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Abstract

PURPOSE: Imaging of glioblastoma patients after maximal safe resection and chemoradiation 

commonly demonstrates new enhancement concerning for true tumor progression (TP). However, 

in 30–50% of patients, this enhancement primarily represents treatment effect, or pseudo-

progression (PsP). We hypothesize that quantitative machine learning (ML) analysis of clinically-

Corresponding authors: Hamed Akbari, Christos Davatzikos, 3700 Hamilton Walk, 7th floor, Philadelphia PA 19104, 
Hamed.Akbari@pennmedicine.upenn.edu; christos.davatzikos@pennmedicine.upenn.edu Tel.:(215)746-4067 Fax:(215)573-1811.
Authorship: Conceptualization, H.A., M.M-L, C.D.; Methodology, H.A., M.M-L, C.D.; MATLAB programing, H.A., CaPTk 
Software, S.R.; Interpretation of the data, H.A., S.R., S.B., M.P.N., G.S., E.M., M.R., S.J.B., J.D.R., A.E.F., A.P.D., A.S.D., D.M.O., 
S.B., R.L., S.M., R.L.W., M.B., M.M-L, C.D.; Neuropathology, M.P.N., M.M-L; Neuroradiology, S.M., R.L.W., M.B.; Radiation 
Oncology, G.S., R.L.; Neurosurgery, D.M.O., S.B.; Validation, H.A., S.R., S.B., M.P.N., G.S., E.M., M.R., S.J.B., J.D.R., A.E.F., 
A.P.D., A.S.D., D.M.O., S.B., R.L., S.M., R.L.W., M.B., M.M-L, C.D.; Analysis, H.A., S.R., C.D.; Data collection, H.A., S. B., 
M.P.N., G.S., E.M., M.R., A.E.F., A.P.D., M.M-L; Writing & Editing, H.A., S.R., S.B., M.P.N., G.S., E.M., M.R., S.J.B., J.D.R., 
A.E.F., A.P.D., A.S.D., D.M.O., S.B., R.L., S.M., R.L.W., M.B., M.M-L, C.D.; Supervision, M.M-L, C.D.; Funding Acquisition, C.D.

Conflict of Interest: Nothing to disclose.

HHS Public Access
Author manuscript
Cancer. Author manuscript; available in PMC 2021 February 19.

Published in final edited form as:
Cancer. 2020 June 01; 126(11): 2625–2636. doi:10.1002/cncr.32790.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



acquired multi-parametric magnetic resonance imaging (mpMRI) can identify subvisual imaging 

characteristics to provide robust, non-invasive, imaging signatures that can distinguish TP and PsP.

METHODS: We evaluated independent discovery (n=40) and replication (n=23) cohorts of 

glioblastoma patients who underwent second resection due to progressive radiographic changes 

suspicious for recurrence. Deep learning and conventional feature extraction methods were used to 

extract quantitative characteristics from the mpMRI scans. Multivariate analysis of these features 

revealed radio-phenotypic signatures distinguishing among TP, PsP, and mixed response that 

compared with similar categories blindly defined by board-certified neuropathologists. 

Additionally, inter-institutional validation was performed on 20 new patients.

RESULTS: Patients categorized as TP on neuropathology are significantly different (p<0.0001) 

from those with PsP, showing imaging features reflecting higher angiogenesis, higher cellularity, 

and lower water concentration. The accuracy of the proposed signature in leave-one-out-cross-

validation was 87% for predicting PsP (AUC=0.92) and 84% for predicting TP (AUC=0.83), 

whereas in the discovery/replication cohort, it was 87% for predicting PsP (AUC=0.84) and 78% 

for TP (AUC=0.80). The accuracy on the inter-institutional cohort was 75%(AUC=0.80).

CONCLUSION: Quantitative mpMRI analysis via ML reveals distinctive non-invasive signatures 

of TP vs PsP after treatment of glioblastoma. Integration of the proposed method into clinical 

studies can be performed via the freely available CaPTk software.
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Introduction

Glioblastoma is the most common malignant primary adult brain tumor 1. It is associated 

with a grim prognosis, with median overall survival ranging from 16–20 months despite 

maximal treatment 2–4. Initial treatment of glioblastoma involves a combined approach of 

maximal safe surgical resection and adjuvant chemoradiation 3. Surveillance of patients after 

completion of this initial treatment relies heavily on follow-up serial magnetic resonance 

imaging (MRI) to detect disease recurrence. As such, distinguishing treatment-induced MRI 

changes from true progression (TP) of tumor has critical implications to clinical decision-

making.

Unfortunately, standardization of radiographic metrics for treatment response and for 

determining disease progression in glioblastoma has proven quite difficult. The widespread 

variance in definitions of “progressive disease” and “stable disease” led to the development 

of the Macdonald criteria in 1990, which rely upon crude radiographic measurement of areas 

of contrast enhancement on post-treatment MRI 5. With the addition of temozolomide to the 

standard of care, clinicians soon determined that these criteria were unable to accurately 

distinguish between true progression and treatment effects. The phenomenon of pseudo-

progression (PsP) was identified, which is a subacute treatment-related effect, usually 

occurring within three months of completion of chemoradiation 6,7, with imaging 

characteristics mimicking TP, as defined by the Macdonald criteria 5.
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The diagnosis of PsP is usually made on the basis of spontaneous improvement or 

stabilization of imaging findings over several months, i.e., in the setting of continuation of 

the chemotherapy for at least six months. Previous studies suggest that nearly half (30–50%) 

of glioblastoma patients with worsened radiographic findings after standard chemoradiation 

do not suffer from TP, but from PsP 7–14. Since traditional MRI cannot reliably distinguish 

TP from PsP, clinicians caring for patients with glioblastoma must frequently choose 

between declaring TP (and modifying the patient’s current therapy) versus proceeding with 

invasive brain surgery for diagnostic clarity. On histopathologic analysis, such surgeries may 

reveal recurrent glioblastoma tumor, therapy-related changes (PsP), or a mixed response 

consisting of a combination of the two.

The Response Assessment in Neuro-Oncology (RANO) Working Group developed new 

criteria 15 to address some of the limitations of the Macdonald criteria. As clinicians 

recognized the high prevalence of PsP in the months immediately following completion of 

chemoradiation, subtle changes in post-treatment imaging are no longer deemed to represent 

progressive disease, unless there is evidence of clinical deterioration or obvious new disease 

outside of the treatment field. This classification allows patients to continue maintenance 

therapy safely, with the goal of achieving some delayed improvement. Nonetheless, some of 

these patients do actually show TP, and identifying these patients without tissue sampling 

would allow for earlier change in therapy.

The goal of this study is to non-invasively evaluate radiographic changes in glioblastoma 

patients treated with chemoradiation, by multivariate analysis of pre-operative multi-

parametric MRI (mpMRI), in order to identify a radio-phenotypic signature to distinguish 

between TP, mixed response, and PsP. Analysis of radiographic data via advanced 

computational analytics has been increasingly shown to provide rich and highly informative 

characterizations of glioblastoma and its surrounding brain tissue 11,16–21, extending the 

evaluation of tissue properties beyond the capabilities of human visual interpretation. We 

hypothesize that quantification of subtle, yet spatially complex, quantitative imaging 

phenomic (QIP) features extracted from mpMRI can facilitate non-invasive classification of 

TP vs PsP, with sufficient sensitivity and specificity to allow discrimination on an individual 

patient basis.

Materials and Methods

Study Patient Population

The study population was identified on the basis of retrospective review of the electronic 

medical record of patients diagnosed with glioblastoma at the Hospital of the University of 

Pennsylvania from 2011 to 2015. The criteria for inclusion comprised a) initial gross total 

resection of the tumor followed by standard radiation therapy and temozolomide 

chemotherapy, b) demonstration of new/increasing enhancement areas on follow-up MRI, 

within 6 months after completion of radiation therapy, c) second resection, for 

histopathological tissue evaluation, and d) acquisition of mpMRI (i.e., T1, T1-Gd, T2, T2-

FLAIR, DTI, DSC) within 15 days prior to the second resection. We identified 63 patients 

(men/women=38/25; average age=57.28; age range=[32.79–81.60]) satisfying these 

inclusion criteria and we randomly divided them to independent discovery (n=40; 23 TP, 6 
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PsP, 11 mixed response) and replication (n=23; 12 TP, 4 PsP, 7 mixed response) cohorts. 

Isocitrate dehydrogenase 1 (IDH1) was wild-type, mutant, and not otherwise specified for 

52, 2, and 9 patients, respectively (Suppl. Table 1). This study was approved by the 

Institutional Review Board of the University of Pennsylvania, and was compliant with the 

Health Insurance Portability and Accountability Act.

Histopathological Tissue Evaluation

Following resection, the surgically extracted tissue specimens were entirely fixed in 10% 

buffered formalin, routinely processed, and embedded in paraffin. Five-micron thick sections 

of each specimen were cut onto glass slides, stained with hematoxylin and eosin (H&E), and 

assessed by two board-certified neuropathologists (M.M-L, M.P.N.) (blinded to our imaging 

assessment and the other rater) for presence of apparent tumor features and reactive 

treatment-related changes 11. The presence or absence of pseudopalisading necrosis and 

microvascular proliferation, which are features of recurrent glioblastoma; the presence or 

absence of dystrophic calcification and vascular hyalinization, and the percentage of 

geographic necrosis, representative of treatment-related changes, were quantified (Figure 1). 

Proliferative activity was determined by quantification of the number of mitotic figures in 10 

high-power fields and semi-quantitative assessment of Ki-67 proliferative index by 

immunostaining (mouse monoclonal, MIB-1, IR62661; Dako, Carpinteria, California). 

Based on the combined assessment of these features, the entire resected specimen was 

scored from 1 to 6. Score 1 for <10% malignant features, score 2 for 10–25% malignant 

features, score 3 for 25–50% malignant features, score 4 for 50–75% malignant features, 

score 5 for 75–90% malignant features, and score 6 for >90% malignant features. A score of 

1–2 was defined as pseudo-progression (PsP), 3–4 as a mixture of true progression (TP) and 

PsP, and 5–6 as TP. This combination was performed for clinical applicability. PsP (score 1–

2) will continue the treatment as it was before. The mixture of TP and PsP (score 3–4) will 

change the treatment or continue the current treatment based on clinical status of the patient. 

The TP patients (score 5–6) will be recommended for repeat resection. We used linear 

weighted Cohen’s kappa to calculate the inter-rater agreement.

MRI Acquisition Protocol

All MRI scans were performed on a Magnetom Tim Trio 3 Tesla scanner (Siemens, 

Erlangen, Germany) by using a 12-channel phased array head coil. Routine sequences 

included axial T1-weighted (T1): matrix 192×256×192, resolution 0.98×0.98×1.00 mm3, 

repetition time (TR in ms): 1760, echo time (TE in ms): 3.1; T1-weighted contrast enhanced 

with gadolinium (T1-Gd): matrix 192×256×192, resolution 0.98×0.98×1.00, TR: 1760, TE: 

3.1; T2-weighted (T2): matrix 208×256×64, resolution 0.94×0.94×3.00, TR: 4680, TE: 85; 

T2 fluid-attenuated inversion recovery (T2-FLAIR): matrix 192×256×60, resolution 

0.94×0.94×3.00, TR: 9420, TE: 141; and diffusion tensor imaging (DTI): matrix 

128×128×40, resolution 1.72×1.72×3.00, 30 gradient directions, from which fractional 

anisotropy (DTI-FA), radial diffusivity (DTI-RAD), axial diffusivity (DTI-AX), and trace 

(DTI-TR) maps were calculated. DSC-MRI: FOV 22cm, 128×128×20, resolution 

1.72×1.72×3 mm3, TR: 2000, TE: 45. The DSC-MRI sequences were acquired as follows: 

After an initial loading dose of 3mL of MultiHance (gadobenate dimeglumine) was 

administered to reduce the effect of contrast agent leakage, another bolus injection was given 
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after five minutes with the remaining dose (for a total of 0.3mL/kg or 1.5 times single dose) 

during image acquisition (15 patients). With evolution of clinical protocols, dynamic 

contrast enhanced (DCE, also known as permeability) acquisitions have been routinely 

obtained on more recent studies. In these instances, DCE is obtained first with half of the 

total contrast and serves as the loading dose to reduce the effect of contrast agent leakage, 

followed by an additional bolus after a similar delay with the second half of the total contrast 

volume for the DSC acquisition (total 0.3 mL/kg, 48 patients).

MRI Pre-processing

All MRI volume scans of each individual patient were affinely co-registered intra-patient 

using the Functional MRI of the Brain Software Library (FSL) 22. Subsequently all scans 

were smoothed to remove any high frequency intensity variations (i.e., noise) 23, corrected 

for magnetic field inhomogeneities 24 and skull-stripped using FSL BET 25 followed by 

manual revision when needed. We extracted commonly used measurements 26 from the 

acquired DTI volumes, i.e., DTI-TR, DTI-AX, DTI-RAD, DTI-FA. The DSC-MRI volumes 

were used to computationally extract parametric brain maps of the relative cerebral blood 

volume (rCBV), peak height (PH) and percentage signal recovery (PSR) after considering 

leakage correction 27,28. Also, all DSC curves were aligned/normalized for inter-patient for 

baseline and maximum drop. Principal component analysis (PCA) was also employed to 

extract a summarized signal of the complete temporal perfusion dynamics encapsulated in 

the DSC-MRI modality, instead of using just isolated measurements such as the rCBV alone 
29. Finally, the ML approach we adapted considers all four structural MRI images (T1, T1-

Gd, T2, T2-FLAIR), the subtraction of T1 from T1-Gd and T2-FLAIR from T2 (following 

intensity normalization), four DTI-derived measurements, perfusion derived PCA volumes, 

and isolated perfusion derivative parametric brain maps. In our study we collectively refer to 

all these image volumes as mpMRI.

Defining target tissue

To define the target region of interest (ROI) we firstly registered the pre-operative and post-

operative images of the timepoint suspicious for TP by using the Deformable Registration 

via Attribute Matching and Mutual-Saliency Weighting (DRAMMS) software 30. We then 

delineate the ROI describing the resected tissue. The regions in pre-surgery image that 

corresponds to the resected tissue in post-surgery image was defined as ROI. Therefore, the 

imaging properties and the pathology features correspond to the same resected region. 

Following the definition of these ROIs, all mpMRI sequences were analyzed to extract 

relevant comprehensive QIP features from the corresponding ROIs, in order to create our 

predictive model.

Feature Extraction

Considering the complexity of the problem our model is trying to address, we utilized two 

distinct approaches to ensure the comprehensiveness of the extracted QIP features from the 

mpMRI volumes, and hence that they describe all aspects of the radiographic appearance. 

The two approaches were distinctively based on deep learning and a priori selected (APS) 

feature extraction. We used and evaluated these two approaches both in combination and in 

comparison (Figure 2).
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Deep Learning Features—For obtaining the deep learning features, we used a pre-

trained neural network 31,32 and adapted a convolutional neural network (CNN) model pre-

trained on 1.2 million 3-channel images of the ImageNet LSVRC-2010, for classifying real-

world images into different classes 31. The exact CNN model we utilized (imagenet_vgg_f 
31) was provided by the VLfeat library 32 as part of their MatLab toolbox (MatConvNet) for 

computer vision applications. This CNN is a type of deep feed forward neural network that 

utilizes multilayer perceptrons with hidden layers. The hidden layers of CNN comprise 

convolutional (i.e., cross-correlation) layers, pooling layers, fully connected layers, and 

normalization layers 33,34. The convolution layer, which makes CNNs different from other 

types of deep neural networks, is a main layer of CNN and consists of several adaptive filters 

(as kernels) with small receptive fields. To apply this pre-trained model in our data, we 

created seven artificial 3-channel images, each channel of which describe an individual 

sequence from all the mpMRI considered (Suppl. Table 2).

APS radiomic features—We extracted 1040 APS radiomic features using the Cancer 

Imaging Phenomics Toolkit (CaPTk, www.cbica.upenn.edu/captk) 35. Specifically, the 

features extracted describe the first-order statistical distribution of voxel intensities within 

each ROI (comprising mean, median, maximum, minimum, skewness, and standard 

deviation) in all mpMRI sequences, the PCA summarized signal of the intensity distribution 

histogram of each mpMRI sequence, and texture features (second-order statistics) based on 

gray-level co-occurrence matrix (GLCM) 36 and gray-level run length matrix (GLRLM) 37. 

To obtain these texture features in 3 dimensions, all mpMRI volumes were first quantized to 

16 gray levels within the ROI. GLCM and GLRLM were then populated by taking into 

account 13 main directions. A neighborhood of 3×3×3 was considered for GLCM. These 

features were first computed for each direction independently, and then averaged to find 

their final value. All features were rescaled via z-score normalization before machine 

learning (ML) analysis. To identify which of these 1040 extracted features had actual 

predictive value, we applied a sequential feature selection in the training data until 

convergence, based on a threshold in the accuracy improvement.

Classification and Correlation Approach

A multivariate pattern classification method, known as Support Vector Machines (SVM), 

was used to construct two classifiers, to predict TP/PsP; one classifier to distinguish between 

PsP (scores 1–2) vs. everything else (scores 3–6), and another classifier to distinguish 

between TP (scores 5–6) vs. everything else (scores 1–4). We conducted this multivariate 

analysis through linear configuration of SVM. The parameter for the soft margin cost 

function (C) was optimized on the training data, based on a 5-fold cross-validated grid 

search; C=2α, where αϵ[−5,5]. This parameter controls the influence of each individual 

support vector that involves trading error penalty for stability. These classifiers were trained 

separately for each classification task and each time one of the two types of features was 

used, i.e., deep learning and APS features. The classifiers were trained on the discovery 

cohort (n=40) and tested on the replication cohort (n=23). To confirm the robustness, 

accuracy, and generalizability of the proposed method in a larger cohort, while avoiding 

optimistically biased estimates of performance, we have also evaluated the classifiers in all 

63 patients using a leave-one-out cross-validation (LOOCV) schema, where in every 
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iteration of cross-validation, the features were selected using data of n-1 patients and tested 

on the left-out nth patient. All steps including feature selection and model development were 

performed through cross-validation.

In addition to identifying a non-invasive signature to distinguish between TP and PsP, we 

also tried to find the correlations between the APS features and the histopathologic 

characteristics of the resected tissue specimen. This approach should identify 

complementary information of the extracted features by their correlations with pathological 

evaluations and quantitative scores. To achieve this, we used all 63 patients and trained 

separate support vector regression (SVR) models in a LOOCV configuration for the 

histopathologic characteristics with continuous values (i.e., mitotic figures, Ki-67, 

geographic necrosis, and the overall histopathology score), and SVM classification models 

for the histopathologic characteristics with discrete/binary values (i.e., pseudopalisading 

necrosis, microvascular proliferation, dystrophic calcification, and vascular hyalinization) 

(Figure 4).

Inter-institutional validation

We evaluated our method on an independent testing cohort from a different institute and 

with different acquisition protocols (20 patients, 10 TP, 10 PsP). In particular, we trained the 

model on the dataset acquired from University of Pennsylvania and applied the model on an 

independent cohort acquired from Thomas Jefferson University. Due to the lack of diffusion 

tensor imaging in Thomas Jefferson University dataset, we created a model using structural, 

DSC perfusion, and apparent diffusion coefficient imaging sequences from University of 

Pennsylvania and tested on Thomas Jefferson University patients. Due to lack of pathology, 

the follow-up serial MR imaging examinations were used to confirm prediction of PsP and 

TP by a board certified neuro-radiologist (M.B.). We selected time points that are distinct 

from therapy changes (systemic therapy and radiation therapy), to reduce the probability of 

treatment-related changes being measured on the scans. All MRI scans were performed on a 

1.5 Tesla GE Signa HDx scanner (General Electric, Milwaukee, WI, USA), using an 8-

channel phased array head coil. Routine sequences include T1: matrix 256(4) or 512(16)

×256(4) or 512(16)×15–30, resolution 0.39–0.86×0.39–0.86×6–10mm3,TR: 12.9–583.3,TE: 

4.1–12; T1-Gd: matrix 512×512×22–130, resolution 0.43–0.57×0.43–0.57×1.5(18) or 

7.5(2),TR: 516.7–600,TE: 7.9–12; T2: matrix 512×512×20–30, resolution 0.39–0.49×0.39–

0.49×5, TR: 2466.7–5952, TE: 90.7–102.1; T2-FLAIR: matrix 512×512×20–30, resolution 

0.39–0.47×0.39–0.47×6(14) or 6.5(4) or 7.5(2), TR: 10000–10015, TE: 126–148.5; ADC: 

matrix 256×256×30–37, resolution 0.93(1) or 1.02(19)×0.93(1) or 1.02(19)×5, TR: 8000–

10000, TE: 76.8–101; DSC-MRI: FOV 22cm(17) or 24cm(3), 128×128×15–27, resolution 

1.7(16) or 1.9(3)×1.7(16) or 1.9(3)×6(2) or 8(14) or 10(3), TR: 9–22.4, TE: 400–2000.

Results

The imaging information captured via both the methods was multivariately integrated via 

SVM to build two classification models: i) TP vs non-TP (mixed response + PsP), and ii) 

PsP vs non-PsP (mixed response + TP). Table 1 provides a summary of these results. We 

have used linear weighted Cohen’s kappa to calculate inter-rater agreement. The observed 
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agreement (po) for pathological scores of 1–6 was 0.9103 with random agreement (pe) of 

0.6562, Cohen’s kappa, 0.7392, and kappa error, 0.1091. The observed agreement (po) for 

PsP/Mix/TP was 0.9138 with random agreement (pe) of 0.6231, Cohen’s kappa, 0.7713, and 

kappa error, 0.0978.

Using Deep Learning Features

Similar performance was observed when using the deep learning features, which concluded 

in extracting >28000 features. Specifically, the classification performance was evaluated on 

the independent discovery and replication cohorts, and the accuracy for the ‘PsP vs non-PsP’ 

model was 87.50% (sensitivity=60.00%, specificity=94.74%, area under the curve 

(AUC)=0.8105, and for the ‘TP vs non-TP’ was equal to 78.26% (sensitivity=83.33%, 

specificity=72.73%, AUC=0.8636 (Table 1, Figure 3).

Using APS Features

The PsP and TP models developed on the discovery cohort when applied to the replication 

cohort returned an accuracy of 86.96% (sensitivity=75.00%, specificity=89.47%) and 

78.26% (sensitivity=83.33%, specificity=72.73%), respectively. A receiver operating 

characteristic (ROC) analysis also resulted in an AUC of 0.84 and 0.80 for ‘PsP vs non-PsP’ 

and ‘TP vs non-TP’ (Figure 3) classification models, respectively. While using only the APS 

radiomic features, the accuracy of our model using LOOCV in the pooled cohort was equal 

to 87.30% (sensitivity=80.00%, specificity=88.68%, AUC=0.9189) for ‘PsP vs non-PsP’, 

and 84.13% (sensitivity=80.00%, specificity=89.29%, AUC=0.8347) for TP vs non-TP, 

confirming its generalizability (Table 1, Figure 3). The most distinctive features for these 

classifiers can be found in Suppl. Table 3.

Integrating Deep Learning and APS Features

In addition to comparing the performance of each type of features, we also evaluated the 

performance of their integration (Table 1, Figure 3). Specifically, when combining these 

features, the accuracy for the ‘PsP vs non-PsP’ model was equal to 69.57% 

(sensitivity=75.00%, specificity=68.42%, AUC=0.7763) and for the ‘TP vs non-TP’ was 

78.26% (sensitivity=83.33%, specificity=72.73%, AUC=0.7121).

Histopathologic Characteristics vs Machine Learning Estimates

The Pearson correlation coefficients between the SVR scores and logarithm of mitotic 

figures, logarithm of Ki-67, and geographic necrosis were estimated to be 0.54, 0.53, and 

0.51, respectively. The Pearson correlation coefficients between the SVR scores and 

pathology scores was 0.76 (Figure 4). We also evaluated the trained SVM models for the 

presence or absence of pseudopalisading necrosis (AUC=0.7434), microvascular 

proliferation (AUC=0.7406), dystrophic calcification (AUC=0.8292), and vascular 

hyalinization (AUC=0.7939) (Figure 4).

Biologically Interpreted Features

In our attempt to understand the underlying biological processes that are likely to give rise to 

the imaging signature of TP, we performed a detailed histogram analysis of all the imaging 
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features. The Cohen’s d effect sizes are T1, 0.6477; normalized T1-Gd, 0.3103; FLAIR, 

0.2599; rCBV, 0.2829; PH, 0.2907; PSR, 0.5020; TR, 0.1442; FA, 0.3319 for difference 

between TP and PsP tumors. Figure 5 shows the imaging characteristics of PsP (dashed 

lines) and TP (solid lines) in each modality across all patients. The main results of 

comparing the QIP features of TP with those of PsP patients, identify TP tumors as having:

1. Regions of higher blood volume and flow, which points towards 

hypervascularity, hyper-perfusion, and increased angiogenesis, based on the 

combination of rCBV and PH;

2. Regions of higher cellularity, suggestive of increased proliferation, as well as 

different tissue microarchitecture, based on the combination of measures 

extracted from DTI, namely DTI-TR and DTI-FA.

3. Regions of more compromised blood brain barrier (BBB), based on the 

combination of measures extracted from T1-Gd and T1-Gd subtracted T1, also 

consistent with infiltrating tumor characteristics;

4. Regions of lower water concentration, based on the combination of T2-FLAIR 

and DTI-TR, consistent with dense and non-necrotic tissue.

Inter-institutional validation

We evaluated the trained model on the dataset acquired from University of Pennsylvania on 

an independent testing cohort from Thomas Jefferson University with different acquisition 

protocols. 7 out of 10 TP patients and 8 out of 10 PsP patients correctly diagnosed by the 

model which reveals an overall accuracy of 75% (AUC=0.80). The training performance was 

79% (AUC=0.80).

Discussion

In this study of glioblastoma patients treated with standard chemoradiation, we utilized 

advanced feature extraction and ML techniques to comprehensively capture the radiographic 

characteristics of a given ROI using structural MRI, the temporal dynamics of DSC-MRI, 

and DTI-derived modalities. Notably, our approach identified selected radiomic features 

within the given ROI in post-chemoradiation MRI that are significantly and robustly 

correlated with the histopathology of resected tissue, thereby offering non-invasive means of 

discriminating between TP and PsP in post-treatment glioblastoma. Critically, we have made 

these methods and models freely available through the CaPTk (www.cbica.upenn.edu/

captk), a publicly available open-source software platform (Suppl. Figure 1), in order to 

facilitate clinical use and further validation of these results in other studies. This software 

has been designed for research purposes only and has neither been reviewed nor approved 

for clinical use by the Food and Drug Administration (FDA) or by any other federal/state 

agency and should not be used as the primary source of information for making clinical 

decisions.

Using advanced computational methodologies, our proposed non-invasive signature can 

quantify subtle imaging characteristics within an ROI that confer an estimate of the 

likelihood of TP vs PsP. It is important to emphasize that no single imaging feature was 
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sufficiently discriminative by itself in our modeling. Rather, several QIP features were 

integrated by our multivariate approach to generate a discriminative score able to capture 

differences between TP and PsP. These results emphasize the importance of comprehensive 

multivariate analysis as opposed to imaging threshold based on isolated features, and the use 

of computational methods complementing traditional human interpretation. One of the 

important strengths of this signature is that it is generated from images acquired in the 

standard-of-care surveillance of glioblastoma patients. Thus, additional testing (invasive or 

otherwise) is not required, which is an advantage when considering clinical generalizability. 

Importantly, the QIP features are strongly associated with histopathologic scoring (Pearson 

correlation coefficient=0.76, p-value=5.5×10−13), and the predictive models have been 

validated in an independent replication cohort, unseen during their training, as well as via 

LOOCV.

We quantitatively evaluated the performance of our approach to distinguish between TP and 

PsP using models trained both independently on, and in combination with, two distinct 

feature extraction approaches, i.e., one based on deep learning and another using APS 

radiomic features. The comparison between the deep learning based model and the APS 

radiomic features based model yielded similar results, based on their evaluation on a 

relatively small independent replication cohort (Table 1). Interestingly, when combining the 

two feature types to create an integrated model we noted a drop (>17%) in the classifier 

distinguishing PsP from the rest, while the accuracy of the classifier distinguishing TP from 

the rest remained stable. It is worth noting that the evaluation of the APS features based 

model using a LOOCV scheme revealed a better performing model. A larger cohort of 

patients could possibly allow for further conclusions, and for developing a deep learning 

classifier instead of utilizing deep learning to create features for training an SVM model. 

However, considering the current results we tend to be in favor of the model trained using 

APS radiomic features due to the benefit of interpretability. Larger datasets might allow deep 

learning achieve more reproducible and accurate results in future studies.

The feature engineering approach we consider for estimating TP can offer potential insights 

into biological mechanisms via each MRI sequence that may uniquely reflect radiographic 

phenotypes of TP vs PsP. Specifically, regions of TP in our data showed increased contrast 

uptake on the T1-Gd sequences, which, consistent with existing literature, may be indicative 

of regional angiogenesis and associated with compromise of the BBB in areas of tumor 

infiltration 38. T2 and T2-FLAIR sequences provide information relevant in assessment of 

areas of non-enhancing and necrotic tumor, as well as the extent of the peritumoral 

edematous/invaded tissue 39. Our results identified regions of TP demonstrating lower signal 

intensity on T2 and T2-FLAIR, which indicate relatively lower water content and may thus 

reflect higher levels of tumor infiltration. This finding is consistent with the hypothesis that 

the TP regions harbor a higher ratio of malignant cells to water content. DTI maps the 

diffusion process of water in the brain, affected in part by tumor cellularity 40 and by 

integrity of white matter structures, as well as the underlying microstructure of tissue, e.g., 

via the DTI-FA measurements. Here, regions of TP showed lower DTI-TR and increased 

DTI-FA that may be expected in areas of higher cellular concentration (i.e., tumor cell 

proliferation). DTI-AX and DTI-RAD were also consistent with overall diffusivity captured 

by the DTI-TR volume. DSC imaging reflects various aspects of perfusion in the brain 29, 
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which provide quantitative measures of regional microvasculature, perfusion hemodynamics, 

and permeability of blood vessels 38,41. Specifically, when brain tumors exceed a critical 

volume, the resultant ischemia triggers the secretion of angiogenic factors that promote 

vascular proliferation, leading to the formation and maintenance of tumor vessels 42–48. 

These new, immature vessels tend to be tortuous and leaky 49. In our analysis, the second 

principal component of the DSC signal (PC2) is inversely related to the magnitude of the 

signal drop, in relation to the baseline. Our results indicate a relatively lower PC2 in TP 

regions, which may be indicative of a higher degree of BBB compromise and leaky 

neovasculature. We also observed PC3, which reflects the steepness of the complete 

perfusion signal drop and its recovery rate. We found TP regions to show relatively higher 

values of PC3 that may suggest a relative time delay in the contrast agent reaching the TP 

tissue, possibly due to higher flow resistance, tortuosity and other characteristics of tumor 

vasculature 29,38,43,50. While these proposed biological associations are limited by the 

macroscopic nature of MRI, it must be pointed out that one does not require understanding 

of the mechanism to develop an effective signature – it merely requires rigorous validation to 

have potential clinical utility.

The limitations of our study include the fact that it was conducted in data from a single 

institution, and could further benefit from validation in multi-institutional data. Furthermore, 

the discovered signature relies upon features extracted from advanced mpMRI, which may 

not be routinely acquired in all clinical departments. Sample size is also a potential 

limitation, as the strength of deep learning methods is often improved as the number of 

subjects increases. The limited number of patients relative to the number of features utilized 

in deep learning methods, in particular, may increase the risk of overfitting. We addressed 

this potential pitfall by cross-validation of all steps when using APS features, i.e. feature 

selection, SVM and SVR parameters selections, and training and testing on different 

patients. Multi-institutional, prospective validation of our signature is necessary to establish 

inter-institutional reproducibility.

In summary, advanced computational analyses are increasingly used in the clinical 

evaluation of human gliomas and their response to treatment. The present study extracts 

subtle but informative QIP features from the temporal dynamics of DSC-MRI, DTI, and 

structural MRI modalities, and integrates them via multivariate ML, to develop an imaging 

signature that may non-invasively distinguish TP from PsP. Accurate stratification of the 

entities of TP and PsP may facilitate appropriate triage of patients to continuing 

maintenance, therapy, or evaluating them for new intervention, which carries great 

importance in the era of increasing personalization of therapy.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Two concise sentences that state the significant conclusions

Artificial intelligence methods can accurately predict pseudo-progression in GBM.

Histopathologic characteristics of GBM progression correlate with radiomic features.
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Figure 1. 
Histological features of true progression (malignant tumor, A and B) and pseudo-

progression (treatment-related changes, C - F). A. Highly cellular tumor with 

pseudopalisading necrosis and microvascular proliferation (arrow). B. Mitotically active 

(arrows: mitoses) cellular tumor with microvascular proliferation. C. Thickened hyalinized 

vessel walls with focal lymphocytic inflammation, and macrophages (arrow). D. Dystrophic 

calcification. E. Hyalinized vessels, lymphocytes, macrophages and hemosiderin-laden 

macrophages. E. Geographic necrosis. Scale bar, lower right, indicates 200 microns in A, C - 

F; 100 microns in B.
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Figure 2. 
Processing pipeline of the proposed radiomic analysis. Top row (imaging): 1) T1-w pre- and 

post-contrast, T2-w, T2-flair, DTI, DSC-MRI images are acquired. 2) Defining the resected 

enhancing tissues after registration of the pre-operative with post-operative images using 

DRAMMS. 3) Features are extracted from each region, quantifying intensity, shape, 

principal component analysis, statistics and texture. 4) Features analysis and classification 

between PsP versus non-PsP and TR versus non-TR. Bottom row (pathology): 1) Excisional 

biopsy 2) Histological analysis 3) Histological characteristics 4) Pathology scores.
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Figure 3. 
ROC curves of different experiments: Left column shows PsP versus non-PsP, right column 

shows TP versus non-TP. Top to bottom rows show deep learning (hold-out set), APS 

features (hold-out set), APS features (LOOCV), and combined features (hold-out set), 

respectively. The vertical axis represents true positive rate and the horizontal axis represents 

false positive rate. The asterisk represents the shortest distance from the top left point.
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Figure 4. 
Histopathologic characteristics vs. machine learning estimations. The gray band represents 

the 95% confidence interval for the regression line.
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Figure 5. 
(A) represented two examples of the imaging modalities in PsP and TP patients. (B) 

illustrated histograms of the most distinctive modalities, according to the progression status. 

The histograms were created using information from all PsP (dashed lines) and TP (solid 

lines) patients. (C) illustrated scatter plots of the voxels of patients with highest ratio of PsP 

(blue) and highest ratio of TP (red).
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Table 1.

Quantitative evaluation results

PsP vs non-PsP TP vs non-TP

Accuracy 
(%) AUC Sensitivity(%) FNR 

(%) Specificity(%) FPR 
(%)

Accuracy 
(%) AUC Sensitivity(%) FNR 

(%) Specificity(%) FPR 
(%)

Deep 
Learning 
Features 
(Hold-out 
set)

87.50 0.811 60.00 40 94.74 5.26 78.26 0.867 83.33 16.67 72.73 27.27

APS 
Features 
(Hold-out 
set)

86.96 0.842 75.00 25 89.47 10.53 78.26 0.803 83.33 16.67 72.73 27.27

APS 
Features 
(LOOCV)

87.30 0.919 80.00 20 88.68 11.32 84.13 0.835 80.00 20 89.29 10.71

Combined 
Features 
(Hold-out 
set)

69.57 0.776 75.00 25 68.42 31.58 78.26 0.712 83.33 16.67 72.73 27.27

Cancer. Author manuscript; available in PMC 2021 February 19.


	Abstract
	Introduction
	Materials and Methods
	Study Patient Population
	Histopathological Tissue Evaluation
	MRI Acquisition Protocol
	MRI Pre-processing
	Defining target tissue
	Feature Extraction
	Deep Learning Features
	APS radiomic features

	Classification and Correlation Approach
	Inter-institutional validation

	Results
	Using Deep Learning Features
	Using APS Features
	Integrating Deep Learning and APS Features
	Histopathologic Characteristics vs Machine Learning Estimates
	Biologically Interpreted Features
	Inter-institutional validation

	Discussion
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Table 1.

