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Abstract 

Background:  Severe asthma is a heterogeneous inflammatory disease. The increase in precise immunotherapy for 
severe asthmatics requires a greater understanding of molecular mechanisms and biomarkers. In this study, we aimed 
to identify the underlying mechanisms and hub genes that determine asthma severity.

Methods:  Differentially expressed genes (DEGs) were identified based on bronchial epithelial brushings from mild 
and severe asthmatics. Then, weighted gene coexpression network analysis (WGCNA) was used to identify gene 
networks and the module most significantly associated with asthma severity. Furthermore, hub gene screening and 
functional enrichment analysis were performed. Replication with another dataset was conducted to validate the hub 
genes.

Results:  DEGs from 14 mild and 11 severe asthmatics were subjected to WGCNA. Six modules associated with 
asthma severity were identified. Three modules were positively correlated (P < 0.001) with asthma severity and 
contained genes that were upregulated in severe asthmatics. Functional enrichment analysis showed that genes in 
the most significant module were mainly enriched in neutrophil activation and degranulation, and cytokine receptor 
interaction. Hub genes included CXCR1, CXCR2, CCR1, CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM, and PLEK; CXCR1, 
CXCR2, and TLR2 were significantly related to asthma severity in the validation dataset. The combination of ten hub 
genes exhibited a moderate ability to distinguish between severe and mild-moderate asthmatics.

Conclusion:  Our results identified biomarkers and characterized potential pathogenesis of severe asthma, providing 
insight into treatment targets and prognostic markers.
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Introduction
Asthma is a chronic, heterogeneous inflammatory dis-
ease with complex pathological mechanisms and diverse 
clinical phenotypes. Severe asthma is one of the pheno-
types, which is defined as uncontrolled asthma despite 
adherence to maximally optimized therapy and asthma 
worsens when high-dose treatment is decreased [1]. 
Patients with severe asthma attempt to achieve control 

and prevent life-threatening exacerbations with high 
doses of inhaled corticosteroids or even oral corticoster-
oids [2], with a 3.1-fold higher risk of developing osteo-
porotic fracture and a 2.7-fold higher risk of developing 
pneumonia [3]. Furthermore, corticosteroid resistance 
is common in severe asthma patients, making corticos-
teroid therapy less effective [4, 5]. Considering the side 
effects and limitations of traditional therapies, novel 
treatments focusing on the immune system have been 
were developed. Nevertheless, early attempts at immu-
nosuppressive therapies have been unsuccessful [2], 
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underlining a need for a comprehensive understanding of 
molecular mechanism and endotypes of severe asthma.

Weighted gene coexpression network analysis 
(WGCNA) is a bioinformatics method for exploring the 
complex relationships between gene expression profiles 
and phenotypes. WGCNA is widely used in studies of 
multigene diseases to identify potential biomarkers and 
provide molecular targets for treatment. Some research-
ers also used this method to explore the pathogenesis 
of asthma and identify pathways and genes associated 
with asthma severity [6–8]. Nevertheless, differentially 
expressed genes (DEGs) between healthy controls and 
asthma patients or genes from all asthmatics, not DEGs 
between mild and severe asthmatics, were considered 
to construct a coexpression network in the studies men-
tioned above. Analysis of DEGs from mild-severe asth-
matics could identify genes that especially contribute to 
disease progression. In this study, such genes were con-
sidered for WGCNA and further biologically functional 
analysis to define hidden mechanisms and key genes in 
severe asthmatics. The results will shed light on treat-
ment targets and inform the prognosis assessment of 
severe asthma.

Materials and methods
Data processing and differential gene expression analysis
Dataset related to severe asthma was obtained from the 
Gene Expression Omnibus (GEO) datasets (https​://www.
ncbi.nlm.nih.gov/gds) with accession number GSE89809 
[9]. Platform information was GPL13158. This dataset 
contains 145 samples of different tissue types (i.e., bron-
choalveolar lavage, sputum, epithelial brushings) from 
healthy controls, mild, moderate, and severe asthmat-
ics. Asthma was defined according to GINA 2012 [9]. 
Asthma severity was assessed using previously described 
criteria [10]. As bronchial epithelial cells are thought 
to be highly informative for describing changes in gene 
expression in asthma [11, 12], data of epithelial brushings 
from 14 mild and 11 severe asthmatics were extracted 
for WGCNA. Accessible clinical traits, including asthma 
severity, asthma control questionnaire (acq) score, smok-
ing, allergic rhinitis, nasal polyps, inhaled corticosteroid 
(ICS) dose, FEV1, FVC, reversibility, and GINA control, 
were analyzed in WGCNA. Raw microarray gene expres-
sion data were normalized using RMA method via the R 
Bioconductor package affy [13] and subjected to several 
quality control procedures. Then gene IDs were mapped 
to the microarray probes using annotation information. 
Probes matching more than one gene were eliminated 
from the dataset, and the mean expression value of genes 
measured by multiple probes was calculated. DEGs 
between severe and mild asthmatics were identified using 
the limma package in R software [14]. A gene with log 

two-fold Change > 0.5 and P value adjusted by false dis-
covery rate < 0.05 was considered significantly differen-
tially expressed.

Construction of coexpression modules
The WGCNA package [15] was used to construct a scale-
free coexpression network using the obtained DEGs to 
examine their associations with clinical variables. The 
soft-thresholding power β was calculated in the con-
struction of each module using the pickSoftThreshold 
function of WGCNA, which provides a suitable power 
value for network construction by calculating the scale-
free topology fit index for a set of candidate powers that 
ranges from 1 to 20. If the index value for the reference 
dataset exceeded 0.85, the appropriate power was deter-
mined. The hclust function was used to cluster samples 
and check for outliers. Then, a one‐step network con-
struction method was used to identify coexpression 
modules, and the minimum number of genes for each 
module was set to 50.

The relationships between modules and asthma sever-
ity, as well as other clinical traits, were assessed. As 
the relationship between gene expression and asthma 
severity may potentially be influenced by some sample-
specific traits (e.g. corticosteroid and smoking), a linear 
model adjusted for confounders was used to confirm the 
findings.

Identification of the clinically significant module and hub 
genes
Module eigengene (ME) represents the first principal 
component of a given module and the gene expression 
profiles in this module. Gene significance (GS) and mod-
ule membership (MM) were defined as the absolute value 
of the correlation between a gene and a clinic trait and 
the correlation of gene expression with the ME, respec-
tively. The clinically significant module for asthma sever-
ity was identified if:

1.	 the correlation between the module and asthma 
severity ≥ |0.5|;

2.	 the correlation between MM and GS in the module 
was statistically significant (P < 0.05).

The key module was visualized using STRING (version 
11.0).

Hub genes are those genes in clinically significant 
modules that tend to have high connectivity. Genes 
with |MM| > 0.6 and |GS| > 0.5 in the key module were 
imported to Cytoscape (version 3.8.2), and then, the top 
10 degree genes were filtered as the hub genes. To test 
whether the hub genes were specific for asthma, the 
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correlation of hub genes and asthma susceptibility was 
calculated.

Enrichment analysis
To further classify and visualize the functions of genes 
in the key module, Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [16, 17] 
enrichment analyses were performed on genes in the 
key module, using the R package clusterProfiler [18]. A P 
value < 0.05 was considered the cutoff criterion. The top 8 
categories identified with GO and KEGG analyses were 
shown.

Validation of hub genes
Hub genes were validated using the GSE43696 dataset 
with platform GPL6480 [19, 20]. This dataset provides 
data from bronchial epithelial brushings from 20 healthy 
controls, 50 mild-moderate asthmatics and 38 severe 
asthmatics. Mild and moderate subjects comprised 
a group that did not use exactly the same criteria as in 
GSE89809. Severe subjects met American Thoracic Soci-
ety definitions similar to those in GSE89809 (Additional 
file  1: Table  S3). Data from mild-moderate and severe 
subjects were used for validation. Subsequently, the 
dataset was normalized and processed as performed for 
GSE89809. Expression data of ten hub genes and severity 
of asthmatics were extracted. The correlation of individ-
ual hub genes and asthma severity, as well as the expres-
sion of hub genes between mild-moderate and severe 
asthmatics were analyzed. In addition, receiver operating 
characteristic (ROC) curve analysis was conducted for 
each hub gene and combined hub genes with the ROC 
package [21]. The area under the curve (AUC) was used 
to evaluate the sensitivity and specificity of the ten hub 
genes.

Results
Dataset selection and DEGs identification
The microarray gene expression dataset GSE89809 was 
used in this study. After data normalization and quality 
control, 1035 genes were identified as DEGs, of which 
634 were upregulated and 401 were downregulated 
between mild asthma and severe asthma. A volcano plot 
of all probesets and a heatmap of the top 25 changed 
genes were shown in Additional 1: Figure S1-S2.

Co‑expression network construction and disease‑specific 
module identification
The expression profiles of 1035 DEGs were used to 
conduct WGCNA. Hierarchical clustering analysis 
was then performed. When the threshold was set to 
50, GSM2389953 was considered to be an outlier and 

removed prior to further analyses (Additional 1: Figure 
S3). The optimal power β for which the scale‐free topol-
ogy index exceeded 0.85 was computed as 8 (Fig. 1). After 
this soft threshold of 8 was implemented, 6 significant 
gene modules, ranging in size from 27 to 585 genes, were 
detected (Fig. 2). The gray module contained DEGs that 
did not cluster in any module.

Identification of the clinically significant module and hub 
genes
Module-trait associations were identified based on the 
correlation between module eigengene and clinical traits. 
The results (Fig.  3) indicated that all modules were sig-
nificantly associated with asthma severity. Three mod-
ules (brown, blue, and green) were positively correlated 
with asthma severity, ACQ score, and GINA control, 
while negatively correlated with FEV1 and FVC. This 
means that genes in those modules are predominantly 

Fig. 1  Analysis of network topology for a set of soft‐thresholding 
powers

Fig. 2  Clustering dendrograms of genes
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upregulated in severe asthma. In contrast, two mod-
ules (yellow and turquoise) were found to be negatively 
correlated with asthma severity, ACQ score, and GINA 
control. In addition, modules positively associated with 
asthma severity were also correlated with inhaled  cor-
ticosteroid (ICS) dose and smoking status. No modules 
were found to be correlated with allergic rhinitis or nasal 
polyps. Additional 1: Figure S4 showed the association 
between modules and asthma severity adjusted by ICS 
dose and smoking. Both before and after adjustment, the 
brown module strongly correlated with asthma sever-
ity, followed by the yellow module. The eigengene den-
drogram and heatmap showed interactions of modules 
(Additional 1: Figure S5).

Among these modules, the brown module had the 
strongest correlation with asthma severity (r = 0.72, 
P < 0.001), even after adjusting for confounders (adjusted 
P = 0.03). The GS and MM of the brown module were 
further calculated using WGCNA. Figure 4 showed that 
the brown module had a strong GS-MM correlation 
(P < 0.001), which was identified as the clinically signifi-
cant module and visualized in String (Additional 1: Fig-
ure S6). In total, 48 genes with |GS| > 0.5 and |MM| > 0.6 
in the brown module were imported into Cytoscape, and 
the top 10 degree genes, namely, CXCR1, CXCR2, CCR1, 
CCR7, TLR2, FPR1, FCGR3B, FCGR2A, ITGAM and 
PLEK, were filtered as hub genes (Fig.  5). The correla-
tions of hub genes and asthma susceptibility were further 
analyzed, considering susceptibility as a dichotomous 
variable (control vs asthma). The results (Additional 1: 
Table  S1) demonstrated that hub genes were not asso-
ciated with asthma susceptibility and were specific for 
asthma severity, which is consistent with our intention 
of using DEGs from mild-severe asthmatics. Given that 
other modules were also related to asthma severity before 
adjustment, those modules and their top genes were 
shown (Additional 1: Figure S7-S8).

Functional enrichment analysis
GO and KEGG enrichment analyses of gene modules 
were conducted. GO enrichment results showed that 
the brown module genes were significantly associated 
with immune responses such as neutrophil degranula-
tion and activation, leukocyte migration and chemotaxis 
(Fig. 6). The KEGG pathway enrichment results indicated 
that genes in the brown module were primarily enriched 
in cytokine–cytokine receptor interaction, phagosome, 
chemokine signaling pathway (Fig. 7).

Fig. 3  Module‐trait relationships

Fig. 4  Gene significance for asthma severity vs module membership 
in brown module Fig. 5  Hub genes visualized in Cytoscape
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In the analysis of interactions between the 5 modules, 
modules positively related to asthma severity (brown, 
blue, green module) were correlated with each other. 
Thus, enrichment analysis was also conducted for genes 
in positively related modules. The Go and KEGG enrich-
ment results of these modules were in consistent with the 
results of the brown module (Figure S9).

Validation of hub genes
To verify hub gene expression, dataset GSE43696 was 
retrieved from GEO. The correlation analysis results 
showed that CXCR1 (P = 0.02), CXCR2 (P = 0.02), and 
TLR2 (P = 0.01) were significantly related to asthma 
severity in GSE43696 (Additional 1: Table S2). Expres-
sion differences of hub genes between groups showed 
similar results (Additional 1: Figure S10). ROC curve 
analysis indicated that the AUC for CXCR2 was 0.66 
(P = 0.01), followed by CXCR1, TLR2, FPR1, FCGR3B, 
CCR1, and ITGAM (Additional 1: Figure S11). The 
combination of 10 hub genes possessed a moderate 
ability to discriminate between severe and mild-mod-
erate asthmatics with an AUC of 0.75(P < 0.01) (Fig. 8). 
ROC curves of top genes in other modules were pre-
sented in the supplement (Additional 1: Figure S12).

Discussion
Severe asthma contributes to 50–60% of asthma costs 
and is associated with poor quality of life and high mor-
tality and morbidity [22]. The unclear molecular mech-
anism and refractory response to traditional asthma 
therapies seen in these patients have been challenging 
for clinicians to treat this asthma subtype. In this study, 
for the first time, we used the DEGs between mild and 
severe asthma samples to construct a coexpression net-
work by WGCNA and carried out a comprehensive 
analysis of key genes and pathological processes associ-
ated with asthma severity, hoping that the findings will 
be beneficial for the understanding and future treat-
ment of severe asthma.

In total, 6 modules were identified in this paper, of 
which 3 modules were positively related to asthma 
severity while 3 modules were negatively related to 
asthma severity. The brown module, which had the 
strongest relation to asthma severity and the most sig-
nificant MM-GS correlation, was identified as the criti-
cal module. Enrichment analysis showed that genes 
in the brown module were enriched in neutrophil 

Fig. 6  GO enrichment analysis of genes in brown module

Fig. 7  KEGG enrichment analysis of genes in brown module

Fig. 8  Receiver operating characteristics curve analyses of combined 
hub genes
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degranulation and activation, leukocyte migration and 
chemotaxis, cytokine-cytokine receptor interaction, 
phagosome, and chemokine signaling pathways. Then 
10 hub genes in the brown module were filtered and 
verified in another dataset.

The results of module-trait relationships showed that 
modules positively related to asthma severity (brown, 
blue and green modules) were also positively related 
to ACQ score and GINA control grade, but negatively 
related to FEV1 and FVC, which means that the higher 
level of gene expression is in these modules, the worse 
asthma control and lung function are. In addition, posi-
tive relationships were found between smoking and 
upregulated genes in severe asthmatics. Previous stud-
ies have shown that asthma patients exposed to smoke 
are typically steroid-refractory and result in uncon-
trolled asthma [23]. One of the probable mechanisms 
has been linked to the Th17 pathway [24], which medi-
ates neutrophilic activation and recruitment in airway. 
This is consistent with our enrichment analysis results 
that genes positively to smoking status were enriched 
in neutrophil degranulation, activation and migration. 
ICS dose and smoking status may affect the module-
asthma severity association. However, adjustments for 
confounders directly tied to asthma severity (i.e., ICS 
dose) could mask true biological findings [8] and lead 
to model overfitting. Therefore, results after adjust-
ment were used to compare with and verify the findings 
before adjustment. The brown module was significantly 
related to asthma severity even when confounders were 
considered, which made it the critical module.

For brown module genes, the significantly enriched 
terms in GO and KEGG analyses were as follows: neu-
trophil degranulation and activation, leukocyte migra-
tion and chemotaxis, cytokine-cytokine receptor 
interaction, phagosome, chemokine signaling pathway. 
Similar enrichment results were found when all mod-
ules positively related to asthma severity were con-
sidered. Neutrophil inflammation, characterized by 
the lack of Th2-mediated inflammatory response and 
increased numbers of neutrophils in the airway [25], 
has been linked to asthma severity [26, 27], regardless 
of whether asthma is eosinophilic or noneosinophilic 
[28, 29]. The original paper using the same dataset also 
associated neutrophils with asthma severity through a 
protein interaction network [9]. In our study, visualized 
GO enrichment analysis further detailed and empha-
sized the role of neutrophils, with the first six GO terms 
associated with neutrophils. This means that more neu-
trophils become activated, degranulate, and migrate as 
asthma progresses from mild to severe. Furthermore, 
neutrophil inflammation is more prominent in patients 
who fail to respond to inhaled corticosteroids, also 

referred to as severe asthmatics, than in other asthmat-
ics [30]. Thus, novel treatments aimed at decreasing 
neutrophils may benefit patients with severe asthma. 
In addition, results of KEGG analysis showed increased 
cytokine production and functioning in severe asthma, 
which is reflected by the functions of hub genes.

Identified hub genes further provided biomarkers for 
severe asthma. The study by Singhania et  al. [9] pro-
vided evidence of a role of IL-8, which is an essential 
chemokine that enhances neutrophil migration into 
airways and contributes to asthma severity and lung 
damage [31]. In our study, CXCR1 and CXCR2 were fur-
ther identified as the related chemokine receptors that 
respond to IL-8. In this way, CXCR1/2 inhibition might 
be a rational therapeutic strategy for severe asthma treat-
ment. For example, a selective CXCR2 antagonist named 
SCH527123 was reported to reduce sputum neutrophils 
and mild exacerbations [32]. However, AZD5069, which 
is also an antagonist of CXCR2, failed to reduce asthma 
exacerbations or improve lung function compared with 
placebo [33]. Recently, a study suggested that KLF2, as 
a regulator of CXCR1/2, may represent an indicator of 
asthma severity when combined with CXCR1/2 [34]. This 
provides another direction for the treatment of severe 
asthma targeting CXCR1/2.

The toll-like receptor (TLR) family is the first line for 
defensing against invading microbes [35]. Increased 
expression of TLR2 was reported in severe asthmatics 
when compared with healthy controls [9]. Furthermore, 
when compared with mild asthmatics in our study, severe 
asthmatics also showed upregulated TLR2, highlighting 
the role of TLR2 on asthma progression. TLR2 prob-
ably take part in asthma progression by inducing Th17 
responses and production of IL-8 and IL-17, which could 
modify airway structures, leading to airway obstruction 
and low FEV1 seen in patients with severe asthma [36]. 
In the study by Singhania et  al., in fact, IL-17-inducible 
chemokines were highly expressed across all asthmat-
ics relative to healthy controls, and increased with the 
increase in asthma severity. Therefore, TLR2 could be 
linked to asthma severity through the IL-17 pathway. 
However, a recent study showed that TLR2 may reduce 
Th17 cytokines by suppressing a Th17 phenotype of Treg 
cells. This means that TLR2 may induce remission of 
asthma [37]. Another study in mice also suggested that 
appropriate stimulation of the TLR2/4 pathway may help 
to prevent asthma in offspring [38]. Thus, further studies 
are needed to reveal the effect of TLR2 on asthma and 
disease severity.

CCR1 and CCR7 are chemokine receptors in Th2/
type 2 pathway, which is thought to be the dominant 
inflammatory pathway underlying severe asthma. CCR1 
is mainly expressed in eosinophils, macrophages, and 
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lymphocytes. CCR1 plays a role in the progression of 
asthma by promoting the chemotaxis of leukocytes in 
the airway epithelium and probably by modulating the 
balance of Th1/Th2 cytokine [39]. Biopsies of airways 
have demonstrated elevated expression of CCR1 mRNA 
in mild-to-severe asthma [40]. CCR7 is involved in the 
migration and maturation of dendritic cells (DCs), which 
could facilitate the development of asthma [41–43]. 
CCR7 could also participate in the airway remodeling 
of severe asthma by enhancing fibrocyte transmigra-
tion [44]. In addition, findings about the role of CCR7 in 
immune tolerance in allergy-induced asthmatics [45, 46] 
may provide ideas for the treatment of severe asthma.

FPR1 is a powerful neutrophil chemotactic factor 
and has been linked to chronic inflammatory diseases. 
Although FPR1 was reported to react to cigarette smoke 
[47, 48] and be involved in the anti-inflammatory activi-
ties of glucocorticoids [49], little is known about its effect 
on asthma. FCGR3B, FCGR2A and ITGAM are immune-
related genes, all of which are known as biomarkers for 
systemic lupus erythematosus. PLEK is a major protein 
kinase C substrate of platelets, monocytes, macrophages 
and lymphocytes. The exact function of these genes in 
asthma patients is not known.

In this study, hub genes identified from GSE89809 were 
validated in another dataset. However, some of these 
genes were not related to asthma severity in GSE43696. 
This may occur due to the dissimilar grouping between 
the two datasets, as mild and moderate asthmatics were 
included in a group in GSE43696. Nevertheless, the rela-
tionship between CXCR1, CXCR2, TLR2 and asthma 
severity was stable, and combined hub genes were able to 
discriminate severe asthmatics from mild-moderate asth-
matics in ROC analysis.

For the first time, coexpression modules were built via 
WGCNA using DEGs of mild-severe asthmatics from 
bronchial epithelial brushings to discover mechanisms 
and hub genes in severe asthma. There are some limita-
tions in our study. First, the sample size was small, which 
may affect the stability of the findings. Although repli-
cation was performed to reduce this issue, the results 
should be interpreted carefully. In addition, the validation 
dataset GSE43696 used different grouping criteria than 
those used in GSE89809. Moreover, cell type, ICS dose 
and smoking may influence gene expression and module-
trait relationships. Considering this issue, we adjusted for 
confounders to verify our findings. Finally, our research 
is based on public online database information. Future 
experiments are required to elucidate the detailed mech-
anisms of the identified hub genes and prove the results.

In conclusion, we identified neutrophil degranulation 
and activation as key pathways in the asthma progres-
sion. Furthermore, hub genes, such as CXCR1, CXCR2, 

and TLR2, were identified as biomarkers of asthma sever-
ity through either the neutrophil inflammation pathway 
or Th17 immune pathway. Our results can be useful to 
provide potential immunotherapy targets and prognostic 
markers. Further mechanistic studies are required to vali-
date and elucidate our results.
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