Table 2.
Feature set | Val/Test | Class | Recall | Precision | F1 score | Accuracy |
---|---|---|---|---|---|---|
eGeMAPS | 5-fold CV | Non-AD | 0.527 ± 0.120 | 0.710 ± 0.151 | 0.581 ± 0.058 | 0.635 ± 0.034 |
AD | 0.745 ± 0.156 | 0.618 ± 0.029 | 0.667 ± 0.058 | |||
Test set | Non-AD | 0.7500 | 0.5625 | 0.6428 | 0.5833 | |
AD | 0.4166 | 0.6250 | 0.5 | |||
emobase | 5-fold CV | Non-AD | 0.659 ± 0.094 | 0.704 ± 0.168 | 0.663 ± 0.057 | 0.665 ± 0.082 |
AD | 0.673 ± 0.219 | 0.664 ± 0.049 | 0.652 ± 0.125 | |||
Test set | Non-AD | 0.6667 | 0.6400 | 0.6530 | 0.6458 | |
AD | 0.6250 | 0.6521 | 0.6382 | |||
ComParE | 5-fold CV | Non-AD | 0.441 ± 0.176 | 0.534 ± 0.139 | 0.475 ± 0.148 | 0.533 ± 0.129 |
AD | 0.625 ± 0.144 | 0.538 ± 0.132 | 0.573 ± 0.124 | |||
Test set | Non-AD | 0.5833 | 0.5185 | 0.5490 | 0.5208 | |
AD | 0.4583 | 0.5238 | 0.4888 |
Bold values represent the validation and test accuracies of best performing model amongst the models under consideration in the respective table.