Skip to main content
. 2021 Feb 1;6(6):4374–4385. doi: 10.1021/acsomega.0c05719

Table 1. Occurrence of Lignin Molecular Structures and molecular Weights Following the Various Treatmentsa.

Lignin sample B1 B2 B3 B4 B5 B6 B7
Bonding Motif Abundance (mmol/g)b
Cα-Hα in β-O-4′ structures (excl. α-OEt) 1.47 1.01 0.84 1.30 1.49 0.92 1.28
Cβ-Hβ in β-O-4′ linked to G/H (incl. α-OEt) 0.25 0.16 0.08 0.21 0.30 0.29 0.25
Cβ-Hβ in β-O-4′ linked to S (incl. α-OEt) 0.95 0.79 0.64 0.97 0.91 0.43 0.88
total Cβ-Hβ in β-O-4′ 1.20 0.95 0.72 1.18 1.21 0.72 1.13
total Cα-Hα in β-O-4′ (incl. α-OEt) 1.75 1.30 0.99 1.53 1.99 1.95 1.68
β-O-4′ linked to S/(G + H) 3.80 4.94 8.00 4.62 3.03 1.48 3.52
oxidized (Cα) G units (aver. of C2 and C6) 0.02 0.02 0.02 0.02 0.03 0.00 0.03
oxidized (Cα) S units 0.18 0.16 0.34 0.35 0.31 0.32 0.25
Cβ-Hβ in α-oxidized β-O-4′ 0.01 0.01 0.01 0.00 0.03 0.12 0.00
oxidized Cα S (ox. Cα/aromatic S cont.) 0.04 0.05 0.07 0.07 0.05 0.07 0.05
oxidized Cα G (ox. Cα/aromatic G cont.) 0.02 0.02 0.02 0.01 0.02 0.00 0.02
β-5′ (average of Cβ-Hβ, Cα-Hα) 0.12 0.08 0.06 0.10 0.12 0.38 0.00
β-β′ (average of Cγ-Hγ, Cβ-Hβ, Cα-Hα) 0.24 0.17 0.15 0.21 0.30 0.84 0.28
β-1′ 0.00 0.01 0.00 0.01 0.01 0.25 0.00
Cα-ethoxylation in β-O-4′ linkages 0.28 0.29 0.15 0.23 0.49 1.03 0.40
methylene OEt 1.11 0.74 0.68 0.92 2.09 9.81 2.73
methyl OEt 1.00 0.74 0.65 0.92 2.21 9.38 2.62
Lignin End Groups Abundance (mmol/g)b
p-hydroxycinnamyl alcohol (average of Cγ-Hγ, Cβ-Hβ, Cα-Hα) 0.05 0.02 0.01 0.02 0.08 0.00 0.00
cinnamaldehyde (average of Cβ-Hβ, Cα-Hα) 0.06 0.02 0.01 0.01 0.01 0.00 0.03
α methylene 0.00 0.00 0.00 0.00 0.00 0.02 0.00
Hibbert ketone, Hγ 0.00 0.00 0.00 0.00 0.04 0.28 0.00
Lignin Aromatic Units Abundance (mmol/g)b
G units (average of C6 and C2) 1.06 0.89 1.12 1.36 1.71 1.15 1.27
S units (C2.6-H2.6) 4.01 2.95 4.27 4.90 5.85 4.34 4.79
sum S + G 5.07 3.84 5.39 6.26 7.56 5.49 6.06
ratio S/G incl. A-oxidized units 3.88 3.42 4.04 3.80 3.54 4.05 3.88
methoxy groups 7.20 5.24 4.23 6.06 9.02 11.46 8.14
Lignin Hydroxyl Group Abundance (mmol/g)c,d,f
aliphatic OH 3.46 3.22f 3.21 3.53e 3.54 1.34 2.95
C5 substituted/condensed OH 1.35 1.15 1.05 1.18 1.46 2.05 1.38
syringyl OH 0.40 0.33 0.35 0.34 0.40 0.74 0.44
4-O-5′ 0.69 0.64 0.51 0.69 0.76 0.92 0.74
5–5′ 0.21 0.18 0.14 0.13 0.24 0.35 0.17
guaiacyl OH 0.54 0.50 0.46 0.49 0.61 0.68 0.51
p-hydroxyphenyl OH 0.13 0.05 0.07 0.05 0.14 0.16 0.05
carboxylic acid OH 0.21 0.13 0.13 0.13 0.20 0.17 0.15
total phenolic OH 2.02 1.69f 1.58 1.73e 2.21 2.89 1.94
S-OH/G-OH 0.74 0.66 0.76 0.69 0.65 1.08 0.86
Sugar Units Abundance (mmol/g)b
β-d-xylopyranoside 0.04            
C2-H2 in β-d-xylopyranoside 0.03            
C3-H3 in β-d-xylopyranoside 0.05            
C4-H4 in β-d-xylopyranoside 0.05            
C5-H5 in β-d-xylopyranoside (overlap)              
Molecular Weightd
polydispersity index (Mw/Mn) 5.8 5.6f 2.7 2.7e 4.9 2.0 2.7
Mw (kDa) 7.20 8.00f 3.55 4.40e 6.10 2.70 4.40
Mn (kDa) 1.25 1.40f 1.30 1.60e 1.25 1.30 1.60
Lignin Aromatic Units by Pyrolysisg
S% 63 61f 68 67 37 49 62
G% 34 36f 30 30 60 45 34
H% 3 3f 2 2 3 5 4
a

Error for NMR quantification data was estimated to be ±0.1 mmol/g.

b

From HSQC and quantitative 13C NMR.

c

From HSQC, quantitative 31P NMR, and quantitative 13C NMR.

d

From GPC analysis.

e

Data previously published by Mu et al.14

f

Data previously published by Muraleedharan et al.31

g

From pyrolysis-GC/MS.