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Abstract

Purpose: Deep learning is a promising technique for spleen segmentation. Our study aims to
validate the reproducibility of deep learning-based spleen volume estimation by performing
spleen segmentation on clinically acquired computed tomography (CT) scans from patients with
myeloproliferative neoplasms.

Approach: As approved by the institutional review board, we obtained 138 de-identified
abdominal CT scans. A sum of voxel volume on an expert annotator’s segmentations establishes
the ground truth (estimation 1). We used our deep convolutional neural network (estimation 2)
alongside traditional linear estimations (estimation 3 and 4) to estimate spleen volumes inde-
pendently. Dice coefficient, Hausdorff distance, R2 coefficient, Pearson R coefficient, the abso-
lute difference in volume, and the relative difference in volume were calculated for 2 to 4 against
the ground truth to compare and assess methods’ performances. We re-labeled on scan–rescan on
a subset of 40 studies to evaluate method reproducibility.

Results: Calculated against the ground truth, the R2 coefficients for our method (estimation 2)
and linear method (estimation 3 and 4) are 0.998, 0.954, and 0.973, respectively. The Pearson R
coefficients for the estimations against the ground truth are 0.999, 0.963, and 0.978, respectively
(paired t-tests produced p < 0.05 between 2 and 3, and 2 and 4).

Conclusion: The deep convolutional neural network algorithm shows excellent potential in
rendering more precise spleen volume estimations. Our computer-aided segmentation exhibits
reasonable improvements in splenic volume estimation accuracy.
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1 Introduction

Organ size measurements provide clinical utility in diagnosis and assessing treatment response
with different cancers. For instance, reduction in spleen volume is a crucial response
element for myeloproliferative neoplasms (MPN),1 and recent studies showed that significant
(greater than or equal to 35%) splenic volume reduction (SVR) in myelofibrosis patients is
associated with improved overall survival.2 Splenic volume is measured in MPNs as an indi-
cator of extramedullary hematopoiesis, and SVR is a surrogate endpoint used to measure
success of a intervention in MPNs.3,4 Quantitative estimates of splenic biomarkers have been
of clinical interest in molecular, histologic, radiographic, and physiologic characterization of
spleens.5–7

Unique challenges emerge when validating machine learning-generated imaging biomarkers.
Changes in imaging hardware, acquisition parameters, and patient positioning during imaging
cause significant variations among images. Several groups, such as the NCI-sponsored
Quantitative Imaging Network8 and the Radiological Society of North America’s Quantitative
Imaging Biomarker Alliance,9 have pursued multicenter imaging trials to address these varia-
bilities. Using machine learning algorithms to compute biomarkers presents additional chal-
lenges. Performance from machine learning algorithms is dependent not only on the training
dataset but also dataset upon which the algorithms are deployed. Park and Han10 addressed this
challenge in their recent evaluation of diagnostic and predictive artificial intelligence technol-
ogies. They postulate that validating such algorithms’ performance requires testing in a clinical
cohort that adequately represents the target patient population.10

Given an image from ultrasound, magnetic resonance imaging, or computed tomography
(CT), manual annotation of spleen segmentation is still the gold standard,11 yet the process
is time-intensive and requires domain expertise. Here, computer-assisted spleen labeling could
not only reduce resource consumption, but also support investigation into spleen size’s clinical
utility as a biomarker.12–14 Several challenges remain, including significant inter-subject variabil-
ity in spleen size, shape, and orientation. The multi-atlas approaches produced encouraging
results,15,16,17 and we recently developed a deep convolutional neural network algorithm that
performs significantly better than previous methods.18,19–21 The non-manual measurements are
“fit for purpose,” i.e., the rigor and methods utilized should be in accordance with the intended
purpose of the biomarker study.22,23 Given this fit for purpose approach, it is difficult to establish
absolute benchmark criteria for validation studies. Accordingly, the reporting of validation stud-
ies becomes increasingly important to allow investigators to evaluate whether the assay is appro-
priate for a proposed study.

We hypothesize that automated measures of spleen size can serve as a biomarker for clini-
cians to better predict MPN disease progression and response to therapy. Investigation into and
potential utility of spleen volume as a biomarker is limited due to the time-intensive process in
obtaining those measurements. Indeed, Sargent et al.24 defined a set of prerequisite criteria for an
imaging biomarker before clinical validation studies can be performed. Notably, the authors
highlight the necessity that the technology to assess the biomarker of interest be stable and
widely available. With automated spleen volume estimation, it is essential to validate the meth-
ods following such criteria for clinical validation. The goal of this study is to evaluate the per-
formance of the proposed state-of-the-art spleen segmentation algorithm in measuring spleen
volumes on clinically acquired CT scans from patients with MPNs.

Our validation study includes a complete assessment of the technical performance of the
biomarker assay using the state-of-the-art deep neural networks. Such assessment includes mea-
sures of assay accuracy, repeatability, reproducibility, technical bias, sensitivity, and specificity.
We investigate four pipeline estimates for using the deep learning algorithms on all scans:
(1) manual segmentation by expert readers; (2) automatic segmentation using deep learning algo-
rithms; (3) unidimensional measurements, and (4) 3D splenic index measurement. Further, the
validation study defines the limits of the detection and quantification for a given assay.7 In the
context of imaging biomarkers, the assay includes both the image generation process (the spe-
cific imaging protocol) and the subsequent post-processing procedures to yield the biomarker
measurement accuracy. Ultimately, through the validation process, we show the agreement and
bias proportion to the intended purpose of the biomarker study.
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In the cross-validation experiments, our computer-assisted method produced segmentation
masks with an averaged dice coefficient of 0.95148 when evaluating against hand labeled masks.
Most importantly, our proposed method’s volume estimation achieved R2 coefficient of 0.99800
and Pearson R coefficient of 0.99905, indicating a significant improvement over traditional
linear estimations.25 This demonstrates the potential of obtaining more accurate spleen volume
estimates from state-of-the-art deep learning algorithm.

2 Materials and Methods

2.1 Data Acquisition

Under institutional review board (IRB) approval, we obtained 138 de-identified abdominal CT
from patients enrolled in NCT02493530. This is a phase 1 multi-center study of TGR-1202
administered together with ruxolitinib in patients with MPNs. To minimize spectrum bias, we
utilized a consecutive series of patients from four study locations (Mayo, Wisconsin, Colorado,
and Vanderbilt). Including multi-center data provides evidence to evaluate how this algorithm
adapts to the variability inherent in multi-center trials. The spleen was segmented by expert
readers from each scan in this dataset to establish the ground truth.

2.2 Manual Segmentation (Estimation 1)

Manual spleen segmentation on all 138 scans establishes baseline splenic volumes. We used
open-sourced tool MIPAV software from the National Institutes of Health (NIH) to trace the
spleen anatomies. In our study, CT scans from patients with splenomegaly were retrieved. We
delineated the outlines on every axial slice and filled the regions enclosed by the tool. A radi-
ologist, certified by the abdominal imaging board, verified all splenic contours on the volumetric
investigations. We calculated ground truth spleen volume for each image by directly multiplying
unit volume (cc/voxel) with number of voxels inside segmentation region.

To evaluate the repeatability and reproducibility, we retrieved a subset of 40 patients labeled
by a second similarly qualified imaging analyst under the supervision of a radiologist to assess
the inter-rater reliability of manual segmentations. Both readers adhered to the same tracing
protocol, and the agreement evaluation is shown in the result by the Bland–Atman plot (Fig. 5).

2.3 Deep Convolutional Neural Network Algorithm (Estimation 2)

2.3.1 Stage 1: low-resolution segmentation

Given CT scans with a fine resolution of [0.8 × 0.8 × 2 mm], we first downsampled the images
and trained a 3D U-Net for segmentation with lower resolution. Each scan slice is downsampled
from [512 × 512] to [168 × 168] and images were normalized to a consistent voxel resolution of
[2 × 2 × 6 mm]. We used Dice loss to compare network outputs and ground truth labels. We
ignored the background loss in order to increase weights for anatomies. The crude segmentation
masks are then upsampled to original resolution with nearest interpolation for later stages. This
approach is trained end-to-end, and Figs. 3–5 assess the approach’s segmentation quality. The
downsampled volume in low-resolution framework, while lacking detailed structures of anato-
mies, still preserves complete spatial context in CT scan.

2.3.2 Stage 2: random patch selection

For each CT scan, we randomly selected voxels in the predicted coarse segmentation mask.
Fixing the selected voxels as centers, we placed bounding cubes with slight random shifts along
all axes. A Gaussian random variable determines the shifting distance. High-resolution patches
from original images were cropped according to bounding cubes, and they formed second-stage
model inputs (middle panel of Fig. 1). This strategy builds the hierarchy of non-linear features
from random patches regardless of 3D contexts, and it employs detailed context at original
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resolution and incorporates advantages of data augmentation with shifting. We fixed the patch
size at 128 × 128 × 48 in our experiments.

2.3.3 Stage 3: high-resolution segmentation and label fusion

Using randomly selected high-resolution patches from the prior stage, we trained a second 3D U-
Net. Integrating all patches on field of views, we estimated the full field of view. Majority vote is
used to merge estimates into a final segmentation yielding the spleen voxels. Specifically, after
separating full spatial context to randomly selected subspaces, the overlapped regions provide
more than one segmentation label for a voxel. We summarize a single label given a vector of class
labels from candidates. We ignore voters outside the image space and related values are excluded
in the label fusion.

Architecture. The 3D U-Net is adopted as the segmentation model backbone; the architec-
ture of the network contains an encoder and a decoder with four scales. It employs deconvolution
to upsample the lower scale feature maps to the higher scale of dimension. This process enables
the efficient denser pixel-to-pixel mappings. Each scale in the encoder has two 3 × 3 × 3 con-
volutional layers, followed by rectified linear units and a max pooling of 2 × 2 × 2 and strides of
2. The decoder has the transpose convolutions of 2 × 2 × 2 and strides of 2. The last layer is
composed by 1 × 1 × 1 convolution that set the number of output channels to the number of class
labels. The Dice loss is used for the spleen segmentation. The baseline low-resolution segmen-
tation uses the largest volume size of 168 × 168 × 64 to fit maximum memory of a normal
12-GB GPU. The volume size is also employed in baseline hierarchical method for training
the first-level model. We used batch size of 1 for all experiments. The instance normalization
is employed, which is agnostic to batch size. We adapted the ADAM algorithm with stochastic
gradient decent, momentum = 0.9. The initial learning rate was set to 0.001, and it was reduced
by a factor of 10 every 10 epochs after 50 epochs. Implementations were performed using
NVIDIA Titan X GPU 12-G memory and CUDA 9.0.

2.4 Linear Estimation of Spleen Volume with Spleen Length
(Estimation 3 and 4)

Recently, Bezerra et al.25 introduced a helpful approach that estimates spleen volume through
unidimensional spleen measurements and 3D splenic index. We obtained maximum spleen
length from coronal/frontal plane (L) and maximum spleen width from oblique sagittal/axial
plane (W). We calculated spleen volume estimates with linear regression equations specified
by Bezerra et al.25 The equations they proposed for maximum spleen length and maximum

Fig. 1 Pipeline for the proposed method and unidimensional linear regression estimation meth-
ods. The computer-assisted method in estimation 2 includes two CNN models with a coarse-to-
fine framework. Estimation 3 and 4 use measurements of length and width (splenic index) from
the ground truth for cc (cubic centimeter) volume estimation.
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spleen widths are V ¼ L−5.8006
0.0126

and V ¼ W−8.1101
0.0098

. Figure 2 depicts maximum spleen length and
maximum spleen width alongside other estimation methods in this study.

2.5 Baseline Comparisons

2.5.1 Low-resolution architecture

We compared our method with the finest resolution to house the maximum GPU 12-G memory.
The baseline method is implemented with a single-step resampling process. Each scan is
downsampled to 2 × 2 × 6 mm. The entire volume is inputted to the 3D U-Net model.

2.5.2 High-resolution architecture

The high-resolution baseline method is implemented with several connected tiles as input to the
model. We kept the original image resolution under dimension of 512 × 512, then cropped the
image into adjacent patches to fit the GPU memory. We use the patch of 168 × 168 × 64 voxels.
Patches were extracted without overlap, each tile was padded to fixed size once it exceeded
the volume dimension. The final segmentation was acquired by tiling ordered patches.

2.5.3 Multi-atlas segmentation

We compared our current method with the previous multi-atlas approach. The adaptive Gaussian
mixture model was used as the atlas selection step. Then, the joint label fusion is implemented to
obtain the spleen segmentation.

3 Analysis

3.1 Accuracy

Several metrics have been proposed to evaluate imaging segmentation accuracy.26 We computed
the Dice coefficient and average Hausdorff distance to judge segmentations from different
methods against the ground truth (Table 1). We compared the different methods’ volume
predictions against the ground truth with R2, Pearson correlation, and absolute and percent
deviations.

Fig. 2 Demonstration of the measurements from pipelines for estimating spleen volumes.
The manual and computer-assisted methods evaluate the spleen volume (estimation 1 and 2).
The linear estimates (3 and 4) manually extract splenic diameters along different axes (length
and width) from an unlabeled CT scan.
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3.2 Bias

Bland–Altman plots (Fig. 4) serve to compare different algorithm’s estimates’ agreement with
the ground truth (Fig. 4).

3.3 Reproducibility

Once trained, the automated segmentation algorithm yields same result for a given image. To
ascertain the method as a sound replacement for manual segmentation, we manually examined
the approach’s reproducibility on a subset of 40 patients. This subset of patient images was
labeled simultaneously by a second research associate in order to assess the inter-rater reliability.
Assuming the label from expert 2 is the ground truth, we present the reproducibility comparisons
in Fig. 5.

4 Results

The mean Dice score between interpreter 1 and interpreter 2 is 0.968� 0.027, the average sym-
metric Hausdorff distance is 7.014� 9.1453. Percent difference between two observers is
1.492� 1.549. Two observers assessed subjects independently without communication.

In Fig. 3, we present examples of predicted segmentation masks on their respective CT scans.
The top row shows three examples with exceptional alignment. The second row’s predictions are
satisfactory but slightly flawed at the edges, and the bottom row presents some of our failure
cases.

As shown in Table 1, our proposed method’s population Dice coefficient statistic is
0.9515� 0.0332, indicating a high degree of alignment between prediction masks and ground
truth masks. The averaged symmetric Hausdorff distance is 9.3846� 15.113. The superior
volume estimation performance of the proposed method becomes more apparent when we com-
pare estimation 2’s R2 values (0.99800), Pearson R coefficient (0.99905), absolute difference
in volume estimates (29.091� 113.720 cm3), and percent difference in volume estimates
(2.3443� 6.2031 cm3) (p < 0.05 with paired t-test between estimation 2 and 3, 2 and 4, respec-
tively) against those of the unidimensional linear regression estimation methods. The Bland–
Altman plots in Fig. 4 also illustrates that the deep convolutional neural network algorithm
produced superior results.

As shown in Table 2, our method archives consistent improved performance comparing to
single step segmentation baselines. The random patch method has the Dice score of 0.951 com-
pared to 0.897 for low-resolution baseline and 0.921 for high-resolution baseline. We also
observed the improved Hausdorff distance at 9.385 against 11.847 and 10.458 for low- and
high-resolution methods. Comparing to the multi-atlas approach, the deep learning-based meth-
ods achieved consistently higher performance, the low-resolution model observed about 5%
improvement.

Table 1 Summarized statistics for different estimations compared to ground truth.

Proposed method
(estimation 2)

Linear estimation
with length (estimation 3)

Linear estimation
with width (estimation 4)

Dice similarity coefficient 0.951� 0.033 N/A N/A

Hausdorff distance 9.385� 15.113 N/A N/A

R2 0.998 0.954 0.973

Pearson R 0.999 0.963 0.978

Absolute deviation of
volume (cm3)

16.718� 24.504 20.481� 38.195 26.815� 40.576

Percent difference (%) 1.892� 2.975 4.125� 4.981 4.015� 5.573
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Fig. 3 Quality assurance of the deep learning method in estimation 2 with CT. (a) Three repre-
sentative subjects’ slice above state-of-the-art. (b) Three representative cases with successful
segmentation. (c) Failure cases where manual correction was required.

Fig. 4 Bland–Altman plot for computer-assisted method (estimation 2), linear estimate with length
and splenic index (estimation 3 and 4). On each plot, the x -axis indicates the mean volume
between the ground truth and the estimation from computer-aided method. The y -axis shows the
difference in volume. A 1.96 standard deviation is shown as the confidence interval.

Table 2 Segmentation metrics comparing to state-of-the-art methods.

Dice HD ASD

Low resolution (single step) 0.897� 0.048 11.847� 13.589 0.745� 0.814

High resolution (single step) 0.921� 0.039 10.458� 11.544 0.623� 0.706

Multi-atlas1 0.840� 0.072 16.441� 18.102 1.298� 1.027

Random patches (ours) 0.951� 0.033 9.385� 15.113 0.491� 0.671
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For evaluating the proposed automatic method, we conducted external testing on a spleno-
megaly dataset.

4.1 ImageVU Splenomegaly

A total of 40 subjects were selected and retrieved from Vanderbilt University Medical Center.
The dataset is designed by cases of splenomegaly patients. All CT volumes are subjected to
splenomegaly ICD-10 criteria. The abnormal spleens were manually traced following the same
framework of annotation.

4.2 Performance

As shown in Table 3, the mean Dice score of the external testing set is 0.949, the clinically
acquired scans show the stability of the proposed method. We also observed similar performance
in terms of averaged symmetric Hausdorff distance and averaged surface distance.

5 Discussion

5.1 Main Contributions

The study demonstrates a deep learning algorithm’s ability to produce precise spleen masks and
spleen volume estimates from abdominal CT scans. Shown in Bland–Altman plots, estimates 2
to 4 performing on normal patient CT scans and failed to inference accurately where spleno-
megaly was present. Our proposed method yielded superior results in both cases and was also
able to produce empty mask for CT scans after splenectomy. As shown in Table 1, our method
achieves a Pearson R coefficient of 0.99905 and an average non-significant absolute deviation of
20.604 cc with respect to the ground truth. This approach performs consistent comparable result
with resource-intensive manual segmentation with unidimensional measurements. These results
show that a deep learning algorithm supervised by manual segmentation can enable generation
of higher accuracy in estimation of spleen volumes.

Based on the performance between visual ratings and the automatic segmentations, our
method could reliably label clinically acquired CT scans. Figure 3 shows that the abnormal
anatomy (e.g., splenomegaly) can lead to a less accurate segmentation performance for baseline
estimations. The limitations, for instance, patients with severe red cell inflation, may obtain
irregular segmentation. In addition, when the patient is under treatment with drugs or surgery,
previous algorithm may segment a small false-positive region when irregular shape appears.
However, our method showed the consistent performance evaluating the splenomegaly patients.
Above erroneous labeling can be prevented by discarding candidates with the selected spleen
volume segmented. Another direct application using our algorithms presented in the observing
period at patient treatment. In our trials, each patient can have up to four longitudinal CT scans at
different drug period. The automatic segmentation can lead to fast and accurate outcomes for

Table 3 Segmentation performance of models tested on ImageVU Splenomegaly dataset in
mean DSC and variance.

Dice HD ASD

Low resolution (single step) 0.894� 0.032 11.544� 12.510 0.753� 0.717

High resolution (single step) 0.923� 0.030 10.958� 10.434 0.674� 0.681

Multi-atlas1 0.832� 0.087 16.824� 14.519 1.184� 1.004

Random patches (ours) 0.949� 0.035 9.045� 10.450 0.477� 0.592

Note: HD, Hausdorff distance; ASD, averaged surface distance.
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measuring spleen volume, this process can potentially help physicians delivering further step of
treatment suggestions. Finally, the model is trained and evaluated using only CT scans with
enlarged spleens, we intended to deploy and focus on splenomegaly patients. We presented
the reliable and robust method from other domains to delivery quantitative measurements for
splenomegaly without extra manual efforts.

In reviewing the performance of inter-rater reproducibility, we found that agreement between
experts were highly accurate (mean 6 cc in Bland–Atman plot in Fig. 5). Using the labeling by
the second expert as the ground truth, the computer-assisted segmentation achieves slightly
higher agreement (mean 3 cc in Fig. 4). Typically, the automatic method observes outliers that
include spleens with severe splenomegaly and those under surgery, which these outliers are
required by rudimentary visual quality refinement.

5.2 Clinical Improvement

Organ size measurements remain attractive biomarkers for the assessment of disease. However,
diagnosis time is always a concern, and the significant time and resource cost associated with the
extraction of organ size limit its use. So far, such methods demonstrated limited clinical utility to
justify its adoption in clinical workflows, and it is our vision that automated measures of organ
size will reduce the cost of obtaining such measures, allowing for the prospective evaluation of
organ sizes in the study of disease prognosis and treatment response.

6 Summary

In summary, we proposed a deep convolutional neural network algorithm that produced
more accurate spleen volume estimates for abdominal CT scans. Given the importance of
spleen volume as a biomarker and considering the superior effectiveness of the algorithm
on patients with splenomegaly, we conclude the algorithm can provide sufficiently accurate
spleen volume measurements. Given the current inaccurate and computationally expensive
algorithms or accurate but laborious manual labeling, this proposed method should
exempt expert radiologists from arduous manual labeling of spleens while allowing more
precise, and expedient clinical diagnosis and treatment suggestions with better spleen volume
estimates.
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