates using magnetron sputtering (Ta: DC
30W, Ar 30 sccm, 25 s. Au: DC 30W, Ar 30 sccm, 300 s). In parallel, MXene was
transferred onto PDMS layers. Before attaching the MXene, the surface of the
PDMS layer was made hydrophilic by a plasma treatment (1 min). Then, the
MXene solution was dropped on a selected area of the PDMS layer and the solution
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was evaporated in air. Finally, the PDMS layer with MXene was aligned and
mounted onto the flexible substrate with metal electrodes. Supplementary Fig. 3a
illustrates the structure of the MXene-based pressure sensors.

The spike encoders and photomemristors of the artificial tactile system are
identical to those used in the artificial vision system (see previous section). In the
artificial tactile system, a 5 × 5 pressure sensor array detects handwritten letters and
converts the information to voltage signals (experiments shown in Fig. 4). The 25
voltage signals are encoded to optical spikes by five spike encoders (each row of five
pressure sensors in the array connects to one spike encoder). The hardware of the
artificial tactile system thus reduces the dimensionality from 25 to 5 (see Tan
et al.16 for details), simplifying recognition and subsequent data analysis. The
optical spikes with encoded handwritten information are decoded to 5-dimensional
spiking proportions by five photomemristors (Supplementary Fig. 3b, c). The
information is memorized through weight changes (PSC states of the
photomemristors).

Artificial auditory system. The artificial auditory system uses commercial
SparkFun sound detectors. The sound detectors convert spoken words, music, and
dog barking to electrical wave signals. In the artificial system emulating multi-
sensory neuronal integration (Fig. 3), the potentials of a photodetector (vision) and
a sound detector are encoded into optical spikes using spike encoders. A single
photomemristor integrates and detects the optical spikes. The number of PSC
spikes produced by the photomemristor depends on the senses used (V, A, or AV)
and the strength of the input signals. In the proof-of-concept experiments, three
input levels are tested. The input levels corresponded to three positions of an
approaching car as illustrated in Fig. 3a. Multisensory information integration at
hardware level, as demonstrated in our artificial multisensory neuron system,
facilitates faster and better-informed decision making (Fig. 3e–g).

For crossmodal learning in the auditory-vision/olfactory/gustatory system
(Fig. 5), we used Mel spectrograms to represent the electrical wave signals of sound
detectors before conveying the audio inputs to the ANN. Mel spectrograms with an
emphasis on audible frequencies are a standard tool for the processing of sound in
speech recognition. In our artificial auditory system, a Mel-weighted filter bank is
applied to the input signal to produce Mel spectrograms. After generating the Mel
spectrograms, they are represented by 13 × 3-dimensional vectors, containing
temporal and frequency information of the detected sound. The 39-dimensional
vector features are used for further processing in the ANN. To realize crossmodal
recognition and imagination of the image/smell/taste upon hearing (Fig. 5), the ANN
integrates sound signals (Mel spectrogram data) and representations learned via an
autoencoder. In the experiments, we recorded the spoken words ‘apple’, ‘pear’, and
‘blueberry’ using people with different accents (British and Chinese), genders (male
and female), and ages (child and adult). Each spoken word corresponding to one
image was recorded for about 200 times. Additionally, a fragment of the song ‘My
heart will go on’ from the movie ‘Titanic’ and the barking of a Labrador Retriever
and a Cocker Spaniel were used as audio input. Learned representations with
encoded image/smell/taste information of the ‘apple’, ‘pear’, ‘blueberry’, ‘heart’, and
‘dog’ (Supplementary Fig. 7b) were used as supervisors for crossmodal recognition
(Fig. 5c, d). ‘Red’, ‘green’, ‘blue’, ‘red apple’, and ‘green apple’ sound signals were
used for crossmodal imagination of a blue apple (Fig. 5e, f).

Artificial olfactory and gustatory systems. In the artificial olfactory and gus-
tatory systems, smell and taste senses are simulated by nine (etherish, fragrant,
sweet, spicy, oily, burnt, sulfurous, rancid, metallic) and five (sweet, sour, salty,
bitter, umami) receptor potentials, respectively40. Spike encoders convert the
simulated voltages into optical spikes and photomemristors decode and memorize
the sensory information (Supplementary Fig. 1). The spike encoders and photo-
memristors are identical to those used in the artificial vision, tactile, and auditory
systems.

Artificial neural networks. The ANNs connecting multiple senses consist of three
or four layers, an input layer, one or two hidden layers (two hidden layers are used
in the auditory-vision/olfactory/gustatory system to generate better representa-
tions), and an output layer. During training, the input features of an ANN cor-
respond to information detected by one artificial sense and the output features
correspond to the information perceived by one or more artificial senses. After
training, a new input to the first sense (e.g., a touch or sound) produces a related
output of other senses (e.g., an image, smell, or taste). The output is a recognized or
imagined representation enabled by crossmodal learning and associative memory.
The ANNs used in this work were built in Matlab R2019b and Python. More
information on specific ANNs can be found in Supplementary Note 1.

Autoencoder. We used an autoencoder (Supplementary Fig. 7a) to learn and
automatically find the representation of multisensory information (vision, smell,
taste). The autoencoder has 154 input neurons, 32 hidden neurons with ReLU
activation function, and 12 representation output neurons with ReLU activation
function at the encoder side, and 12 representation input neurons, 32 hidden
neurons with ReLU activation function, and 154 decoded output neurons with
sigmoid activation function at the decoder side. The loss function is a mean
squared error function. As input, we used 1000 data sets (1000 combinations of

image, smell, and taste vectors) for each object (apple, pear, blueberry, heart, dog)
with 10% Gaussian noise, totaling 5000 data sets for all the objects. After 200
training epochs (batch size: 50), 12-dimensional representations with encoded
vision/smell/taste information of each object are learned and automatically found
(Supplementary Fig. 7b).

Data availability
The source data underlying the figures in the main manuscript and Supplementary
Information are provided as Source Data file. All other data that support the findings of
this study are available from the corresponding authors upon reasonable request. Source
data are provided with this paper.

Code availability
The codes used in this study are available from the corresponding authors upon
reasonable request.

Received: 12 October 2020; Accepted: 26 January 2021;

References
1. Sillar, K. T. & Roberts, A. A neuronal mechanism for sensory gating during

locomotion in a vertebrate. Nature 331, 262–265 (1988).
2. Miller, G. A surprising connection between memory and imagination. Science

315, 312 (2007).
3. Wan, Q. et al. Protein kinase C acts as a molecular detector of firing patterns

to mediate sensory gating in Aplysia. Nat. Neurosci. 15, 1144–1152 (2012).
4. Pearson, J. The human imagination: the cognitive neuroscience of visual

mental imagery. Nat. Rev. Neurosci. 20, 624–634 (2019).
5. Churchland, A. K. Normalizing relations between the senses. Nat. Neurosci.

14, 672–673 (2011).
6. Ohshiro, T., Angelaki, D. E. & DeAngelis, G. C. A normalization model of

multisensory integration. Nat. Neurosci. 14, 775–782 (2011).
7. King, A. J. Multisensory integration. Science 261, 928–929 (1993).
8. McDonald, J. J., Teder-Sälejärvi, W. A. & Ward, L. M. Multisensory

integration and crossmodal attention effects in the human brain. Science 292,
1791 (2001).

9. Stein, B. E., Stanford, T. R. & Rowland, B. A. Development of multisensory
integration from the perspective of the individual neuron. Nat. Rev. Neurosci.
15, 520–535 (2014).

10. Gu, L. et al. A biomimetic eye with a hemispherical perovskite nanowire array
retina. Nature 581, 278–282 (2020).

11. Zhou, F. et al. Optoelectronic resistive random access memory for
neuromorphic vision sensors. Nat. Nanotechnol. 14, 776–782 (2019).

12. Mennel, L. et al. Ultrafast machine vision with 2D material neural network
image sensors. Nature 579, 62–66 (2020).

13. Kim, Y. et al. A bioinspired flexible organic artificial afferent nerve. Science
360, 998–1003 (2018).

14. Sundaram, S. et al. Learning the signatures of the human grasp using a scalable
tactile glove. Nature 569, 698–702 (2019).

15. Lee, W. W. et al. A neuro-inspired artificial peripheral nervous system for
scalable electronic skins. Sci. Robot. 4, eaax2198 (2019).

16. Tan, H. et al. Tactile sensory coding and learning with bioinspired spiking
afferent nerves. Nat. Commun. 11, 1369 (2020).

17. Zhang, X. et al. An artificial spiking afferent nerve based on Mott memristors
for neurorobotics. Nat. Commun. 11, 51 (2020).

18. Wang, M. et al. Gesture recognition using a bioinspired learning architecture
that integrates visual data with somatosensory data from stretchable sensors.
Nat. Electron. 3, 563–570 (2020).

19. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic
oscillators. Nature 547, 428–431 (2017).

20. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-
oscillators. Nature 563, 230–234 (2018).

21. Rodríguez-Méndez, M. L. et al. Electronic noses and tongues in wine industry.
Front. Bioeng. Biotechnol. 4, 81 (2016).

22. Imam, N. & Cleland, T. A. Rapid online learning and robust recall in a
neuromorphic olfactory circuit. Nat. Mach. Intell. 2, 181–191 (2020).

23. Wan, C. et al. An artificial sensory neuron with visual-haptic fision. Nat.
Commun. 11, 4602 (2020).

24. Meredith, M. A. & Stein, B. E. Interactions among converging sensory inputs
in the superior colliculus. Science 221, 389–391 (1983).

25. Holmes, N. P. & Spence, C. Multisensory integration: space, time and
superadditivity. Curr. Biol. 15, R762–R764 (2005).

26. Rowland, B. A. & Stein, B. E. Temporal profiles of response enhancement in
multisensory integration. Front. Neurosci. 2, 218–224 (2008).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21404-z

8 NATURE COMMUNICATIONS |         (2021) 12:1120 | https://doi.org/10.1038/s41467-021-21404-z | www.nature.com/naturecommunications

www.nature.com/naturecommunications


27. Stoltz-Loike, M. & Bornstein, M. H. The roles of imagery, language, and
metamemory in cross-modal transfer in children. Psychol. Res. 49, 63–68
(1987).

28. Solvi, C., Al-Khudhairy, S. G. & Chittka, L. Bumble bees display cross-modal
object recognition between visual and tactile senses. Science 367, 910–912
(2020).

29. Shams, L., Kamitani, Y. & Shimojo, S. What you see is what you hear. Nature
408, 788 (2000).

30. Knöpfel, T. et al. Audio-visual experience strengthens multisensory assemblies
in adult mouse visual cortex. Nat. Commun. 10, 5684 (2019).

31. Spence, C. Multisensory flavor perception. Cell 161, 24–35 (2015).
32. Spence, C. & Deroy, O. Crossmodal mental imagery. Multisensory Imagery

(Springer, 2013).
33. Vukotić, V., Raymond, C. & Gravier, G. Bidirectional joint representation

learning with symmetrical deep neural networks for multimodal and
crossmodal applications. Proc. 2016 ACM Int. Conf. Multimedia Retrieval
343–346 (2016).

34. Naguib, M. et al. Two-dimensional nanocrystals produced by exfoliation of
Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011).

35. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides
(MXene) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

36. Ma, Y. et al. A highly flexible and sensitive piezoresistive sensor based on MXene
with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).

37. Zhang, Y.-Z. et al. MXenes stretch hydrogel sensor performance to new limits.
Sci. Adv. 4, eaat0098 (2018).

38. An, H. et al. Surface-agnostic highly stretchable and bendable conductive
MXene multilayers. Sci. Adv. 4, eaaq0118 (2018).

39. Guo, Y., Zhong, M., Fang, Z., Wan, P. & Yu, G. A wearable transient
pressure sensor made with MXene nanosheets for sensitive broad-range
human−machine interfacing. Nano Lett. 19, 1143–1150 (2019).

40. Schutz, H. G. A matching standards method for characterising odour qualities.
Ann. NY Acad. Sci. 116, 517–526 (1964).

Acknowledgements
We gratefully acknowledge N. Wei and E. I. Kauppinen for providing infrastructure
support for the electrical measurements. We also thank R. Mansell, W. Zhu, R. He, and E.
Tan for audio data acquisition. We thank Kejiang Culture for art designs. H. Tan thanks
E. Tan and R. He for inspiration and discussion on the main concept. This work was
supported by the Academy of Finland (Grant Nos. 316973, 316857 and 13293916) and
the Wallenberg Academy Fellowship and Scholar program. The project made use of the
OtaNano - Micronova Nanofabrication Center and the OtaNano - Nanomicroscopy
Center, supported by Aalto University.

Author contributions
H.T. and S.v.D. initiated the research. H.T. conceived the idea and designed the systems.
Q.T. and J.R. synthesized and characterized the MXene. H.T. fabricated the MXene-based
pressure sensors, silicon-based photodetectors and oxide-based photomemristors. H.T.
designed and prepared the circuits. H.T. conducted the electrical and optoelectronic
measurements. Y.Z. built the artificial neural networks. H.T., Y.Z. and S.v.D. analyzed the
data. H.T. and S.v.D. wrote the manuscript. All authors discussed the results and com-
mented on the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-21404-z.

Correspondence and requests for materials should be addressed to H.T. or S.v.D.

Peer review information Nature Communications thanks Mauro Ursino and the other,
anonymous, reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21404-z ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:1120 | https://doi.org/10.1038/s41467-021-21404-z | www.nature.com/naturecommunications 9

https://doi.org/10.1038/s41467-021-21404-z
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications
www.nature.com/naturecommunications

	Bioinspired multisensory neural network with crossmodal integration and recognition
	Results
	Artificial MSeNN system with hierarchical processing
	Bioinspired multisensory neuron with crossmodal integration
	Tactile-visual crossmodal learning and recognition
	Auditory-visual/olfactory/gustatory crossmodal learning, recognition, and imagination

	Discussion
	Methods
	Artificial vision system
	Artificial tactile system
	Artificial auditory system
	Artificial olfactory and gustatory systems
	Artificial neural networks
	Autoencoder

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




