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Abstract

Bile acids (BASs) are diverse molecules that are synthesized from cholesterol in the liver. The
synthesis of BAs has traditionally been shown to occur via two pathways. Cholesterol 7a-
hydroxylase (CYP7A1) performs the initial and rate-limiting step in the classical pathway and
sterol 27-hydroxylase (CYP27AL1) initiates the hydroxylation of cholesterol in the alternative
pathway. While the role of individual BA species as physiological detergents is relatively
ubiquitous, their endocrine functions as signaling molecules and roles in disease pathogenesis have
been emerging to be BA species specific. In order to better understand the pharmacologic and
toxicologic roles of individual BA species in an /n vivo model, we created Cypral and Cyp27al
double knockout mice (DKO) by cross-breeding single KO mice (Cyp7a1™'~ and Cyp27a17"). BA
profiling and quantification by LC-MS of serum, gallbladder, liver, small intestine and colon of
wild type, Cyp7al™~, Cyp27al~'~, and DKO mice showed that DKO mice exhibited a reduction
of BAs in the plasma (45.9%), liver (60.2%), gallbladder (76.3%), small intestine (88.7%) and
colon (93.6%), while maintaining a similar BA pool composition as compared to WT mice. The
function of the farnesoid X receptor (FXR) in DKO mice was lower, revealed by decreased mRNA
expression of well-known FXR target genes, hepatic small heterodimer partner (Shp) and ileal
fibroblast growth factor 15 (Fgf15). However, response to FXR synthetic ligands was maintained
in DKO mice as treatment with GW4064 resulted in similar changes in gene expression in all
strains of mice.
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Conclusion: We provide a useful tool for studying the role of individual BAs /in vivo. DKO mice
have a significantly reduced BA pool, similar BA profile, and maintained response to FXR

activation.
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INTRODUCTION

Bile acids (BASs) are physiological detergents synthesized through the enzymatic oxidation
of cholesterol in the liver. Most BAs are conjugated to either glycine or taurine in the liver to
form negatively charged bile salts, which increases their solubility (1). Conjugated BAs are
effluxed by the bile salt export pump (BSEP) into bile canaliculi for transport and storage in
the gallbladder. The postprandial release of cholecystokinin stimulates contraction of the
gallbladder and the release of BAs into the duodenum (2). Inside the small intestine, BAs
facilitate the emulsification, digestion, and absorption of dietary fats, cholesterol, and lipid
soluble vitamins through the formation of mixed micelles (3). BAs are efficiently reabsorbed
in the distal small intestine (ileum) through the apical sodium-dependent bile acid
transporter (ASBT) and organic solute transporter alpha and beta (OSTa/b) where they are
returned to the liver through portal circulation. Upon returning to the liver, BAs are taken up
by hepatocytes through sodium taurocholate transporter (NTCP) and organic anion
transporting polypeptides (OATPs)(4-8).

BA synthesis in the liver is a complex process involving at least 17 different enzymes and is
predominantly accomplished through two distinct pathways (9). The classical (or neutral)
pathway is initiated by the rate-limiting enzyme cholesterol 7a-hydroxylase (CYP7A1) and
results in the formation of the primary BAs, cholic acid (CA) and chenodeoxycholic acid
(CDCA). The differential formation of CA and CDCA in the classical pathway is
determined by cholesterol 12a.-hydroxylase (CYP8B1) with CDCA being formed in the
absence of CYP8B1 activity (10). The alternative (or acidic) pathway is initiated with the
oxidation of the cholesterol side chain by the mitochondrial cytochrome p450 sterol 27-
hydroxylase (CYP27AL1) followed by 25-hydroxycholesterol 7-alpha-hydroxylase
(CYP7B1). Mice utilize an additional enzyme, cytochrome p450 2c¢70 (CYP2C70), to
rapidly convert CDCA to p-muricholic acid (BMCA) (11). Primary BAs are conjugated in
the liver before undergoing biliary excretion. Luminal bacteria in the intestine de-conjugate
and then metabolize a portion of primary bile acids to form more hydrophobic and cytotoxic
secondary BAs, including lithocholic acid (LCA) and deoxycholic acid (DCA) (12, 13).

Previous research using mice deficient in Cyp7al (Cyp7al~'~ mice) has shown over 75%
reductions in the BA pool size of three-month old, male mice. While the BA synthesis in
these mice was markedly reduced, there were no changes in cholesterol levels, likely due to
significantly reduced absorption of dietary cholesterol (14). The concentration of primary
BAs displayed a trend to shift from more CA in male wild type (WT) mice to more MCA in
Cyp7al”~ mice (15). Similarly, in mice deficient in Cyp27al (Cyp27a1~'~ mice), there was
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a significant reduction in BAs with minimal changes in cholesterol levels. The expression of
the Cypr7al gene is regulated by BAs in a negative feedback manner, therefore the reduction
in BAs in Cyp27al—-/- miceresults in an induction of Cyp7al gene expression. The side
chain hydroxylation required for side chain cleavage in these mice was likely carried out by
microsomal cholesterol 25-hydroxylase (CH25H) and/or CYP3A11 (16).

In addition to their role as physiological detergents, BAs act as signaling molecules by
activating the farnesoid X receptor (FXR), vitamin D receptor, pregnane X receptor, and G
protein-coupled BA receptors (TGR5 and S1PR2), in multiple organs (17). BAs have been
found to regulate a multitude of biological processes including lipid and glucose
homeostasis, energy expenditure, inflammation, bacterial proliferation and gastrointestinal
motility (18-22). Increased understanding of the pleiotropic role BAs play in human health
has led to the implication of BA dysregulation in a number of disease states, including
cancer as well as an array of metabolic and liver diseases (23-25). As such, BAs, their
receptors, and downstream pathways have provided novel targets for drug intervention (26).

To date, over 30 unigue BAs have been identified in both humans and rodents (27, 28). Due
to the diversity of BA species and potential toxicity associated with BA feeding, studying the
role of individual BAs /n vivo can prove difficult. Through the development of a mouse
model deficient in Cyp7aland Cyp27al, we hope to attain a better model for studying the
effects of individual BAs /n vivo. In the current study, we aimed to characterize the BA
profile and regulation of gene expressions involved in BA homeostasis in Cyp7al/Cyp27al
double knockout mice (DKO).

MATERIALS AND METHODS

Animals and treatments

Cholesterol 7a-hydroxylase null mice (Cyp7a1~'") and sterol 27-hydroxylase null mice
(Cyp27a1") were purchased from The Jackson Laboratory (Bar Harbor, ME). Cyp7a1~/~
and Cyp27a1~!~ mice were crossbred resulting in progeny that were heterozygous for
Cyp7aland Cyp27al (Cyp7al™* and Cyp27a1™*). The double heterozygous mice were
crossed to produce Cyp7al™~/Cyp27a1~!~ double knockout mice (DKO) that are deficient in
both enzymes. Cyp7al~'~ mice were maintained on a mixed strain background (C57BL/
6J:129SV). Cyp27a1”'~ mice were developed on a 129Sv background and have been
backcrossed to C57BL/6J inbred mice for over 13 generations. Wild-type (WT) mice derived
from heterozygous Cyp7al™* and Cyp27a1™* breeding pairs were used as controls. All
mice in this study were genotyped according to The Jackson Laboratory protocols. A
representative agarose gel used to genotype mice and a table including all primers used can
be found in Suppl. Fig. 1. For BA profiling, 3 to 6-month-old, non-fasted WT, Cyp7a1™-,
Cyp27a17~, and DKO mice were euthanized. Blood, liver, gallbladder, small intestine and
colon were collected and frozen in liquid nitrogen. To achieve /n vivo activation of FXR,
mice were treated via oral gavage with a synthetic FXR agonist, GW4064. In detail, 3 to 5-
month old, male WT, Cyp7al™~, Cyp27a17!~, and DKO mice were treated with either
GW4064 suspended in 1% Tween-20 and 1% methylcellulose at 150mg/kg or vehicle at
6:00pm and 8:00am. The mice were fasted overnight and euthanized 2 hrs after the second
treatment. Blood, liver, gallbladder, and intestine samples were collected and frozen in liquid
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nitrogen. All mice were group-housed and maintained under standard 12-hr light/dark
cycles. Food and water was provided ad /ibitum unless otherwise noted. Additional animal
information can be found in suppl. Table 1. The experiments performed in this study were
approved by the Rutgers Institutional Animal Care and Use Committee.

Serum biochemistry

Activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and
alkaline phosphatase (ALP), and levels of serum triglycerides and total cholesterol were
measured with the use of commercially available kits (Pointe Scientific, Canton Ml).

Gene expression

Total RNA was extracted from frozen liver and ileum using the TRIzol reagent (Thermo
Fisher Scientific; Waltham, MA) and reverse transcription was performed to attain cDNA.
Relative gene expression was determined by real-time polymerase chain reaction (RT g-
PCR) by SYBR green chemistry using the ViiA7 Real Time PCR machine (Life
Technologies, Grand Island, NY) in a 384-well plate. All Ct values were converted to delta
delta Ct values and were normalized to B-actin mRNA levels. Primer sequences can be
found in suppl. Table 2.

BA extraction and profiling

Total BAs were extracted and purified from serum, liver, gallbladder, small intestine and
colon samples. Liver BA extraction was performed using previously described methods (29).
BA extraction from plasma was performed using 90uL of plasma. 900uL of acetonitrile was
added to the samples for protein precipitation. The samples were incubated for 1 hr at room
temperature on a shaker table and then spun at 12,0009 for 10 mins; the supernatant was
collected and dried in a speed-vac. Dried samples were reconstituted in 400uL of 50%
methanol, filtered through a 0.22um Costar Spin-X centrifuge tube, and used for analysis.
Gallbladder samples were suspended in 1.5mL of 1x PBS. An aliquot of the gallbladder
suspension was diluted 50x in PBS. BA extraction from the diluted gallbladder samples was
then performed in the same manner as plasma samples. Intact frozen small intestine samples
(including luminal content) were homogenized in 18mL of HPLC grade H,0O and
centrifuged. Intact frozen large intestine samples (including luminal content) were
homogenized in 3mL of HPLC grade H,O and centrifuged. For both small and large
intestines, a 300uL aliquot of the pooled supernatant was used for BA extraction following
previously described methods (Zhang and Klaassen 2010). All BA extracts were analyzed
using a Thermo Accela Ultra Performance Liquid Chromatography System (Thermo Fisher
Scientific, Waltham, MA) coupled to a Thermo Finnigan LTQ XL lon Trap Mass
Spectrometer (Thermo Fisher Scientific, Waltham, MA). Chromatography was performed on
a reverse phase 1.3p 2.1 x 50 mm C18 Kinetex column (Phenomenex, Torrance, CA).

Immunohistochemistry

Intrahepatic ductal mass was measured using previously described methodologies (30).
Frozen liver sections (n=3-6) from WT, Cyp7al”~, Cyp27a1~'-, and DKO mice were
stained using an anti-cytokeratin 19 (CK-19) antibody (ab52625, Abcam, Cambridge, MA).
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Stained sections were scanned with Olympus VS120 slide scanner. At least 20 random fields
were taken from each liver section. The stained area was quantified using ImageJ software.
Data are shown as stained area relative to WT.

Statistical analysis

Data are represented as mean + standard deviation (SD) (n=3-8/group). Comparison of
groups was performed using one-way ANOVA followed by Tukey post-hoc test unless
otherwise noted. Comparison of GW4064 treatment groups was performed using two-way
ANOVA followed by Tukey post-hoc test. The results of statistical analysis were considered
significant with P-values < 0.05.

RESULTS

Serum lipids, liver injury markers, and histology

Liver histology was examined by a pathologist and showed no evidence of liver injury
(Suppl. Fig 2A.). Serum assays showed no significant alterations to AST, ALP, triglycerides,
or total cholesterol. DKO mice displayed an elevation in ALT but still within the normal
range (Suppl. Fig 2B.). Biliary mass was assessed with cytokeratin 19 (CK19)
immunohistochemistry staining. The DKO mice trended toward a reduction in CK19
staining with no significant alterations between groups (Suppl. Fig 2C & 2D)

The effects of Cyp7al and Cyp27al deficiencies on BA concentration and composition

In order to assess the effect of Cyp7al and/or Cyp27al deficiencies on BA concentrations in
the serum, liver, gallbladder, small intestine and large intestine, 3-6 month old, male mice
maintained on chow diet for at least 2 months were used for measuring tissue concentrations
of 23 BAs using LC-MS. First, we determined plasma BA concentrations and profile. Shown
in Fig. 1, WT mice had an average concentration of 1280 + 542.8 ng/ml with unconjugated
BAs representing 83.9% of plasma BAs in WT mice and specifically, «MCA (42%), BMCA
(14%), and CA (14%) were most abundant. Cyp7a1~/~ mice displayed an increase in total
plasma BAs as compared to WT mice with BMCA (19%), TBMCA (17%), CA (17%), TCA
(16%), and wMCA (16%) being most abundant. Cyp27a1~"~ mice had significantly less
plasma BAs than WT mice with TCA (35%), CA (18%), ®«MCA (16%) and HDCA (10%)
being most abundant. DKO mice had an average BA concentration of 692.3 + 348.8 ng/ml,
representing a 45.9% reduction when compared to WT mice. 66.7% of BAs in DKO mice
were conjugated to taurine, with TBMCA (30%), o MCA (23%), TwMCA (18%) and TCA
(15%) being abundant.

In the liver (Fig 2), the average BA concentration in WT mice was 139.9 + 88.8 ug/g liver
and the predominant BAs were TCA (67%) and TMCA (24%). The Cyp7aZ”"~ mice had no
significant change in total BAs but had higher concentrations of TMCA (66%) than TCA
(28%), suggesting BAs were largely produced via the alternative pathway. The Cyp27a1~
and DKO mice had significant reductions of BAs in the liver, 75.0% and 60.2%,
respectively. The hepatic BA content of Cyp27a1~/~ mice was composed mainly of TCA
(69%) and TMCA (23%). The DKO mice consisted principally of TMCA (53%) and TCA
(37%).
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In the gallbladder (Fig 3), WT mice had an average BA concentration of 5,443 + 1640 pg/
100g body weight. Conjugated BAs constituted 97% of gallbladder BAs in WT mice with
TCA (55%), TBMCA (24%), TaMCA (7%), and TDCA (4%) being most abundant (Fig. 3B
and 3C). All knockout groups had significantly reduced BA levels when compared to WT
mice with no significant difference between knockout groups. The reduction of total BAs in
Cyp7al™~, Cyp27a17!~, and DKO mice was 81.4%, 83.5% and 76.3% respectively. All
groups had significantly reduced CA, TCA, MCA, TMCA and TDCA compared to WT
mice (Fig. 3B and 3C).

In the small intestine (Fig 4), analysis of homogenized whole small bowel of WT mice
(including luminal content) showed an average BA concentration of 58,763 + 11,686 g/
1009 body weight (Fig. 4A). Over 73% of BAs in WT mice were primary BAs and the
predominant BAs were CA (29%), TCA (15%), «MCA (14%), and BMCA (13%) (Fig. 4B
and 4C). All KO mice had significantly reduced BA levels as compared to WT with no
significant difference in total BAs among KO groups. Cyp7a1~/~ mice had the greatest
reduction at 93.5% and consisted largely of ®MCA (55%), BMCA (19%), and CA (16%).
Cyp27a1”'~ mice showed a decrease of 78.7% in total BAs with CA (41%), BMCA (15%),
TCA (14%), and @MCA (14%) being most abundant. The DKO group had a reduction of
88.7% in the small bowel with the predominant BAs being TCA (31%), CA (18%), TBMCA
(13%) and BMCA (13%)..

In the large intestine (Fig. 5), the BA analysis of homogenized whole colon (including
luminal content) was determined. WT mice had an average large intestine BA concentration
of 1,615 + 1,008 pg/100g body weight. The BAs in the large intestine of WT, Cyp7a1™/~.
Cyp27a17~, and DKO mice were largely secondary (70.9%, 77.1%, 62.1%, and 80.1%
respectively) and unconjugated BASs (84.75%, 85.21%, 84.9%, and 93.0% respectively).
Cyp7al”~ and Cyp27a1~!~ mice trended towards a decrease in BA concentration compared
to WT mice with reductions of 57.1% and 59.3%, respectively. DKO mice showed a
significant reduction of 93.6% total BAs, compared to WT.

Gene expression of BA synthetic enzymes and transporters

The hepatic expression at the mRNA level of 17 genes (Cypral, Cyp27al, Cyp46al, Ch25h,
Cyp7bl, Cyp8bl, Hsdl7b4, Hsd3b7, Baat, Amacr, Scp2, Slc27a5, FXRa, Shp, Fgfr4, Nicp,
and Bsep) involved in BA synthesis, conjugation, transport, and regulation are shown in Fig
6. In Fig. 6A, the relative mRNA levels of Cyp7al and Cyp27al were below detection limit
for their corresponding KO groups. Interestingly, the mRNA levels of Cyp7al were
increased 11.3 fold in Cyp27a17'~ mice while Cyp27al showed no induction in Cyp7a1~/~
mice. The expression of Cyp8b1, which performs 12-alpha hydroxylation in the production
of CA, was increased over 2 fold in all groups but failed to reach significance in the DKO
mice. Cyp46al, which initiates the 24-hydroxylase pathway of BA synthesis and Ch25h,
which initiates the 25-hydroxylase pathway of BA synthesis, showed no significant changes
in MRNA expression among groups. Fig. 6B shows the mMRNA expression for intermediate
genes in BA synthesis and conjugation. Cyp7aZ~'~ mice had a significant reduction in the
MRNA levels of alpha-methyacyl-CoA racemase (Amacr), which plays a role in the
peroxisomal cleavage of C27 precursors into mature C24 BAs. There were no other
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significant alterations to the mRNA expression of intermediate BA synthesizing or BA
conjugating genes examined. All groups displayed similar levels of genes involved in BA
transport (Ntcp, Bsep, Ibabp, OSTb) in the liver and ileum (Fig. 6C & D). The hepatic gene
expression of Shp was significantly reduced in all knockout groups (Fig. 6C), which is in
line with reduced BA levels and reduced ileal Fgf15 expression (Fig. 6D).

The mRNA expression of 7 additional hepatic BA transporters has been quantified and are
shown in suppl. Fig. 3. Genes of Osta, Ostb, Mrp3 and Mrp4 could encode transporter to
efflux BAs to the sinusoidal side of hepatocytes, and Mrp2 could efflux anion conjugated
substrates to canalicular side of hepatocytes. Genes of Oatplal and Oatpla4 encode
transporters that have been shown to uptake unconjugated BAs into hepatocytes. Compared
to WT mice, Cyp7a1~'~ mice tended to have lower expression of Ostband Oatpla4, but
higher Mrp4, Cyp27a1~'~ mice tended to have lower expression of Ostband Oatplal, but
higher expression of Mrp2, Mrp3, Mrp4, and Oatpla4. The DKO mice tend to have lowed
expression of Ostaand Ostb.

ileal BA related gene expression following GW4064 treatment

FXR is a BA-activated nuclear receptor and essential for regulating BA synthesis and
transport. The extent of FXR agonism or antagonism by BAs is dependent upon the BA
concentration and composition (31, 32). In order to assess the effect of FXR activation on
gene expression in mice with deficiencies in major BA synthetic enzymes, we treated 3-5
month old male WT, Cyp7a1™~, Cyp27a17"-, and DKO mice with GW4064, a synthetic
FXR agonist.

Shown in Fig. 7, the activation of FXR by GW4064 significantly reduced hepatic Cyp7al
mRNA levels in WT and Cyp27a1~'~ mice to 18.3% and 12.6% of vehicle-treated WT mice,
respectively. Cyp27a1~'~ mice had a significant decrease of 69.7% in mMRNA levels of
Cyp8b1 in response to GW4064 treatment. There were no other significant changes in
response to GW4064 treatment for the genes examined relating to BA synthesis. Cyp27a1~!~
mice were the most susceptible group to alteration by FXR activation likely due to their
reliance on the classical pathway for BA metabolism.

lleal MRNA levels of Fxr were significantly reduced in WT and Cyp27a1~'~ mice following
treatment with GW4064, as shown in Fig. 8. DKO mice showed a similar trend to WT mice
in response to GW4064 treatment with 53.9% reduction of Fxr mRNA. All groups
responded to Fxr activation by inducing the transcription of Shp and Fgf1l5 mRNA over 16
fold and Ibabp mMRNA roughly 4 fold as compared to vehicle-treated WT mice.

DISCUSSION

In the present study, we characterized the BA profile and hepatic/ileal gene expression of
mice with gene deletion of Cyp7al, CypZ7al, and both. These two genes encode the initial
enzymes in the conversion of cholesterol to BAs in the classical and alternative pathway,
respectively. DKO mice presented with significantly lower BAs with 45.9%, 60.2%, 76.3%,
88.7%, and 93.6% reduction in plasma, liver, gallbladder, small intestine, and large intestine,
respectively, as compared to WT mice. DKO mice displayed few alterations in the mRNA
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expression of genes involved in BA synthesis, conjugation, or transport aside from the
intentional knockout of Cyp7aland Cyp27al. Furthermore, DKO mice maintained a BA
composition similar to WT mice amongst the 23 BA species profiled in the study.

Our findings on Cyp7al and CypZ27al single KO mice are in line with previous studies that
have shown BA reductions of 66.7% and 73% in Cyp7al™'~ and Cyp27a1~~ mice,
respectively, with Cyp7a1~"~ mice shifting their BA composition from CA to MCA (15, 33).
While these DKO mice showed significantly reduced BAs as compared to WT mice, their
BA levels were somewhat altered when compared to Cyp7al™~ or Cyp27a1~!~ mice. For
example, the plasma BA concentration of DKO mice were much lower than Cyp7az™~ but
slightly higher than Cyp27a17'~ mice. The liver BA concentrations of DKO mice were
comparable to Cyp27a17"~ mice and significantly lower than the other two strains. The BA
concentrations in the gallbladder and small intestine were significantly reduced in the single
and double KO mice, with little difference between KO groups. DKO mice displayed the
largest reduction of BAs in the colon. These large intestine BA data suggest that DKO mice
may reabsorb primary conjugated BAs more efficiently than other groups despite showing
no significant changes in the expression of Asbt mRNA.

Expression of the genes in minor BA synthetic pathways catalyzed by CYP46A1 and
CH25H showed no significant changes at hepatic MRNA levels. This is in agreement with a
previous work that has shown no changes in BA metabolism in the Cyp46a1~~ mice, as
measured through the fecal excretion of acidic sterols (34). Taken together these findings
suggest there is a possibly novel minor pathway of BA synthesis or route of oxysterol
intermediate production for the metabolism of cholesterol to BAs.

In order to assess the potential of differential FXR activation in these genetically modified
mice with lower BAs, we treated mice with a synthetic FXR agonist, GW4064. Following
FXR activation, mice expressing Cyp7al had significantly reduced Cyp7al gene expression.
The expression of Cyp8b1 displayed a trend for reduction in the livers of all groups, with
only Cyp27a1~!~ mice reaching significance. The hepatic mRNA levels of genes involved in
the alternative pathway of BA synthesis (Cyp27al, Cyp7bI) showed no significant changes
following GW4064 treatment. In the ileum, all groups responded similarly to FXR activation
with strong inductions of SAp, Fgf15, and /babp. These data suggest that the loss of Cyp7al
and Cyp27al does not affect the transcriptional response following FXR activation.
Increasing interest in the modification of FXR and BA signaling pathways for the treatment
of hepatic and metabolic diseases provide a need for tools to dissect the mechanistic
consequences of these alterations 7 vivo. In addition to currently approved BA therapies,
basic research continues to elucidate potential applications of individual BA species for the
intervention of disease pathologies. While these investigations prove promising, they are
complicated by the diversity of BA species /n vivo as well as the potential for BA induced
toxicity at higher dosages. By maintaining homeostatic levels of genes involved in BA
synthesis while not affecting FXR signaling, Cyp7al/Cyp27a1 DKO mice may serve as a
potential model to investigate the mechanistic alterations which may be induced by
individual BA species in vivo.
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In conclusion, the creation of Cyp7aland Cyp27al DKO mice resulted in a significantly
reduced BA pool size while maintaining a similar BA profile and homeostatic expression of
genes involved in BA synthesis, conjugation, and transport as compared to WT mice. While
we work to extrapolate these studies into female DKO mice, we feel this model may provide
a useful tool to researchers for investigations into the mechanistic consequences of

individual BA therapies as well as BA and FXR signaling pathways.
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Refer to Web version on PubMed Central for supplementary material.
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aMCA

ALP
ALT
Amacr
ASBT
AST
BMCA
BA

Baat
amino
BSEP
CA
CDCA
Ch25h
CK-19
Cyp27al
Cyp4bal

Cyp7al

a-muricholic acid

alkaline phosphatase

alanine aminotransferase
alpha-methylacyl-CoA racemase
apical sodium-dependent bile acid transporter
aspartate aminotransferase
p-muricholic acid

bile acid

bile acid-Coenzyme A

acid N-acyltransferase

bile salt export pump

cholic acid

chenodeoxycholic acid
cholesterol 25-hydroxylase
cytokeratin 19

sterol 27-hydroxylase
cytochrome p450 46al

cholesterol 7a-hydroxylase
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Cyp7bl
Cyp8b1
DCA
DKO
Fgf15
FXR
GCA
GCDCA
GDCA
GLCA
HDCA
Hsd17b4
Hsd3b7
Ibabp
LCA
NTCP
OATPs
OSTa/b
S1PR2
Scp2
Shp
Slc27a5
TCA
TCDCA
TDCA
TGR5
THDCA
TLCA

TUDCA

25-hydroxycholesterol 7-alpha-hydroxylase
cytochome p450 8bl

deoxycholic acid

Cyp7al/Cyp27al double knock out
fibroblast growth factor 15

farnesoid X receptor

glycocholic acid
glycochenodeoxycholic acid
glycodeoxycholic acid

glycolithocholic acid
hyodeoxycholic acid

hydroxysteroid 17-beta dehydrogenase 4
3p-hydroxy-A5-C27-steroid oxidoreductase
ileal bile acid-binding protein

lithocholic acid

sodium taurocholate transporter

organic anion-transporting polypeptides
organic solute transporter alpha and beta
sphingosine 1-phosphate receptor 2
sterol carrier protein 2

small heterodimer partner

solute carrier family 27, member 5
taurocholic acid

taurochenodeoxycholic acid
taurodeoxycholic acid

G protein-coupled BA receptor
taurohyodeoxycholic acid
taurolithocholic acid

tauroursodeoxycholic acid
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Fig. 1. Plasma BA pool size and composition of male WT, Cyp7al-/-, Cyp27al—/-, and DKO

mice.

(A) Plasma BA pool size was measured with 90pL aliquots of plasma using UPLC-ITMS.
Values are displayed in ng/mL plasma + 1 SD. These data failed Levene’s test therefore
Kruskal-Wallis was used for analysis. An asterisk denotes a significant difference from WT

(P<0.05). (B) Plasma concentration of individual BA species + 1 SD. (C) Percent

composition of BA species in plasma. BAs that represent <1% of total BAs in plasma are
represented as “other” and denoted alongside the pie charts.
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Fig. 2. Liver BA pool size and composition of male WT, Cyp7al-/-, Cyp27al-/—-, and DKO mice.
(A) Liver BA pool size was measured using UPLC-ITMS. Values are displayed in ng/mg

liver + 1 SD. These data failed Levene’s test therefore Kruskal-Wallis was used for analysis.
An asterisk denotes a significant difference from WT (£ < 0.05). (B) Liver concentration of
individual BA species £ 1 SD. (C) Percent composition of BA species in plasma. BAs that

represent <1% of total BAs in the liver are represented as “other” and denoted alongside the

pie charts.
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Fig. 3. Gallbladder BA pool size and composition of male WT, Cyp7al-/-, Cyp27al—-/-, and

DKO mice.

(A) Gallbladder BA pool size was measured using UPLC-ITMS. Values are displayed in pg/
100g body weight (x1000) + 1 SD. An asterisk denotes a significant difference from WT (P
< 0.05). (B) Gallbladder concentration of individual BA species (1g/100g body weight) + 1
SD. (C) Percent composition of BA species in the gallbladder. BAs that represent <1% of
total BAs in the gallbladder are represented as “other” and denoted alongside the pie charts.
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Fig. 4. Small intestine BA pool size and composition of male WT, Cyp7al-/-, Cyp27al—/-, and

DKO mice.

(A) Small intestine BA pool size was measured using UPLC-ITMS and includes luminal
content. Values are displayed in ug/100g body weight (x1000) + 1 SD. An asterisk denotes a
significant difference from WT (P < 0.05). (B) Small intestine concentration of individual
BA species (1g/100g body weight) = 1 SD. (C) Percent composition of BA species in the
small intestine. BAs that represent <1% of total BAs in the small intestine are represented as
“other” and denoted alongside the pie charts.
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Fig. 5. Large intestine BA pool size and composition of male WT, Cyp7al-/-, Cyp27al-/-, and

DKO mice.

(A) Large intestine BA pool size was measured using UPLC-ITMS and includes luminal
content. Values are displayed in ug/100g body weight (x1000) + 1 SD. An asterisk denotes a
significant difference from WT (P < 0.05). (B) Large intestine concentration of individual
BA species (1g/100g body weight) = 1 SD. (C) Percent composition of BA species in the
large intestine. BAs that represent <1% of total BAs in the large intestine are represented as
“other” and denoted alongside the pie charts.
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Fig. 6. Relative mRNA levels of BA related genes for male WT, Cyp7al-/—, Cyp27al—-/-, and
DKO mice.

Genes were measured using RT g-PCR, normalized to f-actin mRNA levels, and graphed as
relative mMRNA + 1 SD. An asterisk denotes a significant difference from WT (£< 0.05). (A)
Relative mRNA of hepatic genes involved in classic, alternative, and minor BA synthetic
pathways. (B) Relative mMRNA of hepatic genes for BA conjugation. (C) Relative mRNA of
hepatic FXR, Shp, Fgfr4, Ntcp, and Bsep. (D) Relative mRNA of ileal genes involved in BA
regulation and transport.
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Fig. 7. Relative mRNA levels of hepatic enzymes involved in BA synthesis for male WT, Cyp7al—/
-, Cyp27al-/-, and DKO mice with FXR activation.

Mice were treated with vehicle or a synthetic FXR agonist, GW4064. The expression of
genes at mMRNA levels was measured using RT g-PCR and normalized to p-actin mRNA
levels, and graphed as relative MRNA £ 1 SD. An asterisk denotes a significant difference
from WT vehicle treated mice, an octothorpe denotes a significant difference between
vehicle and GW4064 treatments (£ < 0.05).
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Fig. 8. Relative mRNA levels of ileal enzymes involved in BA transport and regulation for male

WT, Cyp7al-/-. Cyp27al-/-, and DKO mice with FXR activation.

Mice were treated with vehicle or a synthetic FXR agonist, GW4064. The expression of
genes at mMRNA levels was measured using RT g-PCR and normalized to p-actin mRNA
levels, and graphed as relative MRNA * 1 SD. An asterisk denotes a significant difference
from WT vehicle treated mice, an octothorpe denotes a significant difference between

vehicle and GW4064 treatments (£ < 0.05).

Hepatology. Author manuscript; available in PMC 2021 February 19.



	Abstract
	INTRODUCTION
	MATERIALS AND METHODS
	Animals and treatments
	Serum biochemistry
	Gene expression
	BA extraction and profiling
	Immunohistochemistry
	Statistical analysis

	RESULTS
	Serum lipids, liver injury markers, and histology
	The effects of Cyp7a1 and Cyp27a1 deficiencies on BA concentration and composition
	Gene expression of BA synthetic enzymes and transporters
	Hepatic and ileal BA related gene expression following GW4064 treatment

	DISCUSSION
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.

