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for Clinical Voice Evaluation
Olivia Murton,a,b Robert Hillman,a,b,c,d and Daryush Mehtaa,b,c,d
Purpose: The goal of this study was to employ frequently
used analysis methods and tasks to identify values for
cepstral peak prominence (CPP) that can aid clinical voice
evaluation. Experiment 1 identified CPP values to distinguish
speakers with and without voice disorders. Experiment 2
was an initial attempt to estimate auditory-perceptual
ratings of overall dysphonia severity using CPP values.
Method: CPP was computed using the Analysis of
Dysphonia in Speech and Voice (ADSV) program and Praat.
Experiment 1 included recordings from 295 patients with
medically diagnosed voice disorders and 50 vocally healthy
control speakers. Speakers produced sustained /a/ vowels
and the English language Rainbow Passage. CPP cutoff
values that best distinguished patient and control speakers
were identified. Experiment 2 analyzed recordings from
32 English speakers with varying dysphonia severity and
provided preliminary validation of the Experiment 1 cutoffs.
Speakers sustained the /a/ vowel and read four sentences
from the Consensus Auditory-Perceptual Evaluation of Voice
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protocol. Trained listeners provided auditory-perceptual
ratings of overall dysphonia for the recordings, which were
estimated using CPP values in a linear regression model
whose performance was evaluated using the coefficient of
determination (r2).
Results: Experiment 1 identified CPP cutoff values of
11.46 dB (ADSV) and 14.45 dB (Praat) for the sustained
/a/ vowels and 6.11 dB (ADSV) and 9.33 dB (Praat) for the
Rainbow Passage. CPP values below those thresholds
indicated the presence of a voice disorder with up to
94.5% accuracy. In Experiment 2, CPP values estimated
ratings of overall dysphonia with r2 values up to .74.
Conclusions: The CPP cutoff values identified in Experiment 1
provide normative reference points for clinical voice evaluation
based on sustained /a/ vowels and the Rainbow Passage.
Experiment 2 provides an initial predictive framework that
can be used to relate CPP values to the auditory perception of
overall dysphonia severity based on sustained /a/ vowels and
Consensus Auditory-Perceptual Evaluation of Voice sentences.
Recent work in acoustic voice analysis has increas-
ingly supported the cepstral peak prominence
(CPP) as an objective measure of breathiness and

overall dysphonia. In 2018, guidance from the American
Speech-Language-Hearing Association (ASHA) recom-
mended CPP as a tool for “measuring the overall level of
noise in the vocal signal” and as “a general measure of
dysphonia” (Patel et al., 2018). In this recommendation,
CPP replaces previous measures of acoustic perturbation,
including jitter, shimmer, and harmonics-to-noise ratio.
Those traditional measures can only be extracted from
sustained vowels and rely on fundamental frequency com-
putation, which may not be reliable for voices with more
than moderate dysphonia. In contrast, CPP can be ex-
tracted from connected speech and sustained vowels and
does not require direct computation of the fundamental
frequency.

A growing body of work has demonstrated CPP’s
ability to differentiate perceptually dysphonic and non-
dysphonic voices across languages, disorder types, and
speaking tasks. Many of these findings in English speakers
are reviewed by Fraile and Godino-Llorente (2014), which
also provides an overview of the algorithms underlying
CPP computation. Other work has also examined CPP in
languages other than English, including Spanish (Delgado-
Hernández et al., 2019; Núñez-Batalla et al., 2019), Korean
(Lee et al., 2019; Yu et al., 2018), and Turkish (Aydinli
et al., 2019). In general, these studies find that lower CPP
values are well correlated with increases in dysphonia sever-
ity based on auditory-perceptual judgments.
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The clinical use of CPP is currently limited by a lack
of objective guidelines that specify when values are likely
to indicate abnormality. Such guidelines would increase
the potential for CPP to function as a screening measure
(i.e., probability of a voice disorder being present) and
make it easier for clinicians to meaningfully interpret CPP,
particularly with respect to treatment-related changes (i.e.,
helping determine whether posttreatment vocal function
and/or voice quality more closely approximate normal).
Ideally, such guidelines would be based on the analysis
methods and tasks that are most frequently used for clinical
voice evaluation and include cutoff values/thresholds for
detecting the presence or absence of a voice disorder, as
well as information about how CPP values relate to dys-
phonia severity.

CPP Conceptualization
The cepstrum typically used in voice and speech

analysis is given by the inverse Fourier transform of the
acoustic spectrum. This process can be intuitively under-
stood as a “spectrum of a spectrum.” First, the waveform
is Fourier-transformed into the spectral domain. Then, the
logarithm of that spectrum is taken, and another (inverse)
Fourier transform is performed into the “cepstral” domain
(Fraile & Godino-Llorente, 2014; Heman-Ackah et al.,
2003). The horizontal axis of a spectrum shows a range of
frequencies. By analogy, the horizontal axis of the cepstrum
is a time-like dimension termed “quefrency,” an anagram
of “frequency,” just as “cepstrum” is an anagram of “spec-
trum” (Oppenheim & Schafer, 2004). The periodic harmonic
peaks in the spectrum are represented as a single large
peak (and its harmonics) in the cepstrum around a quefrency
corresponding to the period of the voice signal. The height
(i.e., “prominence”) of that peak relative to a regression
line through the overall cepstrum is called the “cepstral
peak prominence” or CPP and is typically reported in units
of decibels. CPP values therefore fall into a continuous range,
where lower values are typically correlated with greater
levels of dysphonia.

Figure 1 illustrates this CPP calculation process for
/a/ vowels from three speakers exhibiting a typical, dys-
phonic, and aphonic voice, respectively. For each row, the
leftmost image shows a section of the /a/ vowel’s wave-
form. The center image shows the vowel’s spectrum, and
the rightmost image shows the vowel’s cepstrum and the
regression line used in calculating the cepstrum. The vowel
from the top row comes from an aphonic speaker, so no
harmonics are visible in the spectrum and no peak is ap-
parent in the cepstrum. The vowel in the bottom row comes
from a speaker with no voice disorder, so harmonics are
prominent in the spectrum and the CPP is well above the
regression line. The vowel in the middle row was produced
by a nonaphonic speaker with disordered voice quality,
so the CPP height is lower relative to that of the typical
speaker.

To distinguish normal from disordered voices, the
continuous range of CPP values needs to be divided into
groups at one or more thresholds. Each potential CPP
threshold could yield a different sensitivity (true positive
rate [TPR]) and specificity (true negative rate [TNR]). In
general, a desirable threshold will have high values for
both of these quantities (although it may not always pos-
sible to maximize both TPR and TNR at the same time).
For any test, a threshold should be chosen such that the
rate and type of errors are both acceptable for that test’s
goal.

Previous Work
Table 1 summarizes prior studies that examined

the ability of CPP to distinguish healthy from pathological
voices. In general, they did so by obtaining auditory-
perceptual ratings (typically of overall severity and/or
breathiness) and correlating those perceptual values with
objective CPP values. They often also established CPP
cutoff thresholds by dividing the perceptual ratings into
two or more categories of dysphonia severity and deter-
mining CPP’s performance in classifying voices into those
groups.

Many of these studies included both sustained vowels
and continuous speech tasks. In all of those cases, CPP
thresholds were lower for continuous speech tasks com-
pared to sustained vowels. This general finding suggests
that it is important to keep speech tasks consistent when
comparing CPP values across recordings. Additionally,
the choice of algorithm for calculating CPP is critically
important, as different algorithms produce values in differ-
ent ranges. The three major CPP computation algorithms
in these studies are Hillenbrand and Houde’s (1996) algo-
rithm for calculating smoothed CPP (CPPS), Praat’s CPPS
algorithm (Boersma & Weenink, 2018), and the CPP com-
putation method in the Analysis of Dysphonia in Speech
and Voice (ADSV; Version 3.4.2, PENTAX Medical).

Two studies by Heman-Ackah et al. (2003, 2014)
used Hillenbrand and Houde’s (1996) algorithm to iden-
tify CPPS thresholds that distinguish voices with severe
dysphonia from voices with mild or no dysphonia. These
studies provide a basis for comparison of threshold CPP
values for sustained vowels and running speech in English
speakers. However, because they excluded speakers with
moderate dysphonia, it is not clear that those thresholds
are appropriate for use in all speakers.

Studies by Núñez-Batalla et al. (2019) and Delgado-
Hernández et al. (2019) used Praat’s CPPS algorithm to
investigate CPP in Spanish speakers with and without di-
agnoses of voice disorders. Núñez-Batalla et al. identified
normative CPPS values by computing the averages and
standard deviations of the control groups’ CPPS values for
each task, rather than identifying threshold values to sepa-
rate speakers with and without voice disorders. Delgado-
Hernández et al. used two distinct configurations of Praat
—the default configuration (Configuration 1) and the con-
figuration used to calculate the Acoustic Voice Quality
Index (Configuration 2)—to find CPPS cutoff thresholds
based on auditory-perceptual ratings of overall severity.
Murton et al.: CPP Values for Clinical Voice Evaluation 1597



Figure 1. Waveform (left), spectrum (center), and cepstrum (right) from speakers with aphonia (top row), nonaphonic but
disordered voice quality (center row), and no voice disorder (bottom row).
However, that result has not been replicated with English
language speakers or with other voice analysis programs
(e.g., ADSV) that clinicians may also use.

Several studies have used the ADSV program to
analyze CPP in Korean (Lee et al., 2019; Yu et al., 2018)
and Turkish (Aydinli et al., 2019) speakers. Lee et al. (2019)
reported CPP values that distinguished speakers with vary-
ing levels of dysphonia, whereas Yu et al. (2018) reported
CPP values that separated speakers with and without dys-
phonia. Aydinli et al. (2019) found lower CPP values in
Turkish-speaking children with nodules compared to age-
and sex-matched controls but did not report specific CPP
thresholds to distinguish those populations.

In a related work, Awan et al. (2016) attempted to
find clinically relevant cutoff values for the Cepstral Spec-
tral Index of Dysphonia (CSID), a computational estimate
of dysphonia severity that incorporates CPP and measures
of spectral energy. They defined three groups of patients
with “disordered voices” according to different criteria:
(a) “dysphonia-positive” patients according to auditory-
perceptual ratings by trained speech-language pathology
students, (b) “laryngoscopic-positive” patients based on
signs and symptoms visible on laryngeal stroboscopy, and
(c) “Voice Handicap Index (VHI)–positive” patients with
1598 American Journal of Speech-Language Pathology • Vol. 29 • 159
a value greater than 12 on the 30-item VHI (Jacobson
et al., 1997). Awan et al. found that CSID best distinguished
dysphonia-positive participants from dysphonia-negative
ones. CSID was less accurate for the laryngoscopic and
VHI classifications. The VHI classification is arguably
the least relevant comparison to CPP, since CPP is not de-
signed to reflect a speaker’s self-perception of vocal health/
function.

As illustrated by the preceding review, CPP values
can vary widely with different speaking tasks and compu-
tation algorithms. This variation arises in part because
tasks differ in their degree of voicing, and computation
algorithms differ in how they treat unvoiced segments.
Watts et al. (2017) compared CPP values from Praat and
ADSV. English and Flemish speakers produced sustained
vowels (/a/) and continuous speech. The Flemish vowel
and sentence recordings had correlation coefficients of .93
in ADSV and .88 in Praat, whereas the English vowels
and sentences had correlation coefficients of .92 and .96,
respectively.

A major difference between these algorithms is ADSV’s
use of a voicing activity detector. In ADSV, frames with
negative CPP (i.e., cepstral peak below the regression line)
are not considered for analysis. ADSV’s use of the voicing
6–1607 • August 2020



Table 1. Summary of previous work identifying clinically relevant cepstral peak prominence (CPP) cutoff values.

Author Year Language Study size CPP method
Group

classification
Sustained vowel

CPP cutoff
Running speech
CPP cutoff

Heman-Ackah
et al.

2003 English 281 patients
(176F/105M)

CPPS
(Hillenbrand)

Perceptually mild vs.
severe dysphonia

10 dB 5 dB

Heman-Ackah
et al.

2014 English 835 patients,
50 controls

CPPS
(Hillenbrand)

Perceptually normal
vs. dysphonic

n/a 4.0 dB

Yu et al. 2018 Korean 214 patients
(142F/72M),
74 controls
(47F/27M)

ADSV CPP Perceptually normal
vs. dysphonic

12 dB 7 dB

Núñez-Batalla
et al.

2019 Spanish 72 patients,
52 controls

CPPS (Praat) Normative values
(not cutoff values)

Female: 16.0 dB
Male: 16.4 dB

Female: 7.9–11.3 dB
Male: 7.8–10.9 dB
(cutoff varies with

sentence)
Aydinli et al. 2019 Turkish 27 patients,

27 controls
(40M/14F,
pediatric)

ADSV CPP Nodules diagnosis
vs. normal voices

No thresholds, but found significantly
lower CPP in pediatric speakers with
nodules vs. age- and sex-matched
controls for most, but not all, speaking
tasks.

Delgado-
Hernández
et al.

2019 Spanish 136 patients,
47 controls

CPPS (Praat)
in two
configurations

Perceptually normal
vs. dysphonic

Configuration
1: 23.62 dB
2: 13.96 dB

Configuration
1: 18.4 dB
2: 8.37 dB

Lee et al. 2019 Korean 1,029 patients
(512M/517F)

ADSV CPP Normal vs. mild 10 dB 7.7 dB
Mild vs. moderate 7.5 dB 5.4 dB
Moderate vs. severe 4.1 dB 2.9 dB

Note. F = female; M = male; CPPS = smoothed cepstral peak prominence; ADSV = Analysis of Dysphonia in Speech and Voice.
activity detector might explain why the correlation was
higher for the English sentence, which was almost fully
voiced, than for the Flemish sentence, which contained
many unvoiced segments. Unvoiced segments are not
typically periodic and are likely to have very low CPP.
This result suggests the need to use the same speaking tasks
when comparing CPP values from continuous speech, espe-
cially when not using a voicing activity detector. Speech
samples with different degrees of voicing may yield artifi-
cially different CPP values.
Current Work
In this study, we follow up on the recent ASHA

recommendation to use CPP in the clinical assessment of
voice (Patel et al., 2018). Unlike previous studies, we use
ADSV and Praat to analyze two English language data
sets and identify CPP cutoff values to detect probable voice
disorders. To our knowledge, no published work has pro-
posed clinically relevant CPP cutoff values for English
speakers based on these widely used voice analysis software
products. ADSV is a commercially available and supported
product widely used by clinicians. Praat is free software
available online that is increasingly being used for clini-
cal assessment of voice and speech due to its ease of use,
graphical user interface, and scripting features. Hillenbrand
and Houde’s algorithm has been used for research study
and not typically for clinical use—potentially due to lack
of support and a user-friendly interface—and therefore is
not evaluated in this work.
In Experiment 1, we investigate CPP as a screening
tool to predict the presence of a voice disorder using a
voice database (Massachusetts Eye and Ear Infirmary
[MEEI], 1994) that has been analyzed in many other stud-
ies. In Experiment 2, we evaluate the performance of CPP
to predict the auditory perception of dysphonia severity
using a smaller data set of acoustic recordings that has been
rigorously evaluated by trained listeners using ASHA’s rec-
ommended protocol for the Consensus Auditory-Perceptual
Evaluation of Voice (CAPE-V; Kempster et al., 2009). Our
goal is to aid practitioners who wish to use the objective
measure of CPP as part of their clinical assessment and
monitoring of patients with voice disorders.
Experiment 1: CPP Cutoff Values
for Detecting the Potential Presence
of a Voice Disorder
Method
Database

The MEEI Voice Disorders Database consists of re-
cordings from 687 patients diagnosed with voice disorders
and 53 vocally healthy control speakers (MEEI, 1994).
The speakers were recorded between 1992 and 1994 at the
MEEI’s Voice and Speech Lab and Kay Elemetrics (now part
of PENTAX Medical). The database consists of sustained
/a/ vowel productions from 657 of the patients and Rainbow
Murton et al.: CPP Values for Clinical Voice Evaluation 1599



Table 3. Sex and age distributions of speakers in the Massachusetts
Eye and Ear Infirmary Voice Disorders Database analyzed in
Experiment 1.

Group Female Male Median age (years) Age range (years)

Controls 30 20 36.5 22–59
Patients 183 112 45 13–93
Passage readings from 662 of the patients. Only 1 s of each
sustained vowel and the first 12 s of each Rainbow Passage
are available in the database.

In this study, we excluded three control speakers
who had a history of smoking. We also excluded a total of
392 patients with the following classifications: Five were
classified as “normal,” 51 were classified as postsurgery or
posttherapy, 89 were missing a diagnosis, and 247 were
classified generically as “pathological voice.” Patients with
the generic “pathological voice” classification were ex-
cluded because including individuals that lack a definitive/
standard diagnosis would introduce uncertainty about the
composition and integrity of the pathological data set and
make the results less clinically interpretable or applicable.
After these exclusions, the database consisted of 295 voice
patients and 50 controls. The voice patients’ primary diag-
noses are presented in Table 2. Table 3 summarizes these
speakers’ demographics.

All of the speakers in our data set produced both the
sustained vowel and the Rainbow Passage, except for four
voice patients who produced only the sustained vowel.
Therefore, our data set consisted of 345 vowel recordings
(295 patients, 50 controls) and 341 Rainbow Passage re-
cordings (291 patients, 50 controls).
Acoustic and Statistical Analysis
Each recording was analyzed in ADSV (Version 3.4.2)

using the program’s default settings. The “CPP/EXP Mean
(dB)” parameter was extracted to yield CPP for each recording.

Each recording was also analyzed in Praat (Version
6.0.40) using a PowerCepstrogram (60-Hz pitch floor,
2-ms time step, 5-kHz maximum frequency, and pre-emphasis
from 50 Hz). CPPS was calculated from each PowerCep-
strogram with the following settings: subtract tilt before
smoothing = “no”; time averaging window = 0.01 s; que-
frency averaging window = 0.001 s; peak search pitch range =
60–330 Hz; tolerance = 0.05; interpolation = “Parabolic”;
tilt line quefrency range = 0.001–0 s (no upper bound);
Table 2. Primary diagnoses of the 295 voice patients in the
Massachusetts Eye and Ear Infirmary Voice Disorders Database
whose recordings remained in the analysis after exclusion criteria
were applied in Experiment 1.

Primary diagnosis Count

Neurological (92)
Paralysis/paresis 62
Spasmodic dysphonia 19
Other neurological 11

Muscle tension dysphonia 49
Nodules or polyps 41
Lesions (including cyst, mass, dysplasia) 41
Edema (including Reinke’s edema) 41
Scar and/or trauma 15
Presbyphonia 8
Partial laryngectomy 5
Other (arthritis, tuberculosis, laryngocele) 3
Total 295

1600 American Journal of Speech-Language Pathology • Vol. 29 • 159
line type = “Straight”; fit method = “Robust.” These set-
tings are identical to those used by Watts et al. (2017) and
Brockmann-Bauser et al. (2019).

As discussed above, previous studies have found
substantially different CPP cutoff thresholds for sustained
vowels and continuous speech. Therefore, the sustained
vowel and Rainbow Passage recordings were treated sepa-
rately throughout the analysis. For each task, we identified
every CPP value that any participant produced on that
task and calculated several performance metrics based on
each value. These performance metrics included TPR, TNR,
false positive rate (FPR), positive predictive value (PPV),
accuracy, and Youden’s J index, which is given by sensi-
tivity + specificity − 1 (= TPR + TNR − 1). Therefore,
Youden’s J is 1 only when neither false positives nor false
negatives are present. It is also not affected by the relative
sizes of the positive and negative groups (Youden, 1950).
That property is useful for studies in which most people in
a study fall into the same class. For example, studies based
on people who present to voice clinics are likely to have
many more dysphonic voices than controls.

We plotted the series of TPRs against the FPRs to
generate a receiver operating characteristic (ROC) curve
and calculated the area under the ROC curve to evaluate
the overall classification performance. An under the ROC
curve closer to 1 indicates better classification performance.
The CPP threshold yielding the maximum Youden index
was also identified for both the sustained vowels and run-
ning speech. This analysis was performed for the ADSV
CPP and Praat CPPS calculations separately.

Results
Table 4 reports the classification performance for dis-

criminating patients versus controls using thresholds for ADSV
CPP and Praat CPPS that yielded maximum Youden's J.

ADSV CPP
Figure 2 (top row) shows the distribution of ADSV-

based CPP values in participants with and without voice
disorders for the sustained vowel and continuous speech
conditions. The histograms are normalized such that the
heights of each condition’s bars sum to 1. Inspecting these
histograms shows that CPPs from controls’ and patients’
voices typically fall into distinct ranges, with patients’ voices
showing much wider variation than those of controls.
Figure 2 (bottom row) shows the ROC curves for the sustained
vowel and continuous speech conditions, with the CPP cutoff
value indicating maximum Youden’s index labeled on each.
6–1607 • August 2020



Table 4. Threshold values and performance measures for the Analysis of Dysphonia in Speech and Voice
(ADSV)–based cepstral peak prominence (CPP) and Praat-based smoothed CPP (CPPS) classifiers.

Variable

ADSV CPP Praat CPPS

Sustained vowels Rainbow Passage Sustained vowels Rainbow Passage

Threshold 11.46 dB 6.11 dB 14.45 dB 9.33 dB
ROC AUC .91 .95 .93 .98
Accuracy 79.4% 87.7% 77.4% 94.5%
TPR 0.77 0.87 0.74 0.95
FPR 0.08 0.08 0.02 0.10
TNR 0.92 0.92 0.98 0.90
PPV 0.98 0.98 0.99 0.98
Youden’s J 0.69 0.79 0.72 0.85

Note. ROC = receiver operating characteristic; AUC = under the ROC curve; TPR = true positive rate; FPR
= false positive rate; TNR = true negative rate; PPV = positive predictive value.
Praat CPPS
Figure 3 shows the distributions of Praat-based

CPPS values (top row) and ROC curves (bottom row)
for the sustained vowel and continuous speech conditions
as described for Figure 2. The histograms are normalized
such that the heights of each condition’s bars sum to 1.
Like the ADSV-based CPP values, Praat CPPS separates
control and patient voices well, with a wider range of
CPPS values for patients’ voices than for controls’ voices.
Figure 2. Top row: Histogram of Analysis of Dysphonia in
(CPP) values from patients with voice disorders (dark) and
vowels (left) and continuous speech (right). Total bin count
thresholds derived from the maximum Youden’s index. Bo
plotting true positive versus false positive rates at variou
continuous speech (right). The “positive” class is the patie
given by the maximum Youden’s index.
Experiment 2: Estimating Dysphonia
Severity Using CPP Values
Method
Database

In Experiment 2, we analyzed a data set consisting
of 32 speakers that was first published in Awan et al. (2010).
Speech and Voice–based cepstral peak prominence
vocally healthy individuals (light) for sustained

s sum to 1 within each group. Vertical lines indicate
ttom row: Receiver operating characteristic curves
s CPP thresholds for sustained vowels (left) and
nt group. Open circles indicate the CPP threshold

Murton et al.: CPP Values for Clinical Voice Evaluation 1601



Figure 3. Top row: Histogram of Praat-based smoothed cepstral peak prominence (CPPS) values from patients with voice
disorders (dark) and vocally healthy individuals (light) for sustained vowels (left) and continuous speech (right). Total bin
counts sum to 1 within each group. Vertical lines indicate thresholds derived from the maximum Youden’s index. The
“positive” class is the patient group. Bottom row: Receiver operating characteristic curves plotting true positive versus
false positive rates at various CPPS thresholds for sustained vowels (left) and continuous speech (right). Open circles
indicate the threshold given by the maximum Youden’s index.
This data set includes 24 speakers with voice disorders
(12 female and 12 male speakers) and eight speakers with
typical voices (four female and four male speakers) based
on auditory-perceptual judgment and self-report. The data
set also contains auditory-perceptual judgments of voice
from 25 trained speech-language pathology graduate stu-
dent listeners (Kempster et al., 2009). In contrast, the Ex-
periment 1 data set contains only a binary categorization
of speakers with and without voice disorder diagnoses.
Experiment 2’s large set of listener ratings provides a valu-
able opportunity to quantitatively relate CPP to auditory-
perceptual judgments of voice, using a continuous scale
rather than the binary decision from Experiment 1. The
voice-related diagnoses of the 24 speakers with voice
Table 5. Diagnoses of speakers in Experiment 2 (from Awan et al.,
2010).

Diagnosis Count Male Female

Paralysis/paresis 8 4 4
Muscle tension dysphonia 4 2 2
Cyst 4 1 3
Nodules/polyp 3 1 2
Papilloma 2 2 0
Amyloidosis 1 1 0
Cancer 1 1 0
Reinke’s edema 1 0 1
Total 24 12 12

1602 American Journal of Speech-Language Pathology • Vol. 29 • 159
disorders are summarized in Table 5. Each speaker produced
a sustained /a/ vowel and four of the six CAPE-V sentences
targeting various voicing behaviors: easy onsets (S2: “How
hard did he hit him?”), full voicing (S3: “We were away
a year ago”), hard glottal attacks (S4: “We eat eggs every
Easter”), and voiceless stops (S6: “Peter will keep at the
peak”; Kempster et al., 2009).

Twenty-five trained speech-language pathology grad-
uate students participated in five separate listening sessions
to produce five ratings of each utterance for overall sever-
ity, roughness, breathiness, and strain according to the
CAPE-V evaluation criteria. These listener ratings resulted
in 125 ratings (25 listeners × 5 ratings each) for each sus-
tained vowel and CAPE-V sentence. Measures of inter- and
intrarater reliability indicated that the listeners accurately
distinguished between dysphonia severity levels and pro-
vided highly reliable ratings. The listener rating process is
described in more detail in the study of Awan et al. (2010).
Final ratings of each dysphonia category were computed
as the mean over all 125 ratings for that category. For this
study, overall severity was selected as the auditory-perceptual
category to be estimated using CPP values.
Acoustic and Statistical Analysis
Following the same procedure as our analysis of the

MEEI corpus, each recording was analyzed in ADSV
using the program’s default settings. The “CPP/EXP Mean
6–1607 • August 2020



(dB)” parameter was extracted to yield a CPP value for each
recording. Additionally, for each recording, all 125 listener
ratings of overall severity were averaged to yield a single
measure of perceived overall dysphonia severity. Separately,
the Praat-based CPPS was calculated using the parameters
described in Experiment 1.

Linear regression models were computed using the
MATLAB fitlm function to assess CPP’s ability to esti-
mate the perceptual ratings of overall severity. These models
were computed separately for the vowels and each of the
four CAPE-V sentences, resulting in five regression models
of the form predicted severity rating ¼ m x CPPþ b. For
each model, the coefficient of determination (r2) was com-
puted, and 95% prediction intervals (PI95) were calculated
as follows:

PI95 ¼ yi þ� tcrit �RMSE �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

n
þ xi−xð Þ2
∑j xj−x

� �2

vuut (1)

where n represents the number of observations in the model,
yi represents the model’s prediction given xi, tcrit represents
the critical t value for n − 2 observations at a 95% signifi-
cance level, and RMSE is the root-mean-square error of the
regression model.

Finally, the sustained vowels’ CPP cutoff scores from
Experiment 1 (11.46 dB for ADSV and 14.45 dB for Praat)
were used to classify the patient and control speakers in
Experiment 2 as an initial of validation of the cutoff scores
in an independent data set. TPR, TNR, FPR, PPV, and
accuracy were calculated for the vowel-based ADSV and
Praat cutoffs separately. Note that FPR and TNR always
sum to 1, so if one value is high, then the other will be low.

Results
ADSV CPP

Figure 4 shows best-fit regression lines and PI95 link-
ing ADSV-based CPP to the mean listener rating of over-
all severity for each task separately. In general, CPP and
overall severity were well correlated, with r2 ranging from
.5 to .74, depending on the task. As expected, the r2 value
of .71 for the /a/ vowels is very close to the r2 of .70 found
by Awan et al. (2010) on this data set using a similar ver-
sion of ADSV. Subfigure titles include the regression line
equation relating listener ratings to CPP, and the r2 value
is indicated in each subfigure. The x-axis tick labels show
the CPP values that correspond to each y-axis label based
on the regression model. For example, a CPP value of 2.7 dB
on an /a/ vowel corresponds to a mean listener rating of
80 on the CAPE-V overall severity scale (Kempster et al.,
2009). Dashed lines indicate PI95 for each point on the re-
gression line. The CPP threshold value of 11.46 dB from
Experiment 1 yielded an Experiment 2 accuracy of 68.8%
(22/32), TPR of 87.5% (21/24), TNR of 12.5% (1/8), PPV
of 75% (21/28), and FPR of 87.5% (7/8).
Praat CPPS
Figure 5 shows regression lines and PI95 relating

Praat CPPS to mean listener ratings of overall severity.
The figure was generated following the same procedure
used to create Figure 4, with the regression line, r2 value,
and PI95 indicated on each subfigure. The r2 values relat-
ing overall severity to CPPS ranged from .38 to .72. The
CPPS threshold value of 14.45 dB from Experiment 1
yielded an Experiment 2 accuracy of 75% (24/32), TPR of
79% (19/24), TNR of 62.5% (5/8), PPV of 86.4% (19/22),
and FPR of 37.5% (3/8).
Discussion
CPP is widely understood to be an accurate predictor

of dysphonia severity. To our knowledge, this is the first
study to identify CPP values that are based on using both
ADSV- and Praat-based analysis methods on the same well-
controlled databases of English speakers.

CPP Cutoff Values and Comparisons
to Previous Studies

Our results from Experiment 1 suggest that ADSV-
based CPP values below 11.46 dB for sustained vowels and
below 6.11 dB for the Rainbow Passage should be consid-
ered indicative of a voice disorder. Praat-based CPPS values
below 14.45 dB for sustained vowels or below 9.33 dB for
continuous speech indicate a high probability of the pres-
ence of a voice disorder. The cutoff values indicated here
represent only one possible estimate of a CPP clinical cut-
off, so values in the near vicinity of the cutoff should be
given further consideration when used clinically. There are
several other possible methods of determining an appro-
priate cutoff threshold that could be applied in future
work to balance specificity and sensitivity in different ways
(Habibzadeh et al., 2016; Unal, 2017).

Separately, our results from Experiment 2 suggest
quantitative relationships between CPP values and per-
ceptual ratings of dysphonia severity levels. The regres-
sion lines above each plot in Figures 4 and 5 can be used
to predict dysphonia severity based on ADSV CPP (see
Figure 4) or Praat CPPS (see Figure 5). For example, if
a clinician used Praat to analyze a speaker’s /a/ value and
found a CPPS value of 10 dB, the predicted CAPE-V over-
all severity rating would be approximately 54: −6:13 x 10þ
115:34 ¼ 54:04. That said, the data set for Experiment 2 is
relatively small, and the PI95 ranges are fairly large, so
these results should be applied with caution and call for
additional study with larger databases.

Our results are comparable to those from previous
similar studies. For example, Yu et al. (2018) found ADSV-
based CPP thresholds of approximately 12 dB for sustained
vowels and 7 dB for running speech in Korean speakers.
Heman-Ackah et al. (2003) used Hillenbrand’s algorithm
with English speakers and found that thresholds of 10 dB for
sustained vowels and 5 dB for running speech distinguished
Murton et al.: CPP Values for Clinical Voice Evaluation 1603



Figure 4. Correlations between Analysis of Dysphonia in Speech and Voice–based cepstral peak prominence (CPP) and listener rating of
overall severity for each speaking task. Solid lines indicate best-fit regression line, and dashed lines show 95% prediction intervals. The x-axis
tick labels show the CPP values corresponding to each y-axis tick label based on the regression line.

Figure 5. Correlations between Praat smoothed cepstral peak prominence (CPPS) and listener rating of overall severity for each speaking
task. Solid lines indicate best-fit regression line, and dashed lines show 95% prediction intervals. The x-axis tick labels show the CPPS
values corresponding to each y-axis tick label based on the regression line.
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mild from severe dysphonia. These thresholds are some-
what lower than ours, but our Experiment 1 cutoff values
are intended to distinguish patients with voice disorders
versus vocally healthy controls instead of mild versus severe
dysphonia. Additionally, our Praat CPPS thresholds are
similar to the ones identified by Delgado-Hernández et al.
(2019), whose Praat “Configuration 2” settings yielded CPP
thresholds of 13.96 dB for sustained vowels and 8.37 dB for
continuous speech.
Validation of Experiment 1 Thresholds Using Experiment 2
Data Set

We used the cutoff values for /a/ vowels from Experi-
ment 1 to classify the patient versus control voices from
Experiment 2. We did not perform that validation for the
connected speech because the speaking tasks were different
(Rainbow Passage vs. CAPE-V sentences) and the result-
ing CPP values could not be directly compared. The ac-
curacy scores for ADSV-based CPP and Praat-based CPPS
were similar, at 68.8% for ADSV and 71.9% for Praat. The
TPR was high for both ADSV (21/24) and Praat (18/24),
but the TNR was higher for Praat (5/8) than for ADSV
(1/8). Although the TNR for ADSV seems low, there were
four control speakers whose ADSV-based CPP values were
close to the cutoff value (< 1 dB below). The remaining
three control speakers were the same ones who were below
the Praat CPPS threshold. Those speakers also had the
highest overall severity ratings of the control group, as
judged by the trained listeners. Overall, these results indi-
cate that the Experiment 1 CPP cutoffs classified most of
the Experiment 2 speakers accurately and that clinicians
should use particular caution when interpreting CPP values
that are close to the clinical cutoff thresholds.
Choices of Task and Computation
Algorithm Are Important

An important finding from Experiment 2 is the wide
variation in CPP values among the different CAPE-V
sentence tasks. This result suggests that between and within
speaker comparisons of CPP values for continuous speech
should be based on the same speech material (e.g., same
sentences from the CAPE-V or reading passage). Within
a single speech task, speakers are likely to be similar to
each other in their production of nonvoiced elements like
consonants and pauses, so changes in speakers’ vocal qual-
ity can be directly observed (Hillenbrand & Houde, 1996).

One possible explanation for the variation in running
speech CPP values is the differing amounts of voicing in
each CAPE-V sentence. All four sentences tended to have
lower CPP values than the sustained vowels. Sentence 3 was
fully voiced (“We were away a year ago”) and tended to
have the highest CPP values of the four sentences. In con-
trast, Sentence 6 had many voiceless stops (“Peter will keep
at the peak”) and tended to have the lowest CPP values.
This pattern also occurs for the Praat-based CPPS values,
with Sentence 3 tending to have the highest CPPS and Sen-
tence 6 having the lowest.
These results suggest that unvoiced frames are being
included in the ADSV-based CPP and Praat-based CPPS
calculations. A sentence with many voiceless consonants,
especially stop consonants, is likely to contain many un-
voiced frames with very low CPP. Including these frames
in a calculation of an utterance’s average CPP can artifi-
cially lower the overall CPP. Praat’s CPPS calculation does
not include voicing activity detection, but ADSV’s CPP
algorithm does. Although ADSV does incorporate voicing
detection, our results suggest that ADSV’s voice activity
detector may not filter out all the unvoiced frames in an
utterance. As noted in Awan et al. (2010), incomplete or
no voicing detection could cause the observed differences
between CPP values for sentences with and without un-
voiced segments. Improving voice activity detection could
reduce the effects of unvoiced frames on a CPP calcula-
tion and facilitate comparison between CPPs of different
speech tasks.

The use of voicing detection is particularly compli-
cated for voices with aphonia, particularly those with inter-
mittent aphonia. Frames that do not contain voicing due
to aphonia, pausing, voiceless consonants, and so forth
yield low CPP values. If voicing detection is inaccurate or
not used, those nonvoiced frames will be included in the
computation of average CPP, so including aphonic segments
will tend to decrease the average CPP. In that case, the
low CPP accurately reflects a noise-like or aphonic voice
quality that is clinically meaningful. If very accurate voicing
detection is applied, however, only voiced frames will be
included in the average CPP calculation, which might be a
very small percentage of the speech. The CPP in this case
could be high, if the nonaphonic voiced segments are peri-
odic but would not represent the speech as a whole. Para-
doxically, then, accurate voicing detection can actually
lead to a higher-than-expected CPP if the voice contains
intermittent aphonia.

Ideally, CPP would be calculated only over frames
that were intended to be voiced. The CAPE-V fully voiced
sentence (“We were away a year ago”) can be used for this
purpose. More generally, if frames that were not intended
to be voiced (including pauses and voiceless consonants)
could be accurately excluded, then utterances with different
phonemes could be compared. Aphonic segments, which
occur during speech that is intended to have voicing, would
be included in the CPP computation and lower the result.
Applying this criterion automatically would require very
accurate segment-level automatic speech recognition, so it
may not currently be realistic. Alternatively, CPP algorithms
could require that a certain fraction of the recording be
voiced in order to calculate CPP (e.g., if the speech is 95%
aphonic, no CPP would be returned). Further research
would be needed to identify the appropriate fraction of
voicing needed to calculate an accurate CPP.

Notably, the r2 values for the /a/ vowel regression
model were considerably different for the ADSV-based
CPP (r2 = .71) and Praat-based CPPS (r2 = .56). This dis-
crepancy is likely due in part to a single point from one
speaker, whose Praat CPPS was relatively high (11.7 dB)
Murton et al.: CPP Values for Clinical Voice Evaluation 1605



but whose ADSV CPP was substantially lower (3.5 dB).
This speaker’s /a/ vowel received a high overall severity
rating of 88 from the trained listeners. The vowel’s pho-
nation is characterized by irregular, widely spaced pulses,
which were perceived, in this case, as significant strain
(mean CAPE-V rating of 90 from trained listeners) and
vocal fry. That phonation pattern is likely to be the cause
of the discrepancy between the Praat and ADSV CPP
values. The algorithms differ in windowing, smoothing,
and other parameter settings, and those differences may
be particularly sensitive to some property of this specific
phonation pattern. Practically, both the Praat CPPS and
ADSV CPP values for this speaker were below the clinical
cutoff values, so this speaker would have been categorized
as having a voice disorder with either program. Still, this
finding suggests a need for future work investigating how
various CPP computation methods respond to different
voice qualities, particularly nonmodal ones.

CPP Interpretation in Context
CPP is just one in a set of objective and subjective

measures that have been recommended for use in clini-
cal voice assessment and, as such, should be considered/
interpreted in the context of the other recommended mea-
sures, which include additional acoustic parameters and
aerodynamic assessment, as well as subjective listener ratings,
medical exam findings (including laryngeal endoscopic
imaging), and patient self-report (Patel et al., 2018). In
this study, we identified thresholds below which CPP values
were associated with the presence of a voice disorder. How-
ever, it is conceivable that some voice disorders may lead
to abnormally high CPP (e.g., some manifestations of vocal
hyperfunction), which a single threshold would not take
into account. Recent work on this topic by Awan and
Awan (2020) has indicated that rough voices with a strong
subharmonic component may exhibit high CPP values and
may benefit from a two-stage analysis method that con-
siders the relative heights of cepstral peaks in high and
low quefrency ranges. Future work could additionally de-
termine whether it is necessary or possible to also establish
upper boundaries for the clinical application of CPP.

In addition to the computation software and speech
task, CPP values may be affected by vowel quality, loud-
ness, or a speaker’s sex and age. Awan et al. (2012) found
that low vowels (e.g., /a/ and /æ/) tended to have higher
CPP values than high vowels (e.g., /i/ and /u/) did. Clinicians
should ensure that vowel quality is as similar as possible
when comparing CPPs based on sustained vowels. Future
work could also identify appropriate CPP cutoff values for
sustained vowels other than /a/. Additionally, Awan et al.
(2012) found that CPP increases significantly with increases
in loudness. These increases are likely due to naturally in-
creased glottal closure and reduced perturbation at higher
loudness levels and do not reflect changes in underlying
dysphonia or voice disorder. Additionally, male speakers
tended to have higher CPP than female speakers, possibly
because of increased loudness in their normal speaking
voices. Similarly, Brockmann-Bauser et al. (2019) found
1606 American Journal of Speech-Language Pathology • Vol. 29 • 159
that Praat-based CPPS increased significantly with loudness
for both patients with and without voice disorders. Clinicians
should therefore use caution when comparing CPP values
based on speech samples with different loudness levels.

The patients in the MEEI database ranged in age
from 13 to 93 years, whereas the age range of the vocally
healthy speakers fell in a smaller bracket (22–59 years).
Age is known to often bring voice changes (Mueller, 1997).
It may be useful to establish separate normative values for
older adults to help distinguish normal aging from dis-
ordered voice. This data set did not contain old enough
control speakers to establish different norms for older age
ranges, but future work could address this question.

Conclusion
The goal of this study was to employ two frequently

used analysis methods to identify values for CPP that can
aid clinical voice evaluation, including cutoff thresholds
for detecting the presence or absence of a voice disorder
and information about how CPP values relate to auditory-
perceptual ratings of overall severity of dysphonia. Results
from Experiment 1 suggest that ADSV-based CPP values
below 11.46 dB (for sustained /a/ vowels) and below 6.11 dB
(for the Rainbow Passage) are strongly indicative of the pres-
ence of a voice disorder. Corresponding Praat-based CPPS
values were 14.45 and 9.33 dB, respectively. Experiment 2
results suggest strong relationships between CPP values
and auditory-perceptual ratings of overall severity of dys-
phonia. Future work could include larger sample sizes to
further investigate the relationship between CPP and dys-
phonia severity, further examination of voicing activity de-
tection in CPP calculation, and investigation into different
thresholds for speakers in different age ranges.

Acknowledgment
This project was supported by the National Institute on Deaf-

ness and Other Communication Disorders Grants T32 DC000038
(awarded to Olivia Murton), R21 DC015877 (awarded to Daryush
Mehta), and P50 DC015446 (awarded to Robert Hillman). Olivia
Murton was also supported by the National Heart, Lung, and
Blood Institute (Grant No. F31 HL143824) and the Voice Health
Institute. The contents are solely the responsibility of the authors
and do not necessarily represent the official views of the National
Institutes of Health.

References
Awan, S. N., & Awan, J. A. (2020). A two-stage cepstral analysis

procedure for the classification of rough voices. Journal of
Voice, 34(1), 9–19. https://doi.org/10.1016/j.jvoice.2018.07.003

Awan, S. N., Giovinco, A., & Owens, J. (2012). Effects of vocal
intensity and vowel type on cepstral analysis of voice. Journal
of Voice, 26(5), 670.e15–670.e20. https://doi.org/10.1016/j.jvoice.
2011.12.001

Awan, S. N., Roy, N., Jetté, M. E., Meltzner, G. S., & Hillman,
R. E. (2010). Quantifying dysphonia severity using a spectral/
cepstral-based acoustic index: Comparisons with auditory-
perceptual judgements from the CAPE-V. Clinical Linguistics
6–1607 • August 2020

https://doi.org/10.1016/j.jvoice.2018.07.003
https://doi.org/10.1016/j.jvoice.2011.12.001
https://doi.org/10.1016/j.jvoice.2011.12.001


& Phonetics, 24(9), 742–758. https://doi.org/10.3109/02699206.
2010.492446

Awan, S. N., Roy, N., Zhang, D., & Cohen, S. M. (2016). Valida-
tion of the Cepstral Spectral Index of Dysphonia (CSID) as
a screening tool for voice disorders: Development of clinical
cutoff scores. Journal of Voice, 30(2), 130–144. https://doi.org/
10.1016/j.jvoice.2015.04.009

Aydinli, F. E., Özcebe, E., & İncebay, Ö. (2019). Use of cepstral
analysis for differentiating dysphonic from normal voices in
children. International Journal of Pediatric Otorhinolaryngology,
116, 107–113. https://doi.org/10.1016/j.ijporl.2018.10.029

Boersma, P., & Weenink, D. (2018). Praat. University of Amsterdam.
Brockmann-Bauser, M., Van Stan, J. H., Sampaio, M. C., Bohlender,

J. E., Hillman, R. E., & Mehta, D. D. (2019). Effects of vocal
intensity and fundamental frequency on cepstral peak prominence
in patients with voice disorders and vocally healthy controls.
Journal of Voice. Advance online publication. https://doi.org/
10.1016/j.jvoice.2019.11.015

Delgado-Hernández, J., León-Gómez, N., & Jiménez-Álvarez, A.
(2019). Diagnostic accuracy of the smoothed cepstral peak
prominence (CPPS) in the detection of dysphonia in the Spanish
language. Loquens, 6(1), 058. https://doi.org/10.3989/loquens.
2019.058

Fraile, R., & Godino-Llorente, J. I. (2014). Cepstral peak prominence:
A comprehensive analysis. Biomedical Signal Processing and Con-
trol, 14, 42–54. https://doi.org/10.1016/j.bspc.2014.07.001

Habibzadeh, F., Habibzadeh, P., & Yadollahie, M. (2016). On de-
termining the most appropriate test cut-off value: The case of
tests with continuous results. Biochemia Medica, 26(3), 297–307.
https://doi.org/10.11613/BM.2016.034

Heman-Ackah, Y. D., Michael, D. D., Baroody, M. M., Ostrowski,
R., Hillenbrand, J., Heuer, R. J., Horman, M., & Sataloff, R. T.
(2003). Cepstral peak prominence: A more reliable measure
of dysphonia. Annals of Otology, Rhinology & Laryngology,
112(4), 324–333. https://doi.org/10.1177/000348940311200406

Heman-Ackah, Y. D., Sataloff, R. T., Laureyns, G., Lurie, D.,
Michael, D. D., Heuer, R., Rubin, A., Eller, R., Chandran, S.,
Abaza, M., Lyons, K., Divi, V., Lott, J., Johnson, J., & Hillenbrand,
J. (2014). Quantifying the cepstral peak prominence, a measure
of dysphonia. Journal of Voice, 28(6), 783–788. https://doi.org/
10.1016/j.jvoice.2014.05.005

Hillenbrand, J., & Houde, R. A. (1996). Acoustic correlates of
breathy vocal quality: Dysphonic voices and continuous speech.
Journal of Speech, Language, and Hearing Research, 39(2),
311–321. https://doi.org/10.1044/jshr.3902.311

Jacobson, B. H., Johnson, A., Grywalski, C., Silbergleit, A., Jacobson,
G., Benninger, M. S., & Newman, C. W. (1997). The Voice
Handicap Index (VHI): Development and validation. American
Journal of Speech-Language Pathology, 6(3), 66–70. https://
doi.org/10.1044/1058-0360.0603.66
Kempster, G. B., Gerratt, B. R., Abbott, K. V., Barkmeier-Kraemer,
J., & Hillman, R. E. (2009). Consensus Auditory-Perceptual
Evaluation of Voice: Development of a standardized clinical
protocol. American Journal of Speech-Language Pathology,
18(2), 124–132. https://doi.org/10.1044/1058-0360(2008/08-
0017)

Lee, Y., Kim, G., & Kwon, S. (2019). The usefulness of auditory
perceptual assessment and acoustic analysis for classifying the
voice severity. Journal of Voice. https://doi.org/10.1016/j.jvoice.
2019.04.013

Massachusetts Eye and Ear Infirmary. (1994). Voice disorders da-
tabase, (Version 1.03) [CD-ROM]. Kay Elemetrics Corp.

Mueller, P. B. (1997). The aging voice. Seminars in Speech and
Language, 18(2), 159–169. https://doi.org/10.1055/s-2008-
1064070

Núñez-Batalla, F., Cartón-Corona, N., Vasile, G., García-Cabo,
P., Fernández-Vañes, L., & Llorente-Pendás, J. L. (2019). Vali-
dez de las medidas del pico cepstral para la valoración objetiva
de la disfonía en sujetos de habla hispana [Validation of the
measures of cepstral peak prominence as a measure of dysphonia
severity in Spanish-speaking subjects]. Acta Otorrinolaringoló-
gica Española, 70(4), 222–228. https://doi.org/10.1016/j.otorri.
2018.04.008

Oppenheim, A. V., & Schafer, R. W. (2004). From frequency to
quefrency: A history of the cepstrum. IEEE Signal Processing
Magazine, 21(5), 95–106. https://doi.org/10.1109/MSP.2004.
1328092

Patel, R. R., Awan, S. N., Barkmeier-Kraemer, J., Courey, M.,
Deliyski, D., Eadie, T., Paul, D., Švec, J. G., & Hillman, R.
(2018). Recommended protocols for instrumental assessment
of voice: American Speech-Language-Hearing Association
expert panel to develop a protocol for instrumental assess-
ment of vocal function. American Journal of Speech-Language
Pathology, 27(3), 887–905. https://doi.org/10.1044/2018_AJSLP-
17-0009

Unal, I. (2017). Defining an optimal cut-point value in ROC analysis:
An alternative approach. Computational and Mathematical
Methods in Medicine. https://doi.org/10.1155/2017/3762651

Watts, C. R., Awan, S. N., & Maryn, Y. (2017). A comparison of
cepstral peak prominence measures from two acoustic analysis
programs. Journal of Voice, 31(3), 387-e1–387-e10. https://
doi.org/10.1016/j.jvoice.2016.09.012

Youden, W. J. (1950). Index for rating diagnostic tests. Cancer,
3(1), 32–35. https://doi.org/10.1002/1097-0142(1950)3:1<32::AID-
CNCR2820030106>3.0.CO;2-3

Yu, M., Choi, S. H., Choi, C.-H., & Choi, B. (2018). Predicting
normal and pathological voice using a cepstral based acoustic
index in sustained vowels versus connected speech. Communi-
cation Sciences & Disorders, 23(4), 1055–1064. https://doi.org/
10.12963/csd.18550
Murton et al.: CPP Values for Clinical Voice Evaluation 1607

https://doi.org/10.3109/02699206.2010.492446
https://doi.org/10.3109/02699206.2010.492446
https://doi.org/10.1016/j.jvoice.2015.04.009
https://doi.org/10.1016/j.jvoice.2015.04.009
https://doi.org/10.1016/j.ijporl.2018.10.029
https://doi.org/10.1016/j.jvoice.2019.11.015
https://doi.org/10.1016/j.jvoice.2019.11.015
https://doi.org/10.3989/loquens.2019.058
https://doi.org/10.3989/loquens.2019.058
https://doi.org/10.1016/j.bspc.2014.07.001
https://doi.org/10.11613/BM.2016.034
https://doi.org/10.1177/000348940311200406
https://doi.org/10.1016/j.jvoice.2014.05.005
https://doi.org/10.1016/j.jvoice.2014.05.005
https://doi.org/10.1044/jshr.3902.311
https://doi.org/10.1044/1058-0360.0603.66
https://doi.org/10.1044/1058-0360.0603.66
https://doi.org/10.1044/1058-0360(2008/08-0017)
https://doi.org/10.1044/1058-0360(2008/08-0017)
https://doi.org/10.1016/j.jvoice.2019.04.013
https://doi.org/10.1016/j.jvoice.2019.04.013
https://doi.org/10.1055/s-2008-1064070
https://doi.org/10.1055/s-2008-1064070
https://doi.org/10.1016/j.otorri.2018.04.008
https://doi.org/10.1016/j.otorri.2018.04.008
https://doi.org/10.1109/MSP.2004.1328092
https://doi.org/10.1109/MSP.2004.1328092
https://doi.org/10.1044/2018_AJSLP-17-0009
https://doi.org/10.1044/2018_AJSLP-17-0009
https://doi.org/10.1155/2017/3762651
https://doi.org/10.1016/j.jvoice.2016.09.012
https://doi.org/10.1016/j.jvoice.2016.09.012
https://doi.org/10.1002/1097-0142(1950)3:1%3c32::AID-CNCR2820030106%3e3.0.CO;2-3
https://doi.org/10.1002/1097-0142(1950)3:1%3c32::AID-CNCR2820030106%3e3.0.CO;2-3
https://doi.org/10.12963/csd.18550
https://doi.org/10.12963/csd.18550

