Table 1.
Quantitative evaluation results
PsP vs non-PsP | TP vs non-TP | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Accuracy (%) | AUC | Sensitivity(%) | FNR (%) | Specificity(%) | FPR (%) | Accuracy (%) | AUC | Sensitivity(%) | FNR (%) | Specificity(%) | FPR (%) | |
Deep Learning Features (Hold-out set) | 87.50 | 0.811 | 60.00 | 40 | 94.74 | 5.26 | 78.26 | 0.867 | 83.33 | 16.67 | 72.73 | 27.27 |
APS Features (Hold-out set) | 86.96 | 0.842 | 75.00 | 25 | 89.47 | 10.53 | 78.26 | 0.803 | 83.33 | 16.67 | 72.73 | 27.27 |
APS Features (LOOCV) | 87.30 | 0.919 | 80.00 | 20 | 88.68 | 11.32 | 84.13 | 0.835 | 80.00 | 20 | 89.29 | 10.71 |
Combined Features (Hold-out set) | 69.57 | 0.776 | 75.00 | 25 | 68.42 | 31.58 | 78.26 | 0.712 | 83.33 | 16.67 | 72.73 | 27.27 |