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A B S T R A C T   

This paper is about a new COVID-19 SIR model containing three classes; Susceptible S(t), Infected I(t), and 
Recovered R(t) with the Convex incidence rate. Firstly, we present the subject model in the form of differential 
equations. Secondly, “the disease-free and endemic equilibrium” is calculated for the model. Also, the basic 
reproduction number R0 is derived for the model. Furthermore, the Global Stability is calculated using the 
Lyapunov Function construction, while the Local Stability is determined using the Jacobian matrix. The nu
merical simulation is calculated using the Non-Standard Finite Difference (NFDS) scheme. In the numerical 
simulation, we prove our model using the data from Pakistan. “Simulation” means how S(t), I(t), and R(t) 
protection, exposure, and death rates affect people with the elapse of time.   

Introduction 

In December 2019, a new kind of virus named “corona” was reported 
to badly affect the Chinese city of Wuhan. The said virus and its resultant 
outbreak hit the city of Wuhan first and later affected almost the whole 
world. It took hundreds of thousands of lives worldwide. It is hard to 
take a single point of view on this virus’s origin. It may be due to a 
seafood market exchange, or the people’s migration from one place to 
another, or the transmission from animals to humans; It may also be due 
to human-to-human interactions. So far, the virus has devastated almost 
everything around the world. Social life, health, economy, education - 
generally, each segment of human life has been severely affected. Health 
researchers, governmental policymakers, and health care authorities are 
puzzled in combating the deadly outbreak. They all have their point of 
view on the situation. They are trying hard to, at least, minimize the 
number of deaths caused by the outbreak. The people infected in the 
coronavirus pandemic experience mild respiratory problems. Fever, dry 
cough, throat infection, and fatigue are the symptoms of this disease. 
People may also have the symptoms as follows; nasal infection, aches, 
and sore throat. Mathematical modeling plays an important role in 
describing the epidemic of infectious diseases. The purpose of mathe
matical modeling is to represent different types of a real-world situation 
in mathematical language. A number of mathematical model are studies 
in the pervious literature [1,2,8,10]. Also SARS-CoV-2 is study by many 

researchers in current research literature [9,11,12,14]. We will study 
SARS-CoV-2 by developing SEIR model later on in this work. Recently 
many authors have established numerious models for COVID-19 under 
different concept of fractional calculus. In this regards very useful 
models have been established, we refer some as [20–25]. To find out the 
different dynamics of a disease and therefore to overcome it at an early 
stage, mathematical modeling plays an important role there [26–28]. 
The area dedicated to the investigation of biological pandemic and also 
epidemic models for recent diseases SARS-CoV-2 of research. Numerous 
examples of mathematical models for this pandemic are found in the 
current study [16,17]. To understand the stability theory, existence 
theory, and theory of reform SARS-CoV-2 [6,7,13,19], can be model, 
and its outcome can be predicted. Plan of prevention is also possible. In 
addition, one can find a possible lock-down strategy. Especially 
impressed with the excellent features of the SEIR model using non-linear 
saturated incidence rates [3–6,8,15]. 

Model formulation 

In this section of manuscript, we formulate our new model for 
NCOVID − 19 in the form of following system (1). We take whole pop
ulation N(t) into three classes S(t), I(t) and R(t), which represent Sus
ceptible, Infected and Recovered compartment in the form of differential 
equations given below (1), 
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dS(t)
dt

= b − k(1 − αS(t)I(t)) − αkβS(t)I(t) − μS(t)

dI(t)
dt

= k(1 − αS(t)I(t)) + αkβS(t)I(t) − (d0 + γ + μ)I(t)

dR(t)
dt

= γI(t) − μR(t).

(1) 

For above system (1) is presented in the form of flow chart as. 
In Table 1, we describe parameters used in system (1). In system (1), 

add all equations, implies 

dN(t)
dt

= − (μN(t)+ d0I(t) − b). (2) 

Here N(t) represent whole population as N(t) = S(t) + I(t) + R(t). 
We get 

0⩽lim
t→∞

supN(t)⩽N0.

With 

lim
t→∞

supN(t) = N0.

If and only if 

lim
t→∞

supI(t) = 0.

From the 1st equation of the system (1), it show 

0⩽lim
t→∞

supS(t)⩽S0.

Which implies that if N > N0, where dN(t)
dt < 0. We can get 

Ω = (S(t), I(t),R(t)) ∈ R4
+ : S(t)+ I(t)+R(t)⩽N0, S⩽S0.

Equilibria 

For the system (1), we suppose the existence of equilibrium. Disease 
free equilibrium is exist for some values of the variables used in (1), 
which is denoted by E0 = (S0,0,0). 

E0 = (S0, 0, 0) =
(

b
μ, 0, 0

)

.

Endemic equilibria 

S*(t) =
(μ + d0 + γ)I*(t) − b

μ

I*(t) =
kμ

kα(1 − β)(μ + d0 + γ − b)I*(t) + μ(μ + d0 + γ)

R*(t) =
γ
μI*(t).

Expression for R0 The basic reproductive number 

In epidemiology there R0 is most important parameter, which give us 
idea about how the disease is flow in the whole population. From R0, we 
look how the disease id spread in population and we can control it from 
this. The method of finding R0 is below let X = (S(t), I(t)), then from 
system (1), 

dX
dt

= F − V ,

where 

F =

(
k(1 − αI(t)S(t)) + αkβI(t)S(t)

0

)

and 

V =

⎛

⎝
b − S(t)

(d0 + γ + μ)I(t)

⎞

⎠

Jacobian of F is 

F =

⎛

⎝
− kαS0 + kαβS0 0

0 0

⎞

⎠

Table 1 
Physical Interpretation of parameters of the system.

Parameters The physical Description 

S(t) Susceptible compartment 
I(t) Infected compartment 
R(t) Recovered compartment 
d0  Death due to corona 
μ  Natural death 
b Birth rate 
β  Protection rate 
k Constant rate 
α  Isolation rate 
γ  Recovery rate  
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and Jacobian of V is 

V =

⎛

⎝
− μ 0
0 d0 + γ + μ

⎞

⎠.

Hence 

V − 1 =
1

− μ(γ + d0 + μ)

⎛

⎝
μ + d0 + γ 0

0 − μ

⎞

⎠.

We have 

FV − 1 =

⎛

⎝
kα(β − 1)S0 0

0 0

⎞

⎠.

From this, we get R0 is 

R0 =
kα(1 − β)b

μ2 . (3) 

To computes the basic reproduction number we obtained R0 =

0.7831 from the parameters used in Table 2 [18], which show that the 
COVID-19 that occurred in Pakistan is well controlled by Pakistan 
government. We have the following theorem on the basis of (3). 

Theorem 1. (i) If R0 ≤ 1 there is no positive equilibrium of system. 
(ii) If R0 > 1 there is a unique positive equilibrium E* = (S*(t), I*(t),

R*(t)) of the model (1), called the endemic equilibrium. 

Local Stability 

We reduced our model (1) for local stability. Furthermore, to ob
tained the result which show “disease free and endemic equilibrium”. 
For system (1). We reduced and get 

dS(t)
dt

= b − k(1 − αS(t)I(t)) − αkβS(t)I(t) − μS(t)

dI(t)
dt

= k(1 − αS(t)I(t)) + αkβS(t)I(t) − (μ + d0 + γ)I(t).
(4) 

Subject to initial condition 

S(0) = S0⩾0, I(0) = I0⩾0.

For local stability, we have the following theorem. 

Theorem 2. If R0 < 1, then the system (4) is locally asymptotically stable 
at the disease free equilibrium E0.’ 

Proof. At E0 the jacobian matrix is given by 

J0 =

⎛

⎜
⎜
⎜
⎝

− μ kα(1 − β)b
μ

0 R0 − 1

⎞

⎟
⎟
⎟
⎠
.

The auxiliary equation of J0 is given by 

λ3 + λ2a1 + λa2 + a3 = 0,

where 

a1 = (μ + β)(μ + α) + (μ + d0 + γ)(1 − R0) > 0
a2 = (μ + β)(μ + β)[1 + (μ + γ + d0)(1 − R0)] > 0
a3 = (μ + β)(μ + α)(μ + γ + d0)(1 − R0) > 0.

We have 

a1a2 − a3=(μ+β)(μ+α)
(
(μ+γ+d0)

2
+(μ+β)(μ+α)[(d0+γ+μ)+1]

)
(1− R0)

>0.
(5)  

The Routh-Hurtwriz criteria is satisfied as a1 > 0, a2 > 0, a3 > 0 and 
a1r2 − r3 > 0 if R0 < 1. which show the system (1) is locally asymptoti
cally stable at E0. Furthermore, at E* the system (4) is locally 
asymptotically stability analogous to R0 > 1. We are going to prove it in 
the next theorem. 

Theorem 3. At E*, if R0 > 1 then system (4) is locally asymptotically 
stable. 

Proof. For system (4) jacobian matrix is 

J1 =

⎛

⎝
αkI*(t) − μ − αkβI*(t) αkS*(t) − αkβS*(t)
− αkI*(t) + αkβI*(t) − kαS*(t) + αkβS*(t) − (μ + d0 + γ)

⎞

⎠.

After some operations on matrix J1, we get 

M1 =

⎛

⎝
− μ − (μ + d0 + γ)

− αk(1 − β)I*(t) − kα(1 + β)S*(t) − (μ + d0 + γ)

⎞

⎠.

We calculate trace and determinant of M1 

tra(M1) = − 2μ − kα(β+ 1)S*(t) − d0 − γ < 0, (6)  

and 

det(M1) = μ[αβ(1 + β) + d0 + μ + γ] +αk(μ+ d0 + γ)(β+ 1) > 0. (7)  

The determinant of J1 > 0. The real part at E*(t) “endemic equilibrium” 
of model (4) has negative. Thus, with condition R0 > 1, we have that the 
endemic equilibrium E* of system (4) is locally asymptotically stable. 

Global stability 

Here, we present Global stability for the system (1). For “global 
stability of disease-free and endemic equilibrium”, we constructed a 
function known as Lyapunov function in the following theorem. 

Theorem 4. If R0 < 1 then disease free equilibrium of the system (4) is 
globally asymptotically stable. Otherwise unstable. 

Proof. To prove this, we construct a Lyapunov function as following 

ρ = c1(S(t) − S0)+ c3I(t), (8)  

such that c1, c2, c3 > 0 are constants. With respect to time t taking de
rivative of (8) with, we have 

dρ
dt

= c1(b − k(1 − αS(t)I(t))b − αkβS(t)I(t)

− μS(t))+ c2(k(1 − αS(t)I(t))+αkβS(t)I(t) − (μ+ d0 + γ)I(t)).

We get 

dρ
dt

= c1b+ k(1 − αS(t)I(t))(c2 − c1)+ αkβS(t)I(t)(c2 − c1)+ c1μS(t)

− c2μI(t) − c1d0I(t) − c2γI(t).

Let assume c1 = c2 = c3 = 1, we get finally 

dρ
dt

= − (μN(t) − b) − (d0 + γ)I(t) < 0.

Hence “globally asymptotically stable” for system (1) with R0 < 1 has 
reached. Further, We are going to prove a theorem for “global stability of 
the endemic equilibrium” of model (1). 
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Theorem 5. The endemic equilibrium E* of model (1) is stable globally 
asymptotically if R0 > 1. 

Proof. By constructing Lyapunov function, we prove the above result 

ω = (μ+ β)(S(t) − S*(t)) + (μ+ β)I(t). (9)  

Taking derivative with respect to time (9), we get 

dω
dt

= (μ+ β)S.(t) + (μ+ β)I .(t).

Putting the values from (1) 

dω
dt

= (μ+ β)(b − k(1 − αS(t)I(t)) − αkβS(t)I(t) − μS(t))

+ (μ+ β)(k(1 − αS(t)I(t)) +αkβS(t)I(t) − (μ+ d0 + γ)I*(t)).

After some arrangement we get 

dω
dt

= − (μ+ β)(μS(t)+ (μ+ d0 + γ)I*(t)) < 0.

Thus dω
dt < 0, the “endemic equilibrium” E* of the model (1) is “ globally 

asymptotically stable”, show that R0 > 1. 

Numerical results and discussion 

In this part of our manuscript, we calculated numerical simulation 
for model (1) with values used on Table 2. We take data from 1 February 
2020 to 20th September corresponding to different compartments 
involve in the system (1) from Pakistan. Here, we use (NSFD) Non- 
standard Finite Difference scheme [13,15,19] to rewrite the system is 

dS(t)
dt

= b − k(1 − αS(t)I(t)) − αkβS(t)I(t) − μS(t). (10) 

Which is decomposed in Nonstandard Finite Difference scheme as 

Sj+1 − Sj

h
= b − k(1 − αSj(t)Ij(t)) − αkβSj(t)Ij(t) − μSj(t). (11) 

Just like above Eq. (11), we can write the system (1) in Non-Standard 
Finite Difference Scheme as 

Sj+1 = Sj + h
(
b − k(1 − αSj(t)Ij(t)) − αkβSj(t)Ij(t) − μSj(t)

)

Ij+1 = Ij + h
(
k(1 − αSj(t)Ij(t)) + αkβSj(t)Ij(t) − (d0 + γ + μ)Ij(t)

)

Rj+1 = Rj + h
(
γIj(t) − μRj(t)

)
.

(12) 

For the real data of Pakistan [18], we testified our model (1) taking 
the values of parameter of Table 2 from first February 2020 to 20th of 
September 2020. From Figs. 1–3, we see that as the susceptibility was 
decreasing the infection was increasing in first four months but in the 
month of July and August the infection rate became slow and finally in 

Table 2 
Description of parameters and their values [18].  

Parameters Physical description Numerical value 

S(t) Susceptible compartment 220 in millions 
I(t) Infected compartment 0 in million 
R(t) Recovered compartment 0 in million 
d0  Death due to corona 0.02 
μ  Natural death 0.0062 
b Birth rate 10.7 
β  Protection rate 0.009, 0.0009 
k Constant rate 0.00761 
α  Isolation rate 0.009, 0.0009 
γ  Recovery rate 0.0003  

Fig. 1. Dynamical behavior in of susceptible population of the considered model.  

Fig. 2. Dynamical behavior of infected population of the considered model.  
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the last it was nearly become stable. Also during this time the recovery 
rate was rapid from the infection as in Fig. 3. The concerned simulation 
was performed for taking the protection parameter α = β = 0.009. 
Now by deceasing the protection and isolation rate further up to α =

0.0009, β = 0.0009. We plot the results in the given Figs. 4–6. We see 
that the infection rate became slow on reducing the protection and 
isolation rate. Therefore the recovery is also become slow. From these 
simulation we observed that protection and isolation rate play signifi
cant roles in controlling the infection from further spreading in the 
community. see Fig. 2,. 

Conclusion 

Conclusion of the numerical results shows the projection of model 
(1). The output derived from the NCOVID-19 display convex incidence 
rate. The current manuscript declared the high contiguous rate from 
infected population to susceptible population. To overcome the 
pandemic the migration should be strictly prohibited for the sake of 
saving humanity. Also the immigration of exposed population to infec
ted community increased the infection. Isolation of infected one is the 
best option to secured the healthy community. It is necessary to judge 
the spread and model with various parameters for proper supervision. 
The proper treatment of this pandemic is to keep infected away from 

Fig. 3. Dynamical behavior of recovered population of the considered model.  

Fig. 4. Dynamical behavior in of susceptible population of the considered model.  

Fig. 5. Dynamical behavior of infected population of the considered model.  
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healthy people. High internal defense system aids to get healthy soon 
while the low internal defense system need more attention. This is the 
only solution to overcome recent outbreak within a short period. The 
current discussion demonstrate the quick transfer of NCOVID-19. The 
COVID-19 shared the same properties like SARS having mortality rate of 
2 percent. There is no vaccine available in the current time but to isolate 
was the best option. Also social distancing is the best way to control this 
deadly various. 
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