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ABSTRACT

SARS-CoV-2 is mutating and creating divergent variants by altering the composition of essential constituent
proteins. Pharmacologically, it is crucial to understand the diverse mechanism of mutations for stable vaccine or
anti-viral drug design. Our current study concentrates on all the constituent proteins of 469 SARS-CoV-2 genome
samples, derived from Indian patients. However, the study may easily be extended to the samples across the
globe.

We perform clustering analysis towards identifying unique variants in each of the SARS-CoV-2 proteins. A total
of 536 mutated positions within the coding regions of SARS-CoV-2 proteins are detected among the identified
variants from Indian isolates. We quantify mutations by focusing on the unique variants of each SARS-CoV-2
protein. We report the average number of mutation per variant, percentage of mutated positions, synonymous
and non-synonymous mutations, mutations occurring in three codon positions and so on. Our study reveals the
most susceptible six (06) proteins, which are ORF1ab, Spike (S), Nucleocapsid (N), ORF3a, ORF7a, and ORF8.
Several non-synonymous substitutions are observed to be unique in different SARS-CoV-2 proteins. A total of 57
possible deleterious amino acid substitutions are predicted, which may impact on the protein functions. Several
mutations show a large decrease in protein stability and are observed in putative functional domains of the
proteins that might have some role in disease pathogenesis. We observe a good number of physicochemical
property change during above deleterious substitutions.

1. Introduction

Due to the massive outbreak of COVID-19 disease, caused by the
highly infectious novel coronavirus- SARS-CoV-2, the world is passing
through a difficult situation. There are seven species of human corona-
viruses reported so far that causing diseases in humans. Out of them,
four species (HCoV-229E, HKU1, NL63 and OC43) causing mild respi-
ratory apparatus infection which can easily be treated. However, three
species, termed as beta coronaviruses (SARS-CoV, MERS-CoV, and
SARS-CoV-2), are severe in nature, leads to potentially fatal conse-
quences (Andersen et al., 2020). The scientific community trying hard to
decipher parthenogenesis mechanism of SARS-CoV-2 and its therapeutic
control, in silico, using various computational tools. An exhaustive study

is available in (Das et al., 2020a).

Scientists observed a number of variants among novel coronavirus,
SARS-CoV-2, reported from different geographical regions (Joshi and
Paul, 2020; Sardar et al., 2020; Chang et al., 2020). Most of the evolu-
tionary changes in the genome of viruses occur due to mutation. In some
cases, it is due to insertion or deletion in the genome. In the course of
evolution, variations bring novelty (Baer, 2008). The small variations
might be beneficial or detrimental for the organism (Loewe and Hill,
2010). The mutational study helps in understanding viral transmission,
replication efficiency, and magnitude of virulence of the pathogen
(Eaaswarkhanth et al., 2020). A minor change in the genome might lead
to the variation in functionality of constituent proteins of the organism
(Chaudhuri, 2020). Previous studies revealed significant alternation in

Abbreviations: SARS, severe acute respiratory syndrome; CoV, coronaviruses; NS, non-synonymous; Syn, synonymous; CP, codon position; Mut, mutation; AA,
amino acid; TM, transmembrane domain; NTD, N-terminal domain; CTD, C-terminal domain; HR, heptapeptide repeat.
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structural and pathogenic properties due to even single point mutation
in virus proteins (André et al., 2019; Sakai et al., 2017). Characterizing
mutations in different functional domains of SARS-CoV-2 genome might
help in designing potential vaccine (Kaur et al., 2020).

Determining the mutation types (synonymous or non-synonymous)
that influence a lot in gene regulation is vital for understanding the
role of regulatory variation during evolution (DiMaio and Nathans,
1982; Foy et al., 2003). Studying the mutations at different codon po-
sitions is essential, particularly for quantification of synonymous and
non-synonymous amino acid substitutions (Plotkin and Kudla, 2011).
Though the non-synonymous mutation is primarily crucial (from codon
usage bias point of view) as it alters the amino acid, synonymous mu-
tations too have their strong impact (Plotkin and Kudla, 2011; Kristofich
et al., 2018; Gustafsson et al., 2004). It is worth to mention that the
changes in the physicochemical properties of nucleotides (purine-R or
pyrimidine-Y) due to the mutations have remarkable biological signifi-
cance (Lyons and Lauring, 2017; Sengupta et al., 2018; Guo et al., 2017).
It is reported that in the case of codons, various evolutionary constraints
at different codon positions occur due to the functional constraints
imposed by the genetic code and the physicochemical properties of
encoded amino acids (Bofkin and Goldman, 2007; Simmons, 2017;
Plotkin and Kudla, 2011). For example, mutations at the 2nd position of
a codon directly impact the changes in replaced amino acids (hydro-
phobic to hydrophilic and vice versa). The change is due to the trans-
version (A< C or AT or G C or G- T) (Haig and Hurst, 1991;
Wolfenden et al., 1979; Btazej et al., 2017), although A<~ Gor Co T
transition is mostly occurring for single point mutation (Beletskii and
Bhagwat, 1996; Blazej et al., 2017). Further, the changes in physico-
chemical properties of amino acids have a significant functional role
(Das et al., 2019; Basak et al., 2017). Hence, understanding the genetic
diversity is important that might hint towards the susceptible antigen
targets of SARS-CoV-2. It can be used for potential therapeutic and
prophylactic interventions in order to prevent this deadly outbreak.
Mutations in SARS-CoV-2 proteins may lead to different phenotypic
changes, and hence virus can adapt to new hosts and environments. In
addition, codon bias study helps in revealing the host-virus interaction
mechanism in SARS-CoV-2 (Dilucca et al., 2020; Kurland, 1991; Das
et al., 2020Db).

A detailed in-silico study on putative mutations in SARS-CoV-2 is of
utmost important to understand any significant pattern and its possible
impact on the functional and structural characteristics of the virus.

India is the second-largest SARS-CoV-2 infected country in the world.
Due to the volume of study, we restricted our current study within In-
dian isolates only. However, our study can easily be extended to other
variants from any part of the world. Although a couple of studies have
been carried out to learn various crucial facts about SARS-CoV-2 genome
from Indian patient samples (Kaur et al., 2020; Saha et al., 2020;
Samaddar et al., 2020), there are certain facts yet to explore. Therefore,
in this work, we broadly focused on the mutational study on SARS-CoV-2
genomes, isolated from Indian patient, as discussed in the following
section.

2. Material and methods

2.1. Collection of SARS-CoV-2 genome sequences extracted from Indian
patients

We collect SARS-CoV-2 genome sequences isolated from Indian pa-
tients that are achieved in public repositories. Several protein-coding
genes are present in each SARS-CoV-2 genome. SARS-CoV-2 encodes
different types of essential proteins: (i) nonstructural proteins - poly-
protein (ORF1ab), structural proteins - Spike glycoprotein (S), Envelope
(E), Membrane (M) and Nucleocapsid (N), and accessory proteins -
ORF3a, ORF6, ORF7a, ORF7b, ORF8, and ORF10 (Kim et al., 2020;
Yadav et al., 2020; Ruan et al., 2003; Gordon et al., 2020). A complete
topological structure (position) of all SARS-CoV-2 proteins is shown in
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Table 1

Topological structure of all SARS-CoV-2 proteins shown by respective genomic
location. For each protein, the range of CDS region and amino acids used in this
paper are numbered starting from 1 to length of the nucleotide or protein
sequence.

Gene/ Genome location Protein Nucleotide Amino acid

protein (nucleotide) length (aa)  location used location used

ORFlab 266-21,555 7096 1-21,288 1-7096

S 21,563-25,384 1273 1-3819 1-1273

ORF3a 25,393-26,220 275 1-825 1-275

E 26,245-26,472 75 1-225 1-75

M 26,523-27,191 222 1-666 1-222

ORF6 27,202-27,387 61 1-183 1-61

ORF7a 27,394-27,759 121 1-363 1-121

ORF7b 27,756-27,887 43 1-129 1-43

ORF8 27,894-28,259 121 1-363 1-121

N 28,274-29,533 419 1-1257 1-419

ORF10 29,558-29,674 38 1-114 1-38
Table 2

The number of collected samples from Indian isolates, unique variant, sample to
variant ratio in each SARS-CoV-2 protein.

Protein # collected # noise free # unique Sample to
samples samples variant variant ratio

ORFlab 462 400 262 1.52

E 460 445 3 148.33

M 460 457 18 25.38

N 463 455 53 8.58

S 462 436 90 4.84
ORF3a 459 445 33 13.48
ORF6 460 459 3 153.0
ORF7a 460 454 11 41.27
ORF7b 456 455 3 151.66
ORF8 461 451 11 41.00
ORF10 460 460 3 153.33

Table 1. Each of these proteins is highly essential and has diverse
functional roles. The first full genome sequence of SARS-CoV-2 virus
from India sample was reported during February 2020 (Yadav et al.,
2020). We collect sequences from NCBI database' (Supplementary-1).
We find around 469 complete SARS-CoV-2 nucleotide sequences. Pro-
tein wise, we extract the coding region from each nucleotide sequence
and ignore noisy sequences. The final list of obtained unique sequences
is utilized for sub-sequence analysis (Table 2).

2.2. Workflow design

Protein specific nucleotide sequences are first clustered to extract set
of unique sequences (or unique variants). Next, unique sequences
(representative of each group) are aligned using multiple sequence
alignment. As a reference sequence we use sequence of SARS-CoV-2
proteins from Wuhan-Hu-1 (accession no: NC_045512). We compare
every variant with the reference sequence to identify and localize mu-
tations. We consider only single point mutation as a substitution.
Observed mutations are then analyzed based on the number of synon-
ymous and non-synonymous substitutions, quantification of nucleotide
mutations in three different codon positions (1st/2nd/3rd), type of
nucleotide mutations and amino acid substitutions. We then charac-
terize non-synonymous amino acid substitutions and their biological
implications using various computational tools.

! https://www.ncbi.nlm.nih.gov/sars-cov-2/ as reported till August 28, 2020.
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Fig. 2. Distribution of observed number of mutations (x-axis) and relative frequency of number of variants (y-axis) for each SARS-CoV-2 protein. The five proteins
ORF1lab, ORF3a, S, N, M are observed multiple mutations in different variants, whereas in six proteins, ORF6, ORF7a, ORF7b, ORF8, ORF10 and E are found exactly a

single mutation in each variant.

2.3. Computational tools and techniques used

We use web-based tool PROVEAN? and I-mutant® for functional
assessment of single point mutation. PROVEAN (Protein Variation Effect
Analyzer), a web server, is used to predict any non-synonymous amino
acid substitution or indel impacts on the biological function of a protein
(Choi et al., 2012). The tool predicts two kinds of substitution effects:
deleterious effect and neutral effect on protein function by measuring
the combined score of substitution matrix, alignment, the position of
substitution with the neighborhood that surrounds the site of variation.
The cut-off value of the PROVEAN score is set as —2.5, below which it
indicates deleterious substitution, otherwise, neutral. For predicting
stability changes due to mutation, we use I-Mutant (Capriotti et al.,
2005). The tool is designed based on Support Vector Machine (SVM) that
produces Gibbs free energy of unfolding (AAG value in kcal/mol, in
terms of increased or decreased stability) for each non-synonymous
substitution. The stability predictors value AAG < — 0.5 indicates high
decrease in stability, whereas, AAG > 0.5 indicates high increase in
stability, and —0.5 < AAG < 0.5 signifies neutral stability.

We use simple Python scripting for rest of the quantitative analysis.

2 http://provean.jevi.org/index.php.
3 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.0/I-Mutant3.0.cgi

Avg. mutation per variant

FOIETLELELELSE
2 § § 3 & ¢

Fig. 3. Average number of mutation per variant. Proteins are ranked by avg.
mutation, highest (left) to lowest (right).
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Table 3
Number of mutated positions (or locations) in each SARS-CoV-2 protein.

Gene Gene length # mutated position Mutated position (%)
ORFlab 21,291 328 1.541
E 228 2 0.877
M 669 15 2.242
N 1260 49 3.889
S 3822 83 2.172
ORF3a 828 33 3.986
ORF6 186 2 1.075
ORF7a 336 10 2.976
ORF7b 132 2 1.515
ORF8 366 10 2.732
ORF10 117 2 1.709

We report the functionally important mutations identified using the
above tools, highlighting the various putative functional domains of
SARS-CoV-2 proteins. We also study wild type and new amino acid
changes in two categories of physicochemical properties, Hydropathy
profile (Aftabuddin and Kundu, 2007), and side-chain structure (Das
et al., 2016). The categorizations are as follows:
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e Hydropathy based classes: The three classes are Hydrophobic (F,
M, W, 1V, L, P, A), Hydrophilic (N, C, Q, G, S, T, Y), and Charged (R,
D, E, H, K).

e Side-Chain based classes: According to this grouping, twenty (20)
amino acids are clustered into eight groups as Acidic (D, E), Basic (R,
H, K), Aromatic (F, W, Y), Aliphatic (A, G, I, L, V), Cyclic (P), Sulfur-
containing (C, M), Hydroxyl-containing (S, T), and Acidic amide (N,
Q.

3. Results and discussion

Our first objective is to find out unique variants by clustering the
SARS-CoV-2 gene sequences. We then identify point mutation (as sub-
stitution) in each observed variant by comparing it with the reference
sequence. Observed mutations occurring at different codon positions are
then classified and quantified based on different perspectives as dis-
cussed below.

3.1. Clustering of unique variants

The majority of the input genomes are redundant with respect to
sequence similarity. We cluster them based on sequence similarity and
consider a sequence from each cluster as cluster representative (termed
as unique variant). We use a string matching technique to cluster the
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Fig. 4. Quantification of synonymous and non-synonymous mutation. (A) Percentage of synonymous vs. non-synonymous mutation type in three codon positions
taking all proteins together; (B) percentage of non-synonymous and synonymous mutation type in all SARS-CoV-2 protein.
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sequences, where exactly similar sequences are put in a single cluster
(Table 2). The cardinality of each cluster indicates the number of similar
sequences in that cluster. We report clusters by variant numbering i.e.,
v1, v2---vn; n is the number of clusters or variants for each SARS-CoV-2
protein. The group of similar sequences belonging to a cluster (or
variant) for each SARS-CoV-2 protein is reported with accession
numbers (Supplementary-1). We draw phylogenetic tree for each SARS-
CoV-2 protein taking all distinct variants and report in Supplementary-2.
Our analysis shows that distinct variants in ORFlab, S, N and ORF3a
proteins are comparatively higher than other SARS-CoV-2 proteins,
signifying that such proteins are highly susceptible.

3.2. Indian vs. world-wide variants

We compare Indian variants with the variants collected from nine
(09) major countries such as China (CHN), Bangladesh (BGD), Japan
(JPN), Saudi Arabia (SAU), French (FRA), Germany (DEU), Greece
(GRQ), Italy (ITA), and United States (USA). The protein-specific unique
variants observed from all the above countries are reported in Fig. 1(A).
We observe a high percentage of unique variants in BGD isolates, fol-
lowed by Indian isolates. However, the percentage may be an indicator
(not conclusive) as the total sample available is non-uniform. We even
quantify common variants across nine different countries that are
matching with Indian variants is reported in Fig. 1(B). Interestingly,
common protein-specific variants are relatively rare while comparing
with variants from different countries.

3.3. Quantification of observed mutations in SARS-CoV-2 proteins

Among the distinct variants in each SARS-CoV-2 protein, we consider
a particular variant as a reference sequence (exactly similar to
NC_045512) except ORF1ab protein. We then compare other variants for
studying nucleotide level substitutions. The frequency distribution of
the number of mutations for each protein is shown in Fig. 2. We observe
at least one mutation in case of five proteins (ORFlab, ORF3a, S, N, M).
The average number of mutations per variant for such proteins is rela-
tively higher (Fig. 3). In case of other six proteins (ORF6, ORF7a, ORF7b,
ORF8, ORF10, and E), we observe only single mutation in each variant.
Upon examining mutations in SARS-CoV-2 proteins, we observe several
substitutions, the majority of which are associated with a single variant.
The protein wise mutations are highlighted and reported for all the
variants associated with more than one samples (Supplementary-3). We
list mutations considering only M, N, and S proteins (having mutations
in more than one sample). In the case of E protein, only a single mutation
is observed in all the variants. In case of accessory proteins, mutations in
more than one sample are observed in ORF3a, and ORF8. Most of which
are from the non-synonymous category and having more than one
sample frequency. We discuss below few top variants and mutations
observed in our candidate SARS-CoV-2 proteins.

e ORF1lab protein: We observe several mutations in ORFlab because
this protein is a polyprotein that consists of sixteen non-structural
proteins. We compare all Indian SARS-CoV-2 ORF1lab protein vari-
ants with the reference sequence (NC_045512). We observe mutation
in 40 variants that are associated with more than one sample. The top
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Table 4 Table 5
Percentage of synonymous (syn) and non-synonymous (non-syn) mutation in The percentage of nucleotide mutation type for all non-synonymous cases shown
three different codon positions (CP)-1st/2nd/3rd in each of the SARS-CoV-2 for three codon positions independently and arranged by highest to lowest
protein. percentage. Mut-type: Mutation type;
Protein CP Type Percentage Codon position-1st Codon position-2nd Codon position-3rd
E Ist Non-syn 100.00 Mut-type Percentage Mut-type Percentage Mut-type Percentage
M 1st Non-syn 26.67
M 1t Syn 6.67 G>T 33.09 C>T 48.98 G>T 68
C>T 25.00 G>T 16.33 A>C 6
N 1st Non-syn 33.96
N 1st Syn 1.89 G>A 16.91 A>G 12.24 G>A 6
’ A>G 6.62 T>C 7.48 G>C 6
ORF10 1st Non-syn 50.00
A>C 5.88 G>A 6.12 C>A 4
ORFlab 1st Non-syn 22.80 ToG 268 CoA 972 ToA 4
ORFlab 1st Syn 2.74 G>C >od A>C e T> . N
ORF3a 1st Non-syn 33.33 z : ~ : >
C>A 2.21 G>C 1.36 A>T 2
ORF7a Ist Non-syn 40.00 G 1.47 T>G 1.36
ORF7b Ist Non-syn 50.00 AiT 0'74 AiT Ol68
ORF8 Ist Non-syn 30.00 ToA 0.74 G 0.68
S 1st Non-syn 20.48 ToG 074 ToA 0.68
s 1st Syn 1.20 > : > -
M 2nd Non-syn 20.00
N 2nd Non-syn 26.42 . . .
ORFlab ond Non-syn 26.44 non-synonymous mutation ([C14144T, P4715L]) is observed in 233
ORF3a 2nd Non-syn 30.30 variants of total 359 samples. Here, the first numbering in bracket
ORF7a 2nd Non-syn 20.00 refers to the nucleotide mutation position, whereas the second
ORF7b 2nd Non-syn 50.00 numbering refers to the amino acid substitution position. The ma-
ORF8 2nd Non-syn 60.00 o f th tati S 1
S ond Non-syn 28.92 jority .0 e mutations are syn.onyrnou.s. e.vera non-synonymous
M 3rd Syn 46.67 mutations are observed associated with five or more samples,
N 3rd Non-syn 9.43 which are [A2027C, Q676P], [C18304T, L6102F], [C18890T,
N 3rd Syn 28.30 T62971], [G15814A, V5272I], [G10818T, L3606F], [C6047A,
giigb gij ;yo‘; o 52"5)‘1) T2016K], [C13466T, A4489V], [G4601T, S1534I], [C9173T,
ORFlab 3rd Syn v 39:51 T3058I], [C14161A, L47211]. Further, several synonymous muta-
ORF3a 3rd Non-syn 9.09 tions observed in more than one sample are [C2772T, F924F],
ORF3a 3rd Syn 27.27 [C18613T, L6205L], [C2571T, C857C], [G4035T, V1345V],
82}22 gfj ISOH-SY“ gggg [A16248G, L5416L], [C15060T, N5020N], [C3369T, N1123N],
T yn .
ORF7a ard Syn 40.00 [C3819T, D1273D], '[C8517T, $28398], [C1 11.’>55T, F3785F].
ORF8 3rd Syn 10.00 o Envelope (E) protein: In the case of E protein, a total 443 (out of
S 3rd Non-syn 15.66 445) variants are observed that are exactly matching with the
S 3rd Syn 33.73
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Table 6

Percentage of nucleotide mutation type for all non-synonymous cases shown by
three codon positions for all proteins. CP: codon position; Mut-type: mutation
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Table 6 (continued)

type.
Protein CP Mut-type Percentage
ORFlab 2 C>T 23.16
3 G>T 11.58
1 C>T 10.53
1 G>T 10.53
2 A>G 8.42
1 G>A 7.37
2 T>C 4.74
1 A>G 4.21
2 G>A 2.63
2 G>T 2.63
1 A>C 211
1 T>C 211
2 C>A 1.58
2 A>C 1.05
3 C>A 1.05
3 G>C 1.05
3 A>C 0.53
2 A>T 0.53
1 C>A 0.53
1 C>G 0.53
3 G>A 0.53
1 G>C 0.53
1 T>A 0.53
2 T>A 0.53
1 T>G 0.53
2 T>G 0.53
E 1 G>T 100.00
M 1 C>T 28.57
2 C>T 28.57
1 G>T 28.57
2 G>T 14.29
N 2 C>T 18.92
1 G>T 18.92
1 G>A 10.81
2 G>T 10.81
1 C>T 8.11
2 G>A 5.41
1 G>C 5.41
3 G>T 5.41
3 A>C 2.70
1 A>G 2.70
1 C>A 2.70
3 G>A 2.70
2 G>C 2.70
3 G>C 2.70
S 2 C>T 18.52
2 G>T 18.52
3 G>T 14.81
1 G>T 12.96
1 C>T 5.56
1 A>C 3.70
2 A>G 3.70
3 T>A 3.70
3 A>C 1.85
1 A>T 1.85
1 C>A 1.85
1 G>A 1.85
2 G>A 1.85
3 G>A 1.85
1 G>C 1.85
2 G>C 1.85
1 T>C 1.85
3 T>G 1.85
ORF3a 1 G>T 20.83
1 C>T 16.67
2 C>T 16.67
2 G>T 12.50
1 A>C 4.17
3 A>T 4.17
2 C>G 4.17
1 G>A 4.17
3 G>T 4.17

Protein CP Mut-type Percentage
2 T>C 4.17
2 T>G 4.17
3 T>G 4.17
ORF6 3 G>T 100.00
ORF7a 1 G>A 33.33
1 C>G 16.67
1 C>T 16.67
2 C>T 16.67
2 G>T 16.67
ORF8 2 C>T 33.33
1 G>T 22.22
1 A>C 11.11
2 C>A 11.11
2 G>A 11.11
2 T>C 11.11
ORF7b 2 C>T 50.00
1 G>A 50.00
ORF10 1 C>T 100.00

reference sequence (NC_045512). The only two non-synonymous
mutations of single instance are [G184T, V62F] and [G223T, V75F].

e Membrane (M) protein: A total 224 (out of 457) matching samples
(with NC_045512) are found in Indian genome. In M protein, sig-
nificant synonymous mutations are observed. [C213T, Y71Y]
observe in 9 variants of total 223 (=) 50% samples. In addition, one
non-synonymous ([C425T, A142V] in 2 variants of total two sam-
ples) and one synonymous ([G429T, V143V] in 2 variants of total
four samples) are also observed.

e Nucleocapsid (N) protein: A total of 204 (out of 455) matching

sequences of N protein are observed in Indian samples. We observe

mutations in fifty three (53) variants. Each of them is associated with
more than one sample. The mutation in the top variant (v2) is

[C581T, S194L], which is found in 19 variants of a total of 158

samples. The other important non-synonymous mutations associated

in more than one sample are [C581T, S194L], [C38T, P13L],

[G605A, S202N], [G608A, R203K], [G609A, R203K], [G610C,

G204R], [C614T, T205I], [G578T, S193I], and one synonymous

mutations is [G578T, S193I] observed in 2.

Spike (S) protein: We observe only 11 samples (out of 436) that are

exactly similar to the reference S protein. A total of twenty (20)

variants in S protein are found to be associated with mutations in

more than one sample. Mutations in each variant show either syn-
onymous or non-synonymous or both the categories. For example,
we observe mutations in variant v2 [A1841G, D614G] and [T2367C,

Y789Y] that are non-synonymous and synonymous, respectively,

and associated with 164 samples. Similarly, the variant (v3) shows

two synonymous mutations ([C882T, D294D] and [T2367C,

Y789Y]), and two non-synonymous mutations ([G162T, L54F] and

[A1841G, D614G]) found in 63 samples. Few findings are consistent

with the previously reported results. For example, D614G substitu-

tion is observed ~60% in Indian samples (Saha et al., 2020). In our
candidate dataset, we observe D614G substitution in ~ 93% samples
covering 77 variants. The majority of the substitutions are in variant
v2, along with a synonymous mutation [T2367C, Y789Y] in the same
variant. Few other important mutations are found in five and more
samples, which are three non-synonymous mutations ([G162T,

L54F], [G1749T, E583D], [G2031T, Q677H]) and three synonymous

mutation ([T2367C, Y789Y], [C882T, D294D], [G906T, T302T],

[T328C, L110L]).

e ORF3a protein: In ORF3a protein, we observe only 190 samples (out
of 445) in Indian SARS-CoV-2 S proteins, which are exactly similar to
the reference sequence. We observe mutations in ORF3a protein of
eight (08) variants associated with more than one sample. The top
variant is v2 with only non-synonymous mutation [G171T, Q57H] in
17 variants of a total of 234 samples. This non-synonymous mutation
(Q57H) is found in Ion channels domain and consistence with
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Table 7

Amino acid substitution type by associated protein and number of mutated lo-

cations in that protein.

Substitution type

Protein (#mutated position)

A>D
A>S
A>T
A>V
C>F
c>Y
D>E
D>G
D>N
D>Y
E>D
E>G
E>K
E>Q
F>L
G>A
G>C
G>D
G>E
G>R
G>S
G>T
G>V
G>W
H>Q
H>R
H>Y
I>K
I>L
I>T
K>E
K>N
K>Q
K>R
K>T
L>F

L>I
L>P
L>S
L>v
L>w
M>I
N>D
N>H
N>K
N>L
N>Y
P>A
P>L
P>R
P>S
P>T
Q>E
Q>H
Q>K
Q>P
Q>R
R>C
R>G
R>I
R>K
R>L
R>M
R>Q
R>S
S>F
S>G
S>1
S>L
S>N
S>P
S>R

ORFlab-(2)
M-(1),N-(2),0RF1ab-(4),0RF3a-(3),0RF8-(1),S-(3)
ORF1ab-(2),0RF7b-(1)
M-(2),N-(2),0RF1ab-(16),0RF3a-(1),0RF8-(2),S-(4)
ORFlab-(1),5-(3)

ORFlab-(1)

ORFlab-(1)

ORFlab-(4)

N-(1),0RFlab-(2)
N-(3),0RFlab-(6),0RF3a-(1),S-(3)
ORF1lab-(5),0RF6-(1),5-(2)
ORFlab-(1)

ORF1lab-(3),0RF7a-(1)
N-(1),0RFlab-(1),5-(1)
ORFlab-(1),5-(1)

S-(1)

N-(1),0RF1lab-(3)
ORF1lab-(3),5-(1)

ORF8-(1)

N-(2),0RFlab-(1)
N-(1),0RFlab-(2),5-(1)

N-(2)
ORF1lab-(2),0RF3a-(1),0RF7a-(1),S-(1)
N-(1)

ORF3a-(1),s-(1)

ORFlab-(2)
M-(1),N-(1),0RF1ab-(5),0RF3a-(1),S-(1)
ORFlab-(1)

ORFlab-(1),0RF8-(1)
ORF1lab-(4),0RF3a-(1)

ORFlab-(1)

ORF1lab-(7),0RF3a-(1)
ORF3a-(1),5-(2)

ORFlab-(7),5-(1)

ORFlab-(1)
M-(1),N-(1),0RF10-(1),0RF1ab-(10),0RF3a-(3),0RF7a-(1),S-
@

ORFlab-(1)

ORFlab-(2)

ORF8-(1)

ORFlab-(1)

ORF3a-(1)
N-(2),0RF1ab-(10),5-(3)
ORFlab-(2)

ORFlab-(1)

S-(1)

ORFlab-(2)

S-(1)

ORFlab-(1)
N-(1),0RF1ab-(7),0RF7a-(1),0RF8-(1)
ORF3a-(1)

N-(2),0RFlab-(5),5-(1)

N-(1)

ORF7a-(1)

ORFlab-(2),5-(4)

S-(1)

ORFlab-(1)

ORF1lab-(2),5-(1)

ORFlab-(2)

N-(1)

ORF3a-(1)

N-(2)
M-(1),N-(1),0RF1lab-(1),0RF3a-(1)
S-(1)

ORFlab-(1)

N-(1)

ORF1lab-(3),5-(2)

ORFlab-(2)
N-(3),0RFlab-(1),5-(3)
N-(1),0RF1ab-(2),0RF3a-(1),0RF7b-(1)
N-(1)

ORFlab-(2)

ORFlab-(2)
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Table 7 (continued)

Substitution type

Protein (#mutated position)

S>T ORFlab-(1)

T>A ORFlab-(3)

T>I N-(3),0RF1lab-(15),0RF3a-(2),S-(4)
T>K ORFlab-(1)

T>M ORFlab-(1)

T>N ORF8-(1)

V>A ORFlab-(3)

V>F E-(2),M-(1),0RF1ab-(5),0RF3a-(1)
V>G ORFlab-(1)

V>1 ORF1lab-(4),0RF3a-(1),0RF7a-(1)
V>L ORF1lab-(2),0RF8-(1),5-(1)

W>C ORF3a-(1)

W>L S-(2)

Y>H ORFlab-(1),5-(1)

previous study (Issa et al., 2020), and shows quite higher percentage
((53%)) in Indian SARS-CoV-2 genome as compared to 17.43% a
global study reported in (Issa et al., 2020). Although, another mu-
tation G251V is also found 9.71% of the genomes but, we did not
observe this mutation in the Indian SARS-CoV-2 candidate genome.
The other observed important mutations associated with more than
one sample, where six mutations are non-synonymous ([C121T,
L41F], [C277T, H93Y], [G67T, A23S], [C452T, T151I], [G463T,
D155Y], [C512T, S171L]), and only one synonymous mutation is
[C246T, N82N].

ORF6 protein: In the case of ORF6 protein, 457 (out of 459) se-
quences of SARS-CoV-2 Indian samples are exactly matching with
the reference sequence. Similar to E protein, we observe two muta-
tions, each associated with only one sample, one is synonymous
([C12T, L4L]), and the other is non-synonymous ([G39T, E13D]).
ORF7a and ORF7b proteins: All the sequences (except two) from
the Indian SARS-CoV-2 genome for both the proteins are matched
with the reference sequence (NC_045512). Two non-synonymous
mutations are observed ORF7a protein associated with two sam-
ples each of in a single variant ([C280G, Q94E], [G283A, E95K]). In
ORF7b protein, only two non-synonymous are [C92T, S31L] and
[G127A, A43T] with an equal number of samples and variants (only
1).

ORF8 protein: Majority (423 out of 451) of the sequences are similar
with the reference sequence. The top two variants are v2 (non-syn-
onymous mutation: [T251C, L84S]) with sample frequency 19, and
v3 (synonymous mutation: [G108T, P36P]) with sample frequency 2.
ORF10 protein: In ORF10 protein, 457 out of 460 sequences from
the Indian SARS-CoV-2 genome are similar to the reference
sequence. The only non-synonymous mutation is [L37F] and syn-
onymous mutation is [C109T] with sample frequency 2 and 1.

It can be noted that some of the observed mutations in different

variants are common (Supplementary-3). Therefore, with respect to
mutation types those variants are highly similar. However, we observe a
total of 536 mutated positions located in different SARS-CoV-2 proteins
in Indian isolates (Table 3). It is noted that the ORF3a protein shows the
highest (x3.96%) number of mutated locations followed by N protein.
We observe a few numbers of mutated locations in E, ORF6, ORF7b and
ORF10 proteins.

3.4. Characterizing the mutations into synonymous and non-synonymous
categories

We account for both synonymous and non-synonymous mutations

irrespective of any codon positions. Among the observed nucleotide
mutations, 541 nucleotide mutations in 536 locations are then charac-
terized in synonymous and non-synonymous categories (see Fig. 4(A)).
Overall, percentage of non-synonymous mutation is more (~62%,
count-333) in comparison to synonymous mutations (~38%, count-
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Fig. 8. (A) The amino acid substitution type observed with more than two mutated positions in SARS-CoV-2 genome. (B) The amino acid substitution type associated

with more than two SARS-CoV-2 proteins.

70
60
50

40

Substitution type count

Fig. 9. The non-synonymous amino acid substitution type count in each of the
SARS-CoV-2 protein.
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208). Observed mutations by the percentage of synonymous and non-
synonymous category for all SARS-CoV-2 proteins are shown in Fig. 4
(B). Overall, the non-synonymous category percentage is more (except
for M protein), where E and ORF7b proteins show 100% non-
synonymous mutations.

3.5. Quantifying mutations in three different positions of codon

In case of any coding region mutation may occurs at any three
different codon positions. Mutations at the third (3rd) position of the
codon are almost synonymous that is the least functionally constrained.
In contrast, the majority of the mutations at 1st and 2nd positions of the
codon are non-synonymous that alter amino acid. The second codon
position is the most functionally constrained as any change to the second
codon position causes a non-synonymous change in the coding
sequence. We observe mutations in all the three codon positions for
ORFlab, M, N, S, ORF3a, and ORF8 genes (Fig. 5(A)). In, and ORF10
genes, mutations are observed in 1st, 3rd, and 1st codon positions,
respectively. We observe mutations in 1st and 2nd positions of ORF7b
codons. We do not observe any mutation at the 2nd position of codon. It



J.K. Das et al.

Percentage

A 100
90 -
80
70
60
50
40
30
20
< Ll il
: "
s ®* b <&

N ‘3 o 2> \d
AR SR AR
OQ:‘ & O &

M Deleterious ™ Neutral

Gene Reports 25 (2021) 101044

Deleterious mutation count
()]

Z |
, i I i

M N S ORFlab ORF3a ORF6 ORF7a ORF7b ORF8 ORF10

mist m2nd = 3rd

Fig. 10. The non-synonymous amino acid substitution categorization by percentage of deleterious and neutral mutation type predicted by PROVEAN score. (A)
Percentage is shown for SARS-CoV-2 proteins taking all codon positions together; (B) percentage is shown for three codon positions in each of SARS-CoV-2 proteins.

is worth mentioning that most highly mutated genes (ORFlab, M, N, S,
ORF3a) show a higher percentage of mutations at the third position of
the codon, i.e., all these are in the synonymous category.

We account overall mutations that are taking place in all SARS-CoV-2
proteins (Fig. 5(B)). Mutations at 1st and 3nd positions of codons are
found almost equal (38%), whereas mutations at 2nd position are
comparatively less (24%). More than 90% mutations at 1st codon po-
sition are non-synonymous, whereas around 80% mutations at 3rd
codon position are synonymous (Fig. 5(C)). Protein-wise the mutations
at three different codon positions are reported in Table 4. In case of non-
synonymous mutations, the percentage of mutation at 1st codon posi-
tion is more (>50%) for E, ORF10, and ORF7b protein, whereas at 2nd
codon position, the mutation percentage is more (>50%). For ORF8 and
ORF7b, and ORF6 highest percentage of mutation occurs at the 3rd
codon position.

3.6. Characterizing nucleotide mutation types in non-synonymous
category

There are twelve possible nucleotide changes that can occur due to
nucleotide mutation (see Methods and Materials). Protein-wise observed
mutation counts in three different codon positions are shown in Fig. 6
(A). A majority of the nucleotide mutations are observed in the 1st codon
position. Considering three codon positions (Fig. 6(A)), all 12 nucleotide
mutation are observed in ORFlab proteins followed by S proteins.
ORF3a and N show comparatively fewer number of mutations (8 and 7
respectively). Similarly, in E, ORF10, and ORF6 proteins only a single
mutation is observed.

Quantification of nucleotide mutation type shows higher for G > T
and C > T, and protein hit count also observer maximum for these two
mutation types (Fig. 7(A) and (C)). In terms of percentage (considering
all codon positions), the mostly occurring two mutations are C>T
(~32%) and G > T (~30%). Further, these two mutations (C > T and
G > T) are observed in 9 (out of taken 11) SARS-CoV-2 proteins followed
by G > A (07) and A > C (05) mutations, respectively. T > A mutation is
observed to be rare (only 2). Among the two above mostly occurring
mutations, G > T is observed within the top two positions (by percent-
age) in all three codon positions (Table 5), whereas C > T is observed
only in 1st and 2nd codon positions. The percentage of abundance of
other two important mutations, G > A (in 1st codon position) and A > G
(in 2nd codon position), is 17% and 12%, respectively. Further, we
observe diversity in different codon positions in individual protein
(Table 6). For example, G > T is mostly occurring at 2nd codon position
(ORFF1lab, S), at the 1st codon position (E, M, N ORF3a), at 3rd codon
position (ORF6).

3.7. Quantification of non-synonymous amino acid substitutions

As highlighted earlier, there are total 380 amino acid substitutions.

11

Out of 333 non-synonymous substitutions, we observe only 86 distinct
substitutions in Indian SARS-CoV-2 genome (Table 7).

We rank amino acid substitutions by the number of substituted po-
sitions (Fig. 8(A)). The top substitutions are A > V, which is observed in
27 locations of six (06) different proteins (Fig. 8(B)). The substitution,
L > F is observed with maximum hit, occurring in 07 proteins, M (1), N
(1), ORF10 (1), ORF1ab (10), ORF3a (3), ORF7a (1), and S (2). Overall it
is observed in nineteen (19) different positions of Indian SARS-CoV-2.
Similarly, several other important substitutions with regards to num-
ber of substituted positions and associated SARS-CoV-2 proteins can be
seen from Fig. 8(A) and (B). Further, there are few substitutions, which
are observed uniquely in different SARS-CoV-2 proteins. For example,
A>D, C>Y, D>E, D>G are observed in ORFlab protein, G > A,
N>K, N>Y, R>M are observed in Spike (S) protein. Several other
unique substitutions with their count and type in each SARS-CoV-2
proteins are reported in Fig. 9 and Table 7, respectively. It is to be
noted that the highly mutated four proteins are ORFlab, S, N, and
ORF3a. The number of mutations per variant in SARS-CoV-2 proteins of
Indian isolates is shown in Fig. 3.

3.8. Functional assessment of non-synonymous amino acid substitutions

Non-synonymous substitutions are vital as they alter the amino acid
that impact on the structural and functional imbalance of the target
protein. To understanding the functional alteration during non-
synonymous substitutions, we use PROVEAN (Choi and Chan, 2015)
to predict mutation type whether deleterious or neutral. We calculate
AAG values (Capriotti et al., 2005) for predicting the stability variations
(increase or decrease or neutral). We report the PROVEAN and AAG
scores in Fig. 10.

It is to be noted that the deleterious percentage is comparatively low
for structural proteins (except E) and high for accessory proteins. We
predicted a total of 57 (out of 333 non-synonymous substitution) dele-
terious substitutions as shown in Tables 8, 9, and 10 for ORFlab,
structural, and accessory proteins, respectively. All these substitutions
are also listed with NCBI protein accession number (Supplementary-4).
While considering codon positions of all the deleterious substitutions,
we observe that the deleterious substitutions occurs mostly in 2nd codon
position (=51%) followed by 40% and 9% in 1st and 3rd codon posi-
tions, respectively (Fig. 10). Moreover, few neutral mutations with a
considerable decrease in stability are observed that might impact on
protein structural conformation. For example, we observe D614G mu-
tation occurred in the 2nd codon position, which is neutral with a large
decrease in stability. This mutation can potentially decrease the struc-
tural stability (Maitra et al., 2020). The change in Asp with Gly at this
position resulting in the enhancement of local conformational entropy
(Ramakrishnan and Ramachandran, 1965). The most frequently
observed non-synonymous mutations, Q57H in ORF3a protein and
S194L in N protein, occurred in 3rd and 2nd codon positions
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Table 8 Table 8 (continued)

The non-synonymous amino acid substitutions in ORFlab protein with the Substitution  PROVEAN score  Type AAG prediction  RI  Freq,

predicted PROVEAN score and AAG prediction value.

K2511N —0.966 Neutral —-0.38 0 2
Substitution =~ PROVEAN score  Type AAG prediction ~ RI Freq. H2520R _0.243 Neutral ~0.29 3 2
G30S —0.673 Neutral ~1.15 8 1 A2593V —-1.178 Neutral —0.24 0 1
D33N ~0.733 Neutral ~1.33 4 2 A2732D —3.463 Deleterious —0.68 6 3
V38F ~0.553 Neutral —1.48 9 1 P2739L —1.595 Neutral —0.62 4 1
G112C ~1.223 Neutral —1.08 7 1 H2831Y 3.17 Neutral 0.27 6 1
D147E ~1.123 Neutral 0.01 4 1 A2891V ~0.835 Neutral 0 3 1
V169A 0.027 Neutral 1.7 8 1 D2980G 0.071 Neutral —-1.27 5 1
G192D ~1.198 Neutral —1.23 8 1 A2994V —1.769 Neutral —0.05 0 3
L204F 0.327 Neutral —1.11 8 2 T30581 1.463 Neutral —0.48 4 7
$212L 0.097 Neutral 0.24 1 1 G3072C —5.058 Deleterious —-1.07 6 2
T2651 —0.693 Neutral —0.67 6 1 M30871 0.614 Neutral —0.56 5 3
T2831 ~0.088 Neutral —0.57 7 2 T31501 0.112 Neutral -0.43 1 2
P309A ~0.135 Neutral ~1.8 8 1 S$3158G —0.785 Neutral —1.35 7 1
P309L 0.518 Neutral —0.72 5 1 L3338F —3.068 Deleterious —1.09 6 2
G327D ~1.072 Neutral —0.89 5 1 K3353R —1.343 Neutral -0.13 1 1
K338R —0.685 Neutral 0.05 2 1 V3377G —6.124 Deleterious —2.51 9 1
A339V —0.465 Neutral 0.07 1 1 Q3390R —0.324 Neutral —0.33 4 1
E347D —0.548 Neutral ~0.39 6 1 N3405L —4.454 Deleterious —0.05 0 5
H417Y 0.379 Neutral 0.26 7 1 P3447S -1.913 Neutral -1.7 9 1
S443P ~0.678 Neutral ~0.23 2 1 T3453A —0.882 Neutral —0.83 7 1
G519S —0.633 Neutral ~1.2 8 4 V3475F —2.291 Neutral —1.42 9 1
Q575R —0.331 Neutral —0.49 6 3 K3499R —0.421 Neutral —0.25 2 5
E633D -0.233 Neutral -0.37 7 5 L3606F —1.432 Neutral -1 6 14
658K 0707 Neutral —0.44 . 1 13618T ~1.397 Neutral —1.49 7 1
G662R _1.425 Neutral ~0.35 7 1 M3655I 0.174 Neutral —0.75 7 1
Q676P —0.531 Neutral _0.58 7 69 D3681N —0.466 Neutral —1.11 7 1
V682L 0.035 Neutral ~1.02 7 1 L3711F —0.348 Neutral —1.21 7 2
T8821 —0.691 Neutral —0.1 2 1 13731T —-0.744 Neutral —2.36 9 2
P892S 0.996 Neutral ~1.35 7 1 V3759F —1.765 Neutral —1.52 9 1
E940D 0.515 Neutral —0.41 4 1 E3909G —3.759 Deleterious -1.17 9 1
G989V 0.35 Neutral —0.36 5 1 E3962K —0.041 Neutral -0.34 3 1
D1036G —0.887 Neutral —1.54 8 1 S3983F —2.722 Deleterious —0.34 7 2
P1054L ~1.268 Neutral —0.44 0 2 R3993C —6.175 Deleterious —0.86 5 1
T1055I1 —0.496 Neutral ~0.38 2 3 R3993L —5.422 Deleterious -0.3 7 1
E1126D —0.535 Neutral —0.52 6 1 K4069T —2.268 Neutral —0.48 6 1
P11588 ~0.909 Neutral -1.75 9 5 V40731 —0.106 Neutral —0.55 8 1
H1160Y 0.734 Neutral 0.11 4 3 K4081R —0.921 Neutral —0.33 7 1
V1211F —0.667 Neutral —0.7 5 1 M41161 —0.46 Neutral —0.74 5 1
E1251K —0.511 Neutral —0.7 6 1 K4176N 0.651 Neutral —0.36 3 1
A1268T 0.092 Neutral —0.78 4 2 V41811 —0.046 Neutral 0.7 7 1
A1283V —0.232 Neutral ~0.15 2 2 A4271V —3.278 Deleterious -0.25 1 1
A1298V 0.22 Neutral —0.01 1 1 A4273V —3.349 Deleterious -0.23 1 1
T14291 0.457 Neutral -0.5 5 1 K4451N —0.49 Neutral —0.65 2 2
A1432V 0.864 Neutral 0.07 2 1 K4483N —1.326 Neutral —0.42 4 1
S15341 0.319 Neutral 0.36 1 7 A4487V 0.357 Neutral —0.24 2 1
11551T —0.057 Neutral -1.98 4 1 A4489V —2.346 Neutral —0.31 1 10
T1573A —2.402 Neutral —1.47 9 1 D4532G —3.086 Deleterious —1.08 6 1
M15881 ~0.746 Neutral -0.08 0 2 A4577V -1.878 Neutral -0.17 4 1
D1625Y -2.143 Neutral 0.01 2 2 M45881 -1.074 Neutral —0.81 8 1
$1733G ~1.551 Neutral -1.07 8 2 14593L 0.213 Neutral —0.9 7 1
M17691 —0.349 Neutral ~0.11 5 3 E4670D —0.609 Neutral —0.59 5 2
A1812D —0.753 Neutral —0.63 3 6 P4715L —0.446 Neutral —0.83 6 359
T18221 —0.406 Neutral 0.1 0 1 L47211 —1.085 Neutral —1.29 7 7
L1853F ~0.808 Neutral ~1.19 6 1 V4746A —2.528 Deleterious —2.01 9 1
T1854A -0.326 Neutral —1.28 8 1 M48551 —-1.728 Neutral —0.81 8 3
T18541 -0.193 Neutral -0.25 3 1 CA856F —0.483 Neutral —0.21 3 1
T18741 ~1.364 Neutral ~0.16 3 1 L5030F —2.739 Deleterious  —0.99 7 3
D1939G -0.936 Neutral -1.28 6 1 T5035I —0.622 Neutral —0.43 2 1
D1940Y -0.872 Neutral -0.16 2 1 T5036M ~1.529 Neutral -0.29 2 1
Q1943H —0.464 Neutral —0.78 6 1 M50601 -0.117 Neutral —0.56 7 1
K1973R —0.294 Neutral —0.37 1 1 A5091S —1.821 Neutral —0.82 9 2
S2015R -0.501 Neutral -0.17 0 5 Q5214H 1.016 Neutral —0.77 6 2
T2016K -0.166 Neutral —0.86 4 10 V52721 —0.551 Neutral -0.17 2 18
K2029E —0.63 Neutral ~05 6 1 D5285Y —1.381 Neutral 0.27 3 2
K2029N ~0.431 Neutral —0.64 2 1 T53001 —0.542 Neutral —0.42 4 1
P2046L ~1.038 Neutral —0.65 5 3 S§5305L —2.332 Neutral 0.22 4 1
T2093I1 0.565 Neutral 0.1 4 1 P5377S —0.897 Neutral -1.73 9 2
$2103F —0.372 Neutral 0.24 6 1 H5488Y 0.534 Neutral 0.19 7 1
12146P ~1.386 Neutral —1.61 7 1 E5492Q —2.053 Neutral —0.7 7 1
$2242P 0.105 Neutral ~0.06 3 1 G5530C —2.742 Deleterious —0.82 4 4
12307T —0.03 Neutral —2.34 8 1 H5569R 1.004 Neutral —0.1 5 1
12323V ~0.361 Neutral —1.47 8 1 V5571F -1.592 Neutral —1.62 8 2
H2357Y 0.301 Neutral 0.38 7 3 Y5577H —0.845 Neutral —1.53 7 2
S2488F 2.899 Neutral ~0.05 2 1 S5583T —0.858 Neutral —0.66 4 1
P5624L —5.36 Deleterious  —0.63 7 2

(continued on next page)
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Table 8 (continued)

Substitution =~ PROVEAN score  Type AAG prediction  RI Freq.
R5766Q 0.366 Neutral —0.91 8 1
F5823L —3.989 Deleterious —-1.17 5 1
A5926S 0.351 Neutral —1.08 10 1
N5928H -0.711 Neutral —-0.77 9 1
K5957R —0.861 Neutral —0.09 0 1
I5970K —1.93 Neutral —2.18 9 1
M59971 —0.985 Neutral —0.96 8 1
G6039V —6.16 Deleterious -0.14 1 1
A6044V 2.2 Neutral 0.14 2 1
P6065S 0.176 Neutral —1.67 8 2
L6082F —0.771 Neutral —1.04 6 1
R6088C —5.465 Deleterious —-1.2 7 3
L6102F -1.397 Neutral —1.05 4 67
S6180R —1.897 Neutral 0.16 4 1
A6199S —2.053 Neutral —0.62 8 1
D6249Y 0.823 Neutral -0.16 3 1
K6274N —0.353 Neutral -0.18 3 3
T62971 —0.448 Neutral —0.8 3 45
N6313D —3.422 Deleterious —0.62 7 1
P6368L —6.762 Deleterious —0.79 6 1
V6385L —0.789 Neutral —1.03 7 3
K6464N —1.404 Neutral —-0.42 2 1
T65001 -1.557 Neutral —0.42 5 1
A6533V —0.465 Neutral -0.35 5 3
D6580Y —0.868 Neutral —0.59 5 1
G6581D —2.423 Neutral -1.12 7 2
A6589V —0.154 Neutral -0.17 3 1
V6600A —2.262 Neutral —1.84 9 4
L6614F —1.53 Neutral —1.28 7 1
A6623T 0.442 Neutral —0.76 6 1
V66881 —0.141 Neutral —0.49 4 1
M67231 —0.049 Neutral —0.85 6 1
C6742Y —0.068 Neutral -0.18 0 1
D6900Y —3.735 Deleterious —0.41 1 1
L6909F —0.541 Neutral —1.04 5 1
A6914S -0.017 Neutral —1.04 5 2
A6914V —0.428 Neutral —-0.03 1 1
K6958R —0.492 Neutral -0.17 5 2
P7034L 0.713 Neutral —0.88 5 1
N7083D -1.153 Neutral —0.42 2 1

The substitutions with either high PROVEAN score (< — 2.5, type: deleterious)
or large increase stability (AAG < — 0.5) or both are shown in bold.

respectively. In ORF7b, ORF8, and M proteins, deleterious substitutions
occur only in 2nd position, whereas in case of ORF6 and ORF10 it is in
3rd and 1st places, respectively. For all other cases, deleterious sub-
stitutions are observed either in any two or all three codon positions.

We also predict the stability impact of single point mutations, where
most of the substitutions show a large decrease in stability. We find a
total of 32 single point deleterious substitutions (7 from structural
proteins) out of total 57 with large decrease in stability (AAG < — 0.5).
We highlight all the functional domains of all such non-synonymous
deleterious substitutions in Table 11. Additionally, we study the
changes in physicochemical properties during such substitutions. A few
numbers of substitution leads to change physicochemical property both
in hydropathy class and side-chain structural classes (Table 11).

The ORF1ab protein consists of several non-structural polyproteins
(NSP1-NSP16). A few deleterious substitutions are detected in putative
functional domains of those polyproteins. The 3-chymotrypsin-like
cysteine protease (3CLpro) and RNA-dependent RNA polymerase
(RdRp) regions located in NSP3 and NSP12 polyproteins, respectively.
It’s playing a major role in anti viral drug discovery for SARS-CoV-2 and
other coronavirus diseases (ul Qamar et al., 2020; Anand et al., 2003;
Calligari et al., 2020). So, the mutations detected in these functional
domains might impact protein functions and stability. Three deleterious
substitutions are also detected both in 3CLpro and RdRp region of
ORFlab polyprotein. The few deleterious substitutions with large
decrease in stability changes are detected in other two important func-
tional domains, namely helicase in NSP13 (Chen et al., 2020; Yu et al.,
2012), and exonuclease in NSP14 (Yuen et al., 2020). These are also
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investigated to inhibit coronavirus (Chen et al., 2020; Shannon et al.,
2020; Yu et al., 2012).

The Membrane (M) protein is one of the most abundant structural
proteins among coronaviruses protein and has an interaction role with
other structural proteins (He et al., 2004; Naskalska et al., 2019). A
single deleterious substitution is observed in Topological domain
(Bianchi et al., 2020).

N protein contains two distinct RNA-binding domains- the N-termi-
nal domain (NTD, 44-179 residues) and the C-terminal domain (CTD,
247-363 residues) (Zeng et al., 2020), responsible for RNA binding and
oligomerization, respectively. These two regions are connected by an
intrinsically disordered central Ser/Arg (SR)-rich linker (Kang et al.,
2020), which is responsible for primary phosphorylation. The study on
the Nucleocapsid protein of other coronaviruses, several residues of N-
terminal domain, is associated with RNA binding and virus infectivity
(Saikatendu et al., 2007; Tan et al., 2006; Grossoehme et al., 2009).
Among the observed seven deleterious substitutions in N protein, we
observe 2 in NTD, 5 in SR-rich linker, and 2 in CTD functional domain
(Kang et al., 2020).

The S1 subunit (residues: 14-685) and the S2 subunit (residues:
686-1273) in Spike protein regions are responsible for receptor binding
and membrane fusion, respectively (Huang et al., 2020). The N-terminal
domain (residues: 14-305) belongs to the S1 subunit. The S2 subunit
consists of several sub-domains, including heptapeptide repeat sequence
1 (HR1) (residues: 912-984), HR2 (residues: 1163-1213), cytoplasm
domain (residues: 1237-1273) (Xia et al., 2020). We observe five
deleterious substitution in Spike protein, one each in S1 (N-terminal), S2
(HR-1), and S2 subunit in between HR1 and HR2. Two deleterious
substitution occur in S2 subunit (Cytoplasm domain) (Huang et al.,
2020; Walls et al., 2020).

SARS-CoV has three major transmembrane domains: (i) Trans-
membrane domain 1 (TM-1) (approx. residues: 34-56), (ii) trans-
membrane domain 2 (TM-2) (approx. residues: 77-99), and (iii)
transmembrane domain 3 (TM-3) (approx. residues: 103-125) available
mostly in ORF3a and C-terminal domain with about 160 amino acid
residues (Hofman, 1993; Zeng et al, 2004). In connection with
approximate residues of SARS-CoV, We observe four mutations in TM-1
and one in TM-2 domains of SARS-CoV-2 ORF3a protein. Four important
deleterious substitutions are observed in the Ion channels domain
(Domain II, residues: 91-133) (Issa et al., 2020), which is linked to its
pro-apoptotic function as observed for other SARS-coronavirus (Chan
et al., 2009; Lu et al., 2010). One of the observed mutations is W131C,
located in Cysteine rich region (cysteine-rich region overlaps the third
membrane-spanning domain) of ORF3a protein (Zeng et al., 2004). This
mutation further increases the Cysteine residue in that region that may
alter interchain disulfide linkages with the Spike protein of other viral
structural proteins. Additionally, two mutations in the C-terminal
domain are observed between the last two Cysteine residues (Zeng et al.,
2004).

Both the proteins ORF6 and ORF8 do not have any trans-membrane
regions, but ORF8 has an hydrophobic signal peptide (residues: 1-15)
and chain (residues: 61-121) (Alam et al., 2020). However, they play
significant roles in innate immune suppression during viral infection,
regulation of molecular functions, virus growth, replication, and host
interactions (Alam et al., 2020; Li et al., 2020; Mohammad et al., 2020).
A single deleterious substitution (E13D) is found in ORF6 protein and
two mutations in ORF8 protein, where one in the Hydrophobic region
(G8E) (Alam et al., 2020; Mohammad et al., 2020).

The domain of ORF7a protein of Indian SARS-CoV-2 consists of seven
(07) p strands (Alam et al., 2020). A similar result is reported for ORF7a
protein of SARS-CoV in (Nelson et al., 2005; Bartlam et al., 2007). It
consists of N-terminal signal peptide (residues: 1-15), luminal domain
(16-96), transmembrane segment (residues: 97-117), and a 5 residue
cytoplasmic tail. Considering the similar organizational domains of
SARS-CoV with SARS-CoV-2, three deleterious substitutions are identi-
fied in the luminal domain, two of them (G38V and P45L) are located
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Table 9
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The functional assessment of non-synonymous amino acid substitutions in four structural SARS-CoV-2 proteins (E, M, N, S). The functional assessment of mutation is
predicted on utilizing two different measures (PROVEAN score and stability value).

Protein Substitution PROVEAN score Type AAG prediction RI Freq.
E V62F 0 Neutral —1.65 8 1
V75F —1.414 Neutral —1.57 9 1
M Al42vV 0.18 Neutral 0.25 5 2
L29F —1.646 Neutral —0.91 7 1
A63V -1.937 Neutral 0.14 0 1
A69S —1.991 Neutral —0.82 9 1
V70F —1.365 Neutral —1.66 10 1
R107L —4.03 Deleterious -0.33 4 1
H125Y 0.799 Neutral 0.06 5 1
N S$194L —4.272 Deleterious —-0.38 2 158
P13L —1.23 Neutral —0.48 3 23
S202N —0.404 Neutral -0.78 0 20
R203K —1.604 Neutral -0.93 6 14
R203K —1.604 Neutral -0.93 6 14
G204R —1.656 Neutral —0.52 5 14
T2051 -1.562 Neutral —0.53 3 6
$193I —2.755 Deleterious —0.36 2 4
G978 —1.98 Neutral -1.33 8 3
A156S —0.457 Neutral -0.83 9 3
P6T —0.223 Neutral -1.1 8 2
S33I —1.372 Neutral 0.27 6 2
$1801 —3.465 Deleterious —0.14 3 2
M2341 0.044 Neutral —-0.03 1 2
D22N —0.541 Neutral -1.4 6 1
D22N —0.541 Neutral —-1.4 6 1
E31Q 0.054 Neutral -0.7 5 1
G34W —1.609 Neutral -0.13 2 1
R92S —3.718 Deleterious —1.23 6 1
G120R —0.733 Neutral -0.29 1 1
A134V —2.811 Deleterious -0.12 2 1
L139F —0.697 Neutral -0.85 8 1
D144Y -1.764 Neutral 0.2 1 1
A152S 1.463 Neutral —0.92 9 1
R191L —3.269 Deleterious —0.58 3 1
R203G —3.247 Deleterious -1.6 7 1
R203K —1.604 Neutral —0.93 6 1
G204R —1.656 Neutral —0.52 5 1
G204T -1.76 Neutral —0.96 7 1
A218V 0.171 Neutral 0.21 1 1
M2341 0.044 Neutral —0.03 1 1
G236C —2.269 Neutral -0.27 5 1
H300Y -1.577 Neutral 0.46 5 1
P302S —4.043 Deleterious —-1.3 7 1
P344s —4.031 Deleterious —1.46 8 1
D348Y —0.588 Neutral —0.41 2 1
T3621 -1.722 Neutral —0.35 3 1
T393L —0.613 Neutral 0.1 2 1
S D614G 0.598 Neutral -0.93 3 405
L54F —0.435 Neutral -1.14 4 80
E583D —-0.819 Neutral —0.44 3 14
R78M 0.986 Neutral -0.84 7 12
T5721 —0.649 Neutral 0 3 10
Q677H 0.002 Neutral —0.67 5 5
LS5F —-1.126 Neutral —0.98 3 3
Q690H —0.796 Neutral —0.86 6 3
S12F —0.65 Neutral 0.14 2 2
W152L —0.159 Neutral —0.89 7 2
S1551 —0.503 Neutral 0 4 2
M1771 0.579 Neutral —0.61 5 2
G181A 0.396 Neutral —-0.58 1 2
W258L —1.084 Neutral —0.65 7 2
A706S 0.183 Neutral —0.85 9 2
A879S —0.361 Neutral 0.54 7 2
H1083Q —1.006 Neutral —0.34 5 2
C1243F —4.53 Deleterious —0.09 2 2
F2L —0.902 Neutral -1.22 9 1
S13I —-1.187 Neutral 0.27 0 1
Y28H —0.443 Neutral —1.38 4 1
G35V —2.112 Neutral —0.68 7 1
T761 —0.115 Neutral —0.72 6 1
K97Q —0.113 Neutral —-0.92 7 1
N148Y -0.177 Neutral 0.1 4 1
M1531 0.244 Neutral —-0.98 6 1
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Table 9 (continued)
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Protein Substitution PROVEAN score Type AAG prediction RI Freq.
E156D 0.958 Neutral —-0.52 4 1
S1621 0.231 Neutral 0.02 1 1
Q173H —0.299 Neutral -1.02 7 1
S255F —0.423 Neutral —-0.03 3 1
G261S 0.485 Neutral -1.13 8 1
A262S 0.154 Neutral —0.64 9 1
Q271R —0.48 Neutral -0.27 5 1
C301F —8.689 Deleterious 0.2 4 1
E471Q 0.445 Neutral —0.59 7 1
D574Y 0.858 Neutral 0.36 2 1
Q613H -0.917 Neutral —0.86 6 1
H655Y —-0.814 Neutral 0.08 4 1
A688V 0.498 Neutral -0.37 5 1
A701V 0.597 Neutral —0.25 4 1
M7311 —0.598 Neutral -0.25 3 1
K795Q 0.072 Neutral -0.61 3 1
P809S 1.024 Neutral -1.55 8 1
T8271 —0.378 Neutral —-0.45 6 1
A892V -1.901 Neutral 0.2 1 1
A930V —3.727 Deleterious -0.2 3 1
T10771 —-1.511 Neutral -0.13 1 1
V1104L —0.604 Neutral —0.7 1 1
D1153Y —3.275 Deleterious —1.52 2 1
K1181R —0.522 Neutral —0.48 7 1
N1187K —0.467 Neutral -0.29 4 1
Q1201K 1.409 Neutral -0.29 3 1
C1250F —5.057 Deleterious —0.09 2 1
D1259Y 3.924 Neutral -0.21 3 1

The substitutions with either high PROVEAN score (< — 2.5, type: deleterious) or large increase stability (AAG < — 0.5) or both are shown in bold.

Table 10

The functional assessment of non-synonymous amino acid substitutions in six SARS-CoV-2 accessories proteins (ORF3a, ORF6, ORF7a, ORF7b, ORF8, ORF10). The
functional assessment of mutation is predicted on utilizing two different measures (PROVEAN score and stability value).

Protein Substitution PROVEAN score Type AAG prediction RI Freq.
ORF3a G18V -1.571 Neutral —0.28 6 1
K21Q 0.657 Neutral —0.47 1 1
A23S -1.638 Neutral —0.86 9 2
135T —2.619 Deleterious —2.39 9 1
L41F —2.724 Deleterious —1.08 7 4
P42R —5.495 Deleterious —0.96 7 1
V501 —0.657 Neutral —0.84 8 1
L53F —3.962 Deleterious —-1.09 7 1
A54S —1.638 Neutral —0.6 8 1
Q57H —3.286 Deleterious -0.9 7 234
K66N 3.486 Neutral -0.16 1 1
R68I —1.562 Neutral 0.17 3 1
V77F 2.638 Neutral -1.37 8 1
L86W —3.943 Deleterious -1.13 1 1
H93Y —3.943 Deleterious 0.3 6 3
A103V —2.876 Deleterious 0.2 5 1
L108F —3.4 Deleterious —1.24 6 1
W131C —7.752 Deleterious -1.29 8 1
R134L —1.543 Neutral —0.47 9 1
A143S 0.724 Neutral —0.95 9 1
T1511 —4.886 Deleterious —0.29 0 2
D155Y —6.829 Deleterious 0.21 0 2
S171L —2.238 Neutral -0.22 0 2
T1751 2.562 Neutral —0.04 4 1
ORF6 E13D —2.786 Deleterious -0.24 4 1
ORF7a Q94E -1 Neutral —-0.24 2 2
E95K —2.614 Deleterious —0.6 8 2
G38V —6.526 Deleterious —0.4 4 1
P45L -10 Deleterious —0.7 4 1
V711 —0.667 Neutral —0.24 5 1
L116F —1.263 Neutral —0.85 7 1
ORF7b S31L —6 Deleterious 0.23 1 1
A43T 0 Neutral —0.44 5 1
ORF8 L84S 2.333 Neutral —2.29 8 19
GSE —3.056 Deleterious —-0.6 1 1
T12N —1.056 Neutral —0.71 1 1
A14S 0.833 Neutral —-0.47 6 1
A51V —1.222 Neutral —0.06 2 1
V62L -0.722 Neutral —-0.8 5 1
A65V 1.222 Neutral 0.02 1 1
P85L —8.778 Deleterious —0.73 7 1
I121L —0.278 Neutral —0.79 5 1
ORF10 L37F NA Deleterious —0.99 6 1
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Table 11

The 57 deleterious amino acid substitutions in different SARS-CoV-2 proteins
highlighted with the putative functional domain and physicochemical property
changes. The mutations with large decrease stability (AAG < — 0.5) are shown

in bold.

Protein Substitution ~ Putative Hydropathy Chemical
functional change property
domain change

ORFlab  A2732D NSP3 Hydrophobic to  Aliphatic to

charge acidic
G3072C NSP4 Hydrophilic Aliphatic to
(unchanged) sulfur
containing
L3338F NSP5 (3CLpro) Hydrophobic Aliphatic to
(unchanged) aromatic
V3377G NSP5 (3CLpro) Hydrophobic to  Aliphatic to
hydrophilic aliphatic
N3405L NSP5 (3CLpro) Hydrophilic to Acidic amide to
hydrophobic aliphatic
E3909G NSP7 Charge to Acidic to
hydrophilic aliphatic
S3983F NSP8 Hydrophilic to Hydroxyl
hydrophobic containing to
aromatic
R3993C NSP8 Charge to Basic to sulfur
hydrophilic containing
R3993L NSP8 Charge to Basic to
hydrophilic aliphatic
A4271V NSP10 Hydrophobic Aliphatic
(unchanged) (unchanged)
A4273V NSP10 Hydrophobic Aliphatic
(unchanged) (unchanged)
D4532G NSP12 (RdRp) Charge to Acidic to
hydrophilic aliphatic
V4746A NSP12 (RdRp) Hydrophobic Aliphatic
(unchanged) (unchanged)
L5030F NSP12 (RdRp) Hydrophobic Aliphatic to
(unchanged) aromatic
G5530C NSP13 (helicase)  Hydrophilic Aliphatic to
(unchanged) sulfur
containing
P5624L NSP13 (helicase) ~ Hydrophobic Cyclic to
(unchanged) aliphatic
F5823L NSP13 (helicase)  Hydrophobic Aromatic to
(unchanged) aliphatic
G6039V NSP14 Hydrophilic to Aliphatic to
(exonuclease) hydrophobic aliphatic
R6088C NSP14 Charge to Basic to sulfur
(exonuclease) hydrophilic containing
N6313D NSP14 Hydrophilic to Acidic amide to
(exonuclease) charge acidic
P6368L NSP14 Hydrophobic Cyclic to
(exonuclease) (unchanged) aliphatic
D6900Y NSP16 Charge to Acidic to
hydrophobic aromatic

M R107L Topological Charge to Basic to
domain hydrophobic aliphatic

N R92S NTD Charge to Basic to

hydrophilic hydroxyl
containing
A134V NTD Hydrophobic Aliphatic
(unchanged) (unchanged)
$1801 SR-rich linker Hydrophilic Hydroxyl
(unchanged) containing to
aliphatic
R191L SR-rich linker Charge to Basic to
hydrophobic aliphatic
S1931 SR-rich linker Hydrophilic to Hydroxyl
hydrophobic containing to
aliphatic
S194L SR-rich linker Hydrophilic to Hydroxyl
hydrophobic containing to
aliphatic
R203G SR-rich linker Charge to Basic to
hydrophilic aliphatic
P302S CTD Hydrophobic to
hydrophilic

Table 11 (continued)
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Protein Substitution ~ Putative Hydropathy Chemical
functional change property
domain change

Cyclic to
hydroxyl
containing
P344S CTD Hydrophobic to  Cyclic to
hydrophilic hydroxyl
containing
S C301F S1 (N-terminal) Hydrophilic Sulfur
(unchanged) containing to
aromatic
A930V S2 (HR-1) Hydrophobic Aliphatic
(unchanged) (unchanged)
D1153Y S2 (between HR1  Charge to Acidic to
and HR2) hydrophilic aromatic
C1243F S2 (cytoplasm Hydrophilic to Sulfur
domain) hydrophobic containing to
aromatic
C1250F S2 (cytoplasm Hydrophilic to Sulfur
domain) hydrophobic containing to
aromatic
ORF3a 135T Hydrophobic to  Aliphatic to
hydrophilic hydroxyl
containing
L41F TM-1 Hydrophobic Aliphatic to
(unchanged) aromatic
P42R TM-1 Hydrophobic to Cyclic to basic
charge
L53F TM-1 Hydrophobic Aliphatic to
(unchanged) aromatic
Q57H TM-1 Hydrophilic to Acidic amide to
charge basic
L86W TM-2 Hydrophobic Aliphatic to
(unchanged) aromatic
H93Y Ion channels Charge to Basic to
hydrophilic aromatic
A103V Ion channels Hydrophobic Aliphatic
(unchanged) (unchanged)
L108F Ion channels Hydrophobic Aliphatic to
(unchanged) aromatic
W131C Ion channels Hydrophobic to  Aromatic to
hydrophilic sulfur
containing
T1511 C-terminal Hydrophilic to Hydroxyl
hydrophobic containing to
aliphatic
D155Y C-terminal Charge to Acidic to
hydrophilic aromatic

ORF6 E13D Charge Acidic

(unchanged) (unchanged)

ORF7a G38V Luminal domain Hydrophilic Aliphatic to

(unchanged) aliphatic
P45L Luminal domain Hydrophobic Cyclic to
(unchanged) aliphatic
E95K Luminal domain Charge Acidic to basic
(unchanged)
ORF7b S31L Hydrophilic to Hydroxyl
hydrophobic containing to
aliphatic

ORF8 G8E N-terminal Hydrophilic to Aliphatic to
(hydrophobic charge acidic
region)

P85L Hydrophobic Cyclic to
(unchanged) aliphatic

ORF10 L37F Hydrophobic Aliphatic to
(unchanged) aromatic

before and after the 3rd g strand.

4. Conclusion

In this study, we thoroughly investigated and characterized muta-
tions observed in Indian SARS-CoV-2 genome. We reported variants and
mutations observed in all the SARS-CoV-2 proteins belong to both
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synonymous and non-synonymous categories. We highlighted position-
specific mutations in the codons. Non-synonymous amino acid sub-
stitutions are analyzed further to predict the functional stability of the
proteins.

Our study reported a total of 536 mutated positions in the coding
region of SARS-CoV-2 proteins. The ORF3a happens to be the mostly
mutated protein (~4% of total length), followed by three structural
proteins (N, M, S). However, both in ORF3a and N proteins, we observed
fewer mutation types compared to ORFlab and S. The number of vari-
ants and mutations per variant observed to be maximum for ORFlab
followed by Spike protein. Interestingly, counts for non-synonymous
mutations are higher compared to synonymous mutations (except for
M protein). Mutations in E and ORF7b proteins are all non-synonymous.

Our analysis further reveals that most of the deleterious substitutions
with decrease in stability occur in the 2nd position (codon) and putative
functional domains. Higher quantity of single point mutation, G > T, is
observed both in 1st and 3rd positions in the codon, whereas mutation
C > T, shows maximum occurrence in 2nd codon position. The conclu-
sion drawn purely based on computational analysis, needs experimental
confirmation. Though we restricted our current study on Indian isolates,
it may easily be extended to any other strains. Overall analysis might
help in better understanding of the possible role in virulence, infectivity,
and virus release in SARS-CoV-2. A further comparative study on the
significant mutations observed in Indian isolates may be performed with
the strains collected from the rest of the world.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.genrep.2021.101044.
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