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Changes in primary productivity have the potential to substantially alter food
webs, with positive outcomes for some species and negative outcomes for
others. Understanding the environmental context and species traits that give
rise to these divergent outcomes is a major challenge to the generality of
both theoretical and applied ecology. In aquatic systems, nutrient-mediated
eutrophication has led to major declines in species diversity, motivating us
to seek terrestrial analogues using a large-mammal system across 598
000 km2 of the Canadian boreal forest. These forests are undergoing some of
the most rapid rates of land-use change on Earth and are home to declining
caribou (Rangifer tarandus caribou) populations. Using satellite-derived
estimates of primary productivity, coupled with estimates of moose (Alces
alces) andwolf (Canis lupus) abundance, we used path analyses to discriminate
among hypotheses explaining how habitat alteration can affect caribou popu-
lation growth. Hypotheses included food limitation, resource dominance by
moose over caribou, and apparent competitionwith predators shared between
moose and caribou. Results support apparent competition and yield estimates
of wolf densities (1.8 individuals 1000 km−2) abovewhich caribou populations
decline. Our multi-trophic analysis provides insight into the cascading effects
of habitat alteration from forest cutting that destabilize terrestrial predator–
prey dynamics. Finally, the path analysis highlights why conservation actions
directed at the proximate cause of caribou decline have beenmore successful in
the near term than those directed further along the trophic chain.
1. Introduction
Processes that increase the energy or flow of nutrients through an ecosystem can
substantially alter the structure and composition of food webs [1]. At a global
scale, climate change and landscape transformation are having a combined,
enriching effect on ecosystems andmaking theworld more productive [2]. How-
ever, biological diversity increases with primary productivity at first and then
declines at higher levels of enrichment [3], giving rise to a ‘hump-shaped’
relationship between diversity and productivity [4]. In aquatic systems, increased
primary productivity is referred to as eutrophication, and is often associatedwith
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a loss of biological diversity. Eutrophication can eventually
push the downward trajectory of diversity far enough to
cause ecosystem collapse [5–7]. While the negative conse-
quences for aquatic systems and plant communities are well
established [5–8], it is much less clear how eutrophication
impacts terrestrial food webs dominated by large-mammalian
herbivores and carnivores.

One of theways inwhich eutrophication affects foodwebs is
through changes in consumer–resource interactions, including
competition and predation. Competition, in the context of
increasing productivity, typically explains why some species
dominate or are excluded from systems with limiting resources
[9]. Here, dominant competitors monopolize access to resources
for sub-dominant species through exploitative or interference
interactions, particularly when a species is able to persist at
lower resource availability than co-occurring species (sensu the
R* rule [9]). In some cases, increasingly favourable abiotic
conditions (i.e. fluxes of nutrients or energy) can intensify
competitive interactions (i.e. the stress-gradient hypothesis [10]).

In addition to affecting resource competition, increased
productivity may also lead to asymmetrical predation
among two prey via their shared predator. This process is
termed apparent competition [11] and occurs because one
prey has a higher intrinsic growth rate, with negative effects
of predators ‘spilling over’ onto a secondary prey [11,12]. In
systems where predator abundance is decoupled from the
abundance of secondary prey, the secondary prey can be
driven to extinction [13]. The secondary prey is a weaker com-
petitor because it cannot persist at the same rate of predation
as the primary prey, i.e. the secondary prey has a higher P*,
analogous to the R* of resource-mediated competition [14].

The impact of eutrophication on species interactions
within terrestrial food webs has critical implications for the
management of endangered species. The boreal forests of
North America are among the world’s largest biomes and
are undergoing rapid rates of land-use change, second only
to the tropics [15]. Climate change is also accelerating in the
northern latitudes of the boreal. These forests are home to
woodland caribou (Rangifer tarandus caribou), a sub-species
that is listed as threatened in Canada and is undergoing
rapid range contraction. Several caribou subpopulations in
southern Canada and the contiguous United States were
extirpated in recent years [16], and there has been a continued
recession of their southern range boundary [17,18].

While habitat alteration is a leading source of biodiversity
loss globally [19,20] and for caribou specifically [18,21–23], the
ultimate linkbetweencariboudeclines andprimaryproductivity
is less clear. The proximate cause of caribou decline—related to
lower adult survival and calf recruitment—is typically associ-
ated with predation from wolves (Canis lupus) and other large
carnivores [24–28]. However, a paradox exists as towhy caribou
may not benefit from the heightened productivity of early seral
forage, as do numerous other herbivores [29–34]. Caribou may
be declining because of the transformation of mature forest
stands into more productive early seral forage. By removing
the tree canopy through forest harvesting, greatly increased
levels of sunlight provide the conditions needed for understory
plants to thrive [35]. These plants provide forage that benefit pri-
mary prey such as moose (Alces alces), deer (Odocoileus sp.) and
their predators [36]. These predators then have a spillover
effect on the naturally rarer caribou [25], which have a lower
intrinsic rate of increase relative to moose [37,38], giving rise to
apparent competition between moose and caribou.
The pathway of habitat alteration leading to increased
productivity that favours primary prey and shared predators
is complex. Although studies have evaluated individual
linkages along this trophic chain [24,26,34,39,40], amore fulsome
approach is to track abundance at each trophic level simul-
taneously. This approach also allows for explicit contrasts
among a suite of potential mechanisms. For example, habitat
alteration increases the vagility of predators [41] by creating
movement corridors associatedwith forest clearing that can aug-
ment predator foraging efficiency, leading to declines in prey
species [28,39]. Similarly, habitat alteration can remove winter
forage for caribou, who specialize on lichens that are lost when
forested stands are harvested. And finally, increased early seral
forage through forest clearing may in fact benefit both caribou
andmoose, ashasbeen shownwithotherungulates [42].Clearly,
the potential mechanisms are diverse, and clarifying the relative
support among such pathways will be important to implement
evidence-based management.

Here, we contrasted direct effects of habitat alteration to
effects mediated by increases in primary productivity, using the
response of two primary consumers—moose and caribou—and
their sharedpredator,wolves.We evaluated support for alternate
hypotheses that potentially affected caribou population growth
rates (λ): (i) habitat alteration—where resource extraction has
removed forage, leading to food limitation and lower growth
rates in caribou (sensu [24]), or (ii) habitat alteration that facilitated
predator vagility, which can lead to increased foraging efficiency
of wolves on caribou [41]; (iii) resource dominance—where
higher productivity led to a numerical increase in moose,
and consequently lower caribou λ because caribou are a
weaker competitor for a shared and limiting resource [9,43];
(iv) apparent competition—where productivity is positively
linked to moose and therefore wolf abundance [44], leading to
reduced caribou λ [45]; (v) increased productivity—where both
moose and caribou benefit from increased forage [29,33].

To tackle these hypotheses, we considered landscape-scale
variation in primary productivity, moose and wolf densities,
and caribou λ across a 598 000-km2 study area. Although other
studies have quantified linkages across some of these trophic
levels [24,34,45], our design attempts to capture each trophic
level simultaneouslyacross a broad gradient of habitat alteration
andproductivity,while explicitly contrastingalternativehypoth-
eses. From an applied perspective, this design also allowed us to
validate a previously determined threshold for wolf abundance
leading to dynamically stable caribou populations [46], which
has informed recovery policies for woodland caribou [47].
2. Methods
(a) Experimental design and analysis
Our design was based on a mensurative experiment [48] where
we estimated response metrics across a broad a range of habitat
alteration, given existing landscape conditions. Habitat alteration
generally decreases with increasing latitude, which introduces
a potential confound with climate and by extension, primary
productivity. However, jurisdictional boundaries with differing
policies on resource management can provide contrasts, even at
similar latitude (sensu [49]). In our study system, boundaries
between Saskatchewan and Alberta, as well as between British
Columbia (BC) andNorthwest Territories (NT), provide responses
from similar latitudes but vastly different amounts of habitat
alteration (figure 1). These contrasts partially decouple potential
confounds between habitat alteration and latitude.
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Figure 1. Wolf survey units (WSU) used to evaluate the relationship between productivity, moose density, wolf density and caribou population growth rates in the
boreal forest of western Canada. The colour gradient represent the per cent anthropogenic habitat alteration. Light grey shading is boreal caribou range, and dark
grey shading represents focal areas where caribou demographic data were collected. Numbers for each WSU correspond to the raw data labels in GitHub (https://
github.com/ctlamb/borealcaribou-pathanalysis/blob/master/data/final.csv). (Online version in colour.)
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To establish the link between habitat alteration and primary
productivity, we first quantified a time-series relationship
between forestry cutting units and the Enhanced Vegetation
Index (EVI; [50]), which was our metric of primary productivity.
Subsequently, we used a path analysis that encompassed three
trophic levels: EVI, herbivores (i.e. moose density and caribou
λ), and wolf density. We did not explicitly link habitat alteration
to primary productivity in the path analysis because this would
be an oversimplification of the multiple interacting factors that
affect primary productivity. Landcover type and geographical
location were overriding components affecting changes in
primary productivity across the study area (electronic supple-
mentary material, appendix S2), even though habitat alteration
and productivity were positively correlated (r = 0.64, electronic
supplementary material, figure S1). By contrast, there is stronger
empirical support to test direct paths among vegetation, moose,
wolves and caribou [41,44,46,51,52].

The path analysis was conducted across the 598 000-km2 study
area located in the boreal shield and boreal plains of western
Canada, where 14 survey units were sampled for the abundance
of wolves (wolf survey units (WSUs); figure 1). These WSUs
were overlaid onto polygons where moose densities and popu-
lation λ of caribou were estimated separately as part of
provincial monitoring programmes. WSU boundaries were also
used to estimate primary productivity, and ranged in size from
3441 to 7266 km2 (mean = 4940 km2).

(b) Environmental data
(i) Habitat alteration
We estimated the proportion of each WSU covered by anthropo-
genic habitat alteration using 2008 to 2010 30-m resolution
LANDSAT imagery interpreted by [47]. Linear disturbances
were collected as polylines and buffered by 20 m [41]. Polygonal
disturbances, such as wellsites and forestry cut blocks were then
incorporated to estimate the total area directly altered by anthro-
pogenic features. While 30-m imagery resolution does not
capture smaller habitat alteration features, such as seismic
exploration lines, they consistently estimate habitat alteration
across the entire region of interest [53].
(ii) Vegetation—change in Enhanced Vegetation Index
( primary productivity)

We sourced a MODIS 500-m EVI product between 2000 and
2018 from https://developers.google.com/earth-engine/data-
sets/catalog/MODIS_006_MOD13A1. We calculated the primary
productivityof eachWSUusing the change inEnhancedVegetation
Index (ΔEVI) from summer (when deciduous growth is peak green:
1 July–1August) to autumn (when deciduous growth has browned,
or fallen off, but snow is not common: 1 September–1 October) for
each year, which isolated deciduous growth [50]. We accessed and
manipulated these data using Google Earth Engine. We averaged
ΔEVI values across the five years previous to the year of the
moose census bounded by the WSU, because ΔEVI fluctuates
annually and there are spatial gaps in the satellite coverage.

(c) Demographic data
(i) Moose
We used available population density estimates to quantify the
moose density within areas overlapping the WSUs. Aerial
moose surveys were conducted by provincial governments, aca-
demic or industry partners between 2008 and 2018 (electronic
supplementary material, appendix S3). In some cases, WSUs
overlapped multiple moose survey polygons, in which case we
calculated density based on the weighted average of each poly-
gon’s area. Moose survey data were not available in southern
Saskatchewan. We, therefore, estimated the density of moose
using remote wildlife cameras, and corrected camera densities
to aerial survey densities using a correlation analysis conducted
on camera and aerial survey data collected across Alberta
(electronic supplementary material, figure S3-1).

(ii) Wolves
Wolf densities were estimated in WSUs using aerial surveys con-
ducted from 2015 to 2020. Two WSUs had considerable spatial
overlap, but wolves were surveyed in separate years (2016 and
2017). We considered these two WSUs as independent samples.
Aerial surveys were designed based on an a priori power analysis
that sought to optimize aerial transect spacing to maximize the

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD13A1
https://github.com/ctlamb/borealcaribou-pathanalysis/blob/master/data/final.csv
https://github.com/ctlamb/borealcaribou-pathanalysis/blob/master/data/final.csv
https://github.com/ctlamb/borealcaribou-pathanalysis/blob/master/data/final.csv


caribouA B C

D E F

vegetation

habitat alteration habitat alteration habitat alteration

vegetation vegetation

moose

wolf wolf wolfmoose
moose

caribou caribou

caribou

vegetation

habitat alteration habitat alteration habitat alteration

vegetation vegetation

moose

wolf wolf wolfmoose
moose

caribou caribou
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detection of wolves and their tracks in snow. A full description of
survey methodology is provided in the electronic supplementary
material, appendix S4, but can be summarized as using empirical
wolf movement data based on 5-min locations from [41] coupled
with simulations to clarify the trade-off between how wide trans-
ect spacing could be in relation to how much a wolf travels over a
given window of time. Based on these analyses, the sampling
intensity was set at 3-km spacing (electronic supplementary
material, figure S4-1).

(iii) Caribou
We obtained caribou demographic data published from pro-
vincial and territorial monitoring programmes, updated with
additional estimates that overlap our study period. Estimates of
annual adult female survival, calf recruitment and the number
of individuals monitored to obtain these estimates were collected
from the following caribou ranges: East Side of the Athabasca
River, Cold Lake (Alberta), Cold Lake (Saskatchewan), Saskatch-
ewan boreal shield, Calendar, Chinchaga (British Columbia),
Clarke, Hay River Lowlands, Pine Point-Buffalo Lake, South
Dehcho, North Dehcho and Yates. We used recruitment and sur-
vival rates to estimate the finite population growth rate λ [54],
using the equation of [55] adjusted by [56] which accounts for
the delayed age at first parturition of caribou. The equation
is λ = S/(1 – R), R = (X/2)/(1 + (X/2)), where S = adult female
survival, R = recruitment, X = the ratio of juveniles per adult
female. This adjustment is algebraically identical to a Lefkovitch
stage matrix with three stages [56], and is the convention for
boreal caribou population monitoring in much of Canada [57].
We calculated the geometric mean λ from three years preceding
each wolf survey, to account for the fact that juvenile recruitment
can be highly variable from year to year [58], and a multi-year
average is more likely to represent landscape conditions.
(d) Analyses
(i) Habitat alteration influence on primary productivity
We assessed the influence of habitat alteration on primary pro-
ductivity within 2956 forestry cut blocks that were greater than
0.25 km2, which also is the resolution of the primary productivity
data (ΔEVI). We conducted this analysis across 598 000 km2,
defined by the 100% minimum convex polygon of the 14 WSUs.
The vegetation index was at a 500-m resolution, thus we focused
on logging-related habitat alteration, as cut blocks are appropri-
ately sized for a 500-m pixel to measure changes, whereas linear
disturbances (most are less than 40-m wide) were not appropriate
for this analysis. We used cut blocks logged between 2003 and
2016,which provided at least threeyears of pre- andpost-alteration
data in which the 2000–2019 vegetation index data were available.
For each cut block we calculated a pre-disturbance baseline value,
and calculated the per cent divergence of all vegetation index
values (ranging from –10 to 16 years relative to alteration date)
from this baseline value.
(ii) Path analysis
We used path analysis to examine the causal relationships
between primary productivity (ΔEVI), moose density, wolf
density and caribou λ. Path analyses are appropriate when
independent variables are simultaneously treated as dependent
factors within one investigation. Hypothesized pathways
influencing caribou λ are shown in the directed acyclic graph
(DAG; figure 2), including: food limitation, where anthropo-
genic habitat alteration lowers caribou carrying capacity [24]
(figure 2a); increased predator vagility—where habitat alteration
increases wolf movement rates leading to increased predation
and a lower caribou λ [41,59] (figure 2b); resource dominance—
where vegetation limits both caribou and moose abundance,
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but moose, the stronger competitor, exert a negative influence on
caribou λ (figure 2c); apparent competition—where wolves are
supported by moose and exert a negative effect on caribou λ
(figure 2d ); a combined effect—where both food limitation
and apparent competition occur (figure 2e); and direct enrich-
ment—where caribou populations benefit from increased
primary productivity (figure 2f ) (sensu [29]).

We linear-transformed variables where appropriate to reduce
model complexity, and ensured that any transformations created
linear relationships among variables of interest along the paths.
We used directional separation (D-separation) to falsify our
multivariate causal hypotheses [60] following the approach of
[61]. Using the steps of D-separation, we first determined a set
of independent claims that were required to be true for the struc-
ture of the hypothesized DAG to be correct. Second, we
calculated a p-value associated with each of these claims using
linear models. As an example, consider the causal relationship
where A causes B which causes C, A→ B→C. An independent
claim required for this structure to be true would be that A has
no significant effect on C, after controlling for the effect of
B. The test of this would be to create a linear model of form
C∼A+ B, where p of A must be p > 0.05 for the claim to be
supported. Third, we used these probabilities to calculate
Fisher’s C statistic (−2Σ ln(P)), which follows a χ2 distribution
with 2k degrees of freedom, to calculate a single metric for the
D-separation test. A D-separation test with a p-value≤ 0.05 indicates
that the proposed correlation structure of the model differs from that
observed in the data, and the DAG is, therefore, rejected. As
suggested by [61], causal models which were not rejected were
compared using Akaike’s information criterion (AIC) [62] cor-
rected for small sample sizes (AICc). The direction and
strength of relationships for top-supported pathways were calcu-
lated by averaging standardized coefficients from competing
models (ΔAICc < 3) by their model weight. Finally, we used
1000 bootstrapped samples and the D-separation approach to
plot the relative support for each pathway. For each bootstrapped
sample we retained the top model (ΔAICc = 0) and plotted
the path.
(iii) Threshold for stable caribou populations
Bergerud & Elliot [46] proposed that caribou recruitment would
offset mortality up to a density of 6.5 wolves 1000 km−2. This
threshold was estimated by plotting the relationship of both
caribou mortality and recruitment as a function of wolf density,
and the intersection of these two curves corresponded to
6.5 wolves 1000 km−2. Using similar reasoning, we estimated
the wolf density at which caribou λ = 1, by intersecting the
y-intercept at 1 with the predicted relationship between wolf
abundance and caribou λ, which is equivalent to a value of
recruitment offsetting mortality. Furthermore, we extrapolated
this approach to moose, by estimating the moose density at
which caribou λ = 1. Regressions were bootstrapped (n = 1000)
to estimate the uncertainty of these thresholds.
3. Results
(a) Habitat alteration influence on primary productivity
Across 2956 forestry cut blocks (average = 0.62 km2 (95% confi-
dence interval (CI): 0.26–1.64)) we detected a consistent pattern
of increased ΔEVI following habitat alteration. ΔEVI decreased
immediately after alteration, but within a year values exceed
pre-alteration values, and these effects persisted at least 16
years (the maximum time we were able to assess these data).
ΔEVI values remain 15–45% higher than pre-alteration values
2–16 years post-alteration (figure 3).
(b) Path analysis
Hypotheses A, C and F differed significantly (p = 0.036, 0.040
and 0.011, respectively) from the observed data, and were
rejected. Hypotheses B, D and E did not differ significantly
( p = 0.433, 0.509 and 0.429, respectively) from the observed
data. Comparing these latter three models using AICc (AICc:
B = 140.42, D = 102.32 and E = 140.61) revealed no support for
B or E (ΔAICc = 38.1 and 38.3, respectively) [63], and the data
provide much stronger support for hypothesis D (apparent
competition) as the top model (table 1). Furthermore, hypoth-
eses D had nine parameters, as did hypotheses A and F, but the
latter two were greater than 35 AICc units higher (https://
github.com/ctlamb/borealcaribou-pathanalysis) suggesting
that hypothesis D was the top model, not simply because
it had the fewest parameters. The R2 from linear models
for each step in model D were generally high: moose∼
vegetation = 0.43, wolf∼moose = 0.77, caribou∼wolf = 0.71
(figure 4). Bootstrapped samples were congruent with support
for model D, which was selected as the top model in 82% of
samples (figure 5). The value at which caribou population
growth is stable (λ = 1) is 1.8 (95% CI: 0.8–2.91) wolves
1000 km−2 and 29.0 (19.2–36.6) moose 1000 km−2.
4. Discussion
Worldwide increases in primary productivity [2] are expected
to have positive effects on ecosystem services such as
favourable outcomes for agricultural production [64,65], or
increased potential for wood fibre as a consequence of expand-
ing treelines [66,67]. Many of these benefits, however, are likely
to be partially offset by drought, wildfire, pests and disease,
highlighting the difficulty of anticipating alternative states
under global greening [65,68]. Similarly, the uncertainty of
putative outcomes in ecological communities will increase
with food webs that are complex, particularly if they are gov-
erned by indirect interactions such as apparent competition.
Theoretical underpinnings will clarify the range of possible
outcomes [14,69,70], but only field studies can evaluate the
veracity of these general predictions [71]. Such experiments
will be particularly difficult to implement in large-mammal
systems, but ourmensurative study contributes to this growing
body of empirical work [72,73]. In particular, we found that
higher levels of primary productivity reduced the ability of a
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Table 1. Results of the path analyses from models presented in figure 2. (D-separation tests were used to identify model fit to the data. p-values (less than
0.05) indicate whether the proposed correlation structure of the model differs from the data, and if so, the model was rejected. Models not rejected with
p-values were compared using AIC corrected for small sample size (AICc). K is the number of parameters.)

model hypothesis K p AICc ΔAICc

D apparent competition 9 0.509 102.3 0.00

B habitat alteration: predator vagility 10 0.433 140.4 38.1

E apparent competition and food limitation 10 0.429 140.6 38.3
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weaker large-mammal competitor to persist, which is the
mechanism that has been invoked to explain the hump-
shaped pattern observed in broader studies of biodiversity
[3]. That caribou have a lower intrinsic growth rate relative to
moose [37,38], potentially driven by a more constrained fora-
ging niche [74], makes them susceptible to landscape changes
that favour the abundance of other ungulates.

For organisms like woodland caribou, which are adapted
to nutrient-poor environments, the effects of increased pro-
ductivity are expected to be predominantly negative [75–77],
though at least two mechanisms can influence this pattern.
The first involves the direct loss of resources, with a compara-
tively simple pathway explained by the recession of lower
productivity habitats that are replaced by more productive,
greener ecosystems [78]. This mechanism has been observed
from taxa as diverse as butterflies affected by rising treeline
[67,79], birds that specialize in acidic bogs that become con-
verted to shrubs [80] and herbivores whose preferred
grasslands are replaced by forests [72]. This mechanism,
which we represented as habitat loss leading to food limitation
(model A), was not supported for woodland caribou in our
study. Similarly, habitat change leading to increased predator
foraging efficiencywas not the most parsimonious explanation
of our data (model B).

The second suite of mechanisms invoke relatively indirect
pathways such as competitive interactions including resource
dominance leading to exploitative competition, or the complex
inter-trophic pathway of apparent competition. Theory allows
us to predict that in simple cases of exploitative competition, if
carrying capacity is increased owing to increased resources, all
else being equal, the competitor with the higher intrinsic
growth rate (a component of being a stronger competitor)
will dominate [9]. This mechanism was also not supported in
our study, even though moose have a higher intrinsic growth
rate, with greater niche breadth [37,38,74]. Moose did not
appear to exert competitive exclusion on caribou, probably
because these species do not have a major overlap of needed
resources [74,81].

For caribou, the results strongly support a complex multi-
trophic pathway described as apparent competition. However,
this finding highlights a paradox, because [34] found that forest
stands with higher productivity recovered more quickly fol-
lowing disturbance, leading to reduced impacts on caribou.
Yet our findings indicate that if the mean primary productivity
increases across large spatial scales, thereby increasing the
carrying capacity of primary prey, outcomes will be predomi-
nantly negative for caribou and other victim species of
apparent competition. Independent theoretical [45] and
empirical evidence [21,26] support this general prediction.

Global analyses of eutrophication [2] can mask local
dynamics of productivity, even for large biomes such as the
boreal forest. Factors influencing variation in productivity are
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Figure 5. Results of the path analysis used to explain ecosystem dynamics. (a) Relative support for each pathway based on 1000 bootstrapped samples, top path
(ΔAICc = 0) retained from each run. (b) Strength (R2 shown along the path, with standardized coefficients in brackets) and direction of relationships for top model
identified in (a). The dashed line represents a link estimated as part of separate analyses (figure 3 and electronic supplementary material, appendix S2). (Online
version in colour.)
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complex, many of which will be heavily influenced by natural
components such as latitude, elevation and underlying edaphic
properties. Nonetheless, we have shown that humans can influ-
ence productivity based on the time-series analysis of forest
stands regenerating from harvest, with mounting evidence
that this process is occurring in the boreal forest [40]. A likely
compounding factor that we did not directly estimate in our
study is atmospheric CO2 fertilization, a global phenomenon
that is predicted to exacerbate the eutrophication of the boreal
forest biome [2].

Canada’s recovery strategy for boreal woodland caribou is
based on a national-scale meta-analysis that produced a
robust relationship between increased habitat alteration and
reduced caribou vital rates [47,82]. This relationship guides fed-
eral policy intended to increase habitat conservation and
restoration with the goal of achieving self-sustaining woodland
caribou populations across Canada. The relationship between
habitat alteration and caribou demography was not intended
to be mechanistic because there is incomplete information on
other ecosystem components (prey and predator densities) at
the national scale. While the spatial extent of our study was
more restricted than this national analysis, it afforded the
opportunity to contrast mechanistic pathways driving caribou
population growth, with stronger relationships identified
among wolves, moose and caribou, compared to habitat altera-
tion directly influencing caribou. We note that our analysis did
not explicitly address wildfire, which is a widespread disturb-
ance in the boreal forest, yet ΔEVI would implicitly
incorporate the effects of wildfire [83]. In addition, [82]
showed that wildfire hadmuch less influence on caribou demo-
graphy relative to human-caused habitat alteration (and see
[84]). We also found that [46]’s threshold of 6.5 wolves
1000 km−2 and a more conservative federal target of 3.0
1000 km−2 [85] are both too high for our study system (which
is restricted to the boreal forest), where a density up to
1.8 wolves 1000 km−2 is more likely to yield stable caribou
populations. Extending the analysis to moose densities, 29.0
1000 km−2 was the threshold where caribou populations
tended todecline,whichmaynot be compatiblewithmaximum
sustained-yield harvest approaches tomoosemanagement [86].

Recovering species affected by habitat-mediated apparent
competition requires combinations of actions that include
reducing invading prey species, reducing predators and
reversing habitat alteration that led to increased prey [87].
Our results highlight why conservation actions directed
closer to the proximate cause of decline (predation; [16])
may have been more successful in expeditiously growing
caribou populations in the short term than those directed
further along the trophic chain, such as prey reductions
[86], or reducing habitat productivity via restoration [88].
The relationship between wolf density and caribou λ dis-
played the largest effect size compared to relationships at
lower trophic levels. Nonetheless, addressing ultimate factors
contributing to apparent competition, caused by increased
primary productivity from anthropogenic habitat alteration,
is self-evidently an important objective to achieve woodland
caribou recovery. Moreover, the ability to study each trophic
level simultaneously across a range of habitat alteration pre-
sents a compelling case of how increasing productivity can
have cascading effects contributing to the extirpation of
species maladapted to terrestrial eutrophication.
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