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Abstract

Agriculture and waste are thought to account for half or more of the U.S. anthropogenic methane 

source. However, current bottom-up inventories contain inherent uncertainties from extrapolating 

limited in situ measurements to larger scales. Here, we employ new airborne methane 

measurements over the U.S. Corn Belt and Upper Midwest, among the most intensive agricultural 

regions in the world, to quantify emissions from an array of key agriculture and waste point 

sources. Nine of the largest concentrated animal feeding operations in the region and two sugar 

processing plants were measured, with multiple revisits during summer (August 2017), winter 

(January 2018), and spring (May–June 2018). We compare the top-down fluxes with state-of-

science bottom-up estimates informed by U.S. Environmental Protection Agency methodology 

and site-level animal population and management practices. Top-down point source emissions are 

consistent with bottom-up estimates for beef concentrated animal feeding operations but 
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moderately lower for dairies (by 37% on average) and significantly lower for sugar plants (by 80% 

on average). Swine facility results are more variable. The assumed bottom-up seasonality for 

manure methane emissions is not apparent in the aircraft measurements, which may be due to on-

site management factors that are difficult to capture accurately in national-scale inventories. If not 

properly accounted for, such seasonal disparities could lead to source misattribution in top-down 

assessments of methane fluxes.

Plain Language Summary

Key agricultural methane sources are quantified using new airborne measurements in the U.S. 

Corn Belt and Upper Midwest. Measurements spanned multiple seasons and targeted nine of the 

largest concentrated animal feeding operations in the region along with two sugar processing 

plants. Compared with bottom-up estimates informed by U.S. Environmental Protection Agency 

methodology and site-level animal and management data, top-down fluxes agree well with 

bottom-up estimates for beef but are lower for dairies and sugar plants and suggest a possible 

mismatch in the timing of emissions.

1. Introduction

Agriculture and waste have been estimated to account for ~35% and ~20%, respectively, of 

the anthropogenic methane (CH4) source in the contiguous United States (Turner et al., 

2015). The U.S. Corn Belt and Upper Midwest is one of the most intensive agricultural 

regions of the world and is crucial to the overall U.S. methane budget. The area includes 

>700 million livestock (including ~28 million cattle and a majority of national swine feeding 

operations), several industrial centers, and extensive natural wetlands (Harun & Ogneva-

Himmelberger, 2013; USDA-NASS, 2018). Here, we present new airborne measurements of 

point source methane emissions from animal agriculture and waste as part of the Greenhouse 

Gas Emissions in the Midwest (GEM) study and apply the aircraft-derived fluxes to evaluate 

current bottom-up estimates for these sources.

Previous studies have pointed to large uncertainties in the magnitude, distribution, and 

seasonality of agricultural methane emissions (Hristov et al., 2014; Miller et al., 2013; 

Miller et al., 2014). For example, Cui et al. (2017) applied airborne measurements over the 

San Joaquin Valley to infer regional methane sources that were 1.7 times the bottom-up 

estimates, with livestock accounting for ~75% of the total flux. Hristov et al. (2017) showed 

that current inventories differed significantly in their spatial allocation of agricultural 

methane emissions: within the contiguous United States, the Emission Database for Global 

Atmospheric Research v4.2 FT2010 (EDGAR, 2013) and Gridded Environmental Protection 

Agency (EPA) (Maasakkers et al., 2016) estimates correlated to only R2 = 0.1 and 0.5 for 

manure and enteric fluxes, respectively. Hristov et al. (2017) further developed a county-

level emission inventory based on animal population, with some of the largest discrepancies 

relative to existing inventories occurring over our study region, the Upper Midwest. 

Furthermore, a recent study based on tall tower measurements in the U.S. Upper Midwest 

concluded that livestock methane emissions were underestimated 1.8-fold in the Gridded 

EPA inventory (Chen et al., 2018).
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Additional uncertainties in bottom-up inventories can arise from the specification of 

livestock emission factors (EFs) for enteric fermentation and manure management, as these 

EFs vary strongly across animal categories, management systems, and climate zones. For 

example, the recommended enteric EFs for U.S. dairy cattle based on the IPCC Tier 1 

method (IPCC, 2006) are 2.4 times those for other U.S. cattle, mainly due to differences in 

feed intake, milk production, and other related factors. Manure EFs are even more variable, 

as they are highly sensitive to management practices and climate conditions. Recommended 

per-animal manure management EFs in North America thus vary from <50 kg/year per head 

to >110 kg/year per head in cold versus warm areas, and methane conversion factors for dry 

manure management systems are typically only ~10% those of liquid systems under similar 

climate conditions (IPCC, 2006). Mischaracterization of livestock or of manure management 

practices can therefore lead to significant errors in national-scale methane emission 

inventories (IPCC, 2006).

Top-down point source measurements can provide an independent means of (i) quantifying 

point source methane emissions, (ii) identifying deficiencies and potential improvements in 

current emission inventories, and (iii) informing source attribution and mitigation planning. 

In this paper, we apply an airborne mass balance approach for point source quantification to 

derive top-down constraints on methane emissions from nine of the largest concentrated 

animal feeding operations (CAFOs) in the U.S. Upper Midwest. Together, the targeted 

CAFOs include ~105,000 animals and include five dairies, two beef feedlots, and two swine 

facilities. We also quantify methane emissions from two sugar beet processing plants. These 

plants are estimated to be among the largest industrial methane point sources in the Upper 

Midwest, but they represent a methane source category that has received little attention or 

evaluation to date (eCFR, 2019; GHGRP, 2019).

Facilities were visited multiple times during summer, winter, and spring to assess emission 

variability within and across seasons. The resulting aircraft-derived fluxes are then compared 

with state-of-science bottom-up estimates informed by facility-level data to test how well 

current inventories capture the magnitude and variability of methane emissions from these 

sources.

2. Data and Methods

2.1. GEM Flights and Methane Point Sources

The GEM campaign focuses on understanding methane emissions and related processes in 

the U.S. Upper Midwest. Flights were conducted by Scientific Aviation Inc. (http://

scientificaviation.com) on a fixed-wing, single-engine Mooney aircraft (typical boundary 

layer cruise speed ~280 km/hr) with air sampling inlets on the outboard wing section. GEM 

included 23 flights during summer (GEM-1; August 2017, eight flight days), winter 

(GEM-2; January 2018, seven flight days), and spring (GEM-3; May–June 2018, eight flight 

days), with 156 flight hours in total. Flight tracks are illustrated in Figure 1. Along with the 

point source measurements, GEM also included extensive boundary layer surveying to 

characterize the distribution of methane and other trace gases across the broader region. 

Flights were typically 7 hr in duration (between 10 a.m. and 7 p.m. local time) and mainly 

conducted within the atmospheric mixed layer (400–800 m above ground), with one to two 
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vertical profiles per flight extending into the lower free troposphere. All GEM flights were 

conducted under favorable atmospheric conditions (e.g., suitable mixing depths, sufficient 

and steady winds; Table S1) in order to mitigate as much as possible the main 

meteorological sources of uncertainty in the analysis.

The instrument payload included a cavity ring-down spectrometer (Picarro CRDS; model 

G2301 during GEM-1, model G2210-m during GEM-2/3; Picarro Inc., Santa Clara CA) 

providing ~1- to 3-s measurements of methane, ethane (C2H6; GEM-2 and GEM-3 only), 

water vapor (H2O), and carbon dioxide (CO2); a continuous-wave tunable infrared laser 

absorption spectrometer (CW-TILDAS, Aerodyne Research Inc., Billerica MA; described in 

Gvakharia et al., 2018) providing ~2-s measurements of H2O, CO2, carbon monoxide (CO), 

and nitrous oxide (N2O); and a dual-beam ultraviolet spectrometer (Model 205, 2B 

Technologies Inc., Boulder CO) providing ~5-s ozone (O3) measurements. Calibrations were 

performed on the ground for the Picarro CRDS and in-flight for the Aerodyne TILDAS 

using compressed ambient-level gas cylinders traceable to NOAA Global Monitoring 

Division standards. Other onboard measurements included temperature and relative 

humidity (Model HMP60, Vaisala Corp., Helsinki Finland), along with location, aircraft 

speed and direction, pressure, wind speed and direction, and other flight parameters 

provided by the avionics system and differential Global Positioning System.

In total 11 major point sources (nine CAFOs + two sugar plants) were quantified during 15 

of the GEM flights, with details in Tables 1 and S1 and Figure 1. The targeted facilities were 

selected based on their estimated methane emission magnitude and accessibility for airborne 

sampling. The dairies (Table 1) are five of the largest in Minnesota (MN) and together house 

~34,000 animals (MN Department of Agriculture, personal communication Jun 6, 2018). 

The beef CAFOs are two of the largest such facilities in the region, with >20,000 animals 

combined (MN Pollution Control Agency [MPCA], personal communication June 8, 2018). 

The swine facilities are two of the largest in MN and Iowa (IA) based on number of animals, 

with a combined >48,000 hogs (MPCA, personal communication June 8, 2018; Iowa 

Department of Natural Resources [IADNR], 2018). Finally, we selected two sugar plants for 

quantification as emblematic examples of this type of operation. According to the U.S. EPA 

Greenhouse Gas Reporting Program (GHGRP, 2019) 2017 report, the operator of these 

plants is the largest corporate methane emitter (169,785 metric tons CO2 equivalent per year, 

tCO2e/year) in North Dakota (ND) and the second largest (302,685 tCO2e/year) in MN 

based on their two ND and three MN facilities (the two targeted facilities accounted for an 

estimated 228,336 tCO2e/year). For comparison, Continental Resources Inc. reported a 

methane flux of 178,968 tCO2e/year in 2017 from their oil + gas operations throughout the 

Williston basin (including the Bakken Formation), which was the highest of any such 

operator (GHGRP, 2019).

2.2. Top-Down Estimation of Point Source Methane Emissions

Figure 2 illustrates the aircraft-based point source quantification approach, which is 

described in detail by Conley et al. (2017) and briefly reviewed here—with additional 

information in the supporting information (USGS, 2019). The approach has been 

successfully used in many recent studies to quantify the magnitude and variability of point 
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source methane emissions (Johnson et al., 2017; Lavoie et al., 2017; Mehrotra et al., 2017; 

Smith et al., 2017; Vaughn et al., 2017).

The airborne sampling consists of a vertically stacked set of circuits (~1 km radius) around 

each facility extending from as close to the ground as possible through the extent of the 

plume. In this work, the vertical sampling typically extended from ~60 to ~800 m above 

ground (~300 m for the winter deployment) and included 12–16 individual flight circuits per 

point source. The total methane emission for a given facility is obtained via summation of 

the measured advected enhancements as a function of height through the plume, as described 

in the supporting information. In cases where a point source was quantified more than once 

in a single season, we use the averaged derived emission as the best top-down estimate.

2.3. Uncertainty in Top-Down Estimation of Point Source Methane Emissions

Major factors that can affect the accuracy of aircraft-based point source flux estimates 

include instrumental uncertainty, weak or variable winds, shallow mixing depths (limiting 

the number of circuits that can be completed and increasing the extrapolated fraction below 

the lowest flight leg), and heterogeneity in the methane background (Gvakharia et al., 2017; 

Karion et al., 2015; Krings et al., 2018; Mehrotra et al., 2017; Ryoo et al., 2019). Here we 

estimate the overall top-down flux uncertainty due to these factors from the variance in the 

measured methane enhancements and the precision of the wind and methane measurements, 

as described in the supporting information. Additionally, we account for uncertainty in the 

time offset between trace gas and other measurements (wind speed and direction, position, 

etc.) due to the sampling delay introduced by the ~5 m of ~3 mm OD inlet tubing and by 

nonzero instrument response time. Application of an incorrect lag time would artificially 

displace the observed plume from its true downwind location and lead to an emission 

underestimate. Puff tests performed on the ground revealed a lag time for the methane 

analyzer of 7–9 s. Since the actual in-flight lag time may vary with pressure or other factors, 

we carry out a sensitivity analysis in which we repeat the calculation for a range of 

physically realistic lags. This range is defined from the point source measurements 

themselves, based on the assumption that the true lag time should correspond to the highest 

computed emissions. In most cases (62%; exceptions have other nearby methane sources), 

lag times derived in this way range from 6 to 14 s. We therefore quantify the lag time 

uncertainty from the range in emissions calculated across 6 to 14 s lags, with the best 

estimate using a value of 7 s (GEM-1) or 8 s (GEM-2 and GEM-3) based on the puff tests.

The above uncertainties are then added in quadrature to arrive at the total top-down flux 

error estimate. In cases where a point source was quantified more than once in a single 

season, the aggregated uncertainty is defined as the root mean square of the individual 

errors. Later (in section 3.5) we discuss the potential for error sources not explicitly 

accounted for in the above treatment (e.g., temporally variable facility emissions) to affect 

our results.
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2.4. Bottom-Up Estimation of Point Source Methane Emissions

We derived bottom-up flux estimates for each facility for evaluation against the top-down 

aircraft-based constraints. The bottom-up calculations are based on the current 

methodologies used in inventories, as described below.

2.4.1. CAFO Methane Emissions—Bottom-up CAFO emissions are calculated from 

per-animal methane EFs and facility herd size. The U.S. EPA provides annual state-level 

methane emission estimates (1990–2015) across 14 animal categories for manure 

management and across 18 animal categories for enteric fermentation. The U.S. EPA cattle 

methane emissions are based on EFs derived using IPCC (2006) Tier 2 methods from 

manure characteristics such as volatile solids content (in the case of manure management 

emissions) and gross energy intake (in the case of enteric emissions). Swine methane 

emissions are based on the IPCC (2006) Tier 1 method, which draws from literature values 

or from averaged Tier 2 EFs. Here we divide the 2015 state-level emissions by the 

corresponding animal populations from the U.S. Department of Agriculture (USDA-NASS, 

2018) to obtain per-animal manure and enteric EFs by animal category. We employ the EPA 

“dairy cow” category for dairy cattle, the “swine-market” category for swine ≥55 lbs (25 

kg), and the “swine-breeding” category for swine <55 lbs. In the case of beef CAFOs, we 

calculate weighted-average EFs for “beef-feeding” and “beef-slaughter” categories (which 

are those reported by facilities for permitting purposes) based on state-level populations for 

relevant subcategories. Uncertainties related to animal categories on-site will be discussed in 

section 3.

We then multiply the above per-animal EFs by the facility herd sizes to estimate site-level 

methane emissions. Dairy herd sizes are based on current facility-level data from MN 

Department of Agriculture (personal communication June 6, 2018), while beef CAFO herd 

sizes are based on the facility-reported maximum animal populations by category during 

September 2015 to August 2016 (MPCA, personal communication June 8, 2018). The Swine 

CAFO A (located in IA) herd size is estimated using permit data from the IADNR. The 

permit data indicates an animal unit per head ratio of 0.4, reflecting swine over 55 lbs; 

swine-market EFs are thus applied in this case. The Swine CAFO B (located in MN) herd 

size and weight distribution are based on permit data and MPCA site visits; over half (55%) 

of the reported animals at this facility are <55 lbs, so that both the swine-breeding and 

swine-market EFs are applied accordingly.

Seasonal variability in the bottom-up CAFO emission estimates follows Gridded EPA 

inventory procedures (Maasakkers et al., 2016). Liquid manure management fluxes are 

scaled monthly to account for fluctuating temperatures:

f = exp Ea Ts − T0
RT0Ts

. (1)

Here, the Van’t Hoff-Arrhenius factor f quantifies the microbial activity rate at temperature 

Ts (K) relative to reference temperature T0 (303.16 K). Ts is the local monthly-mean surface 

skin temperature obtained from bilinear interpolation of 0.5° × 0.625° gridded data from the 
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Modern-Era Retrospective analysis for Research and Applications Version 2 (Gelaro et al., 

2017), Ea is the associated activation energy (64 kJ/mol), and R is the ideal gas constant. 

Monthly values of f are normalized to their annual mean and used to impose a seasonal cycle 

on methane emissions from liquid systems. Enteric fermentation and solid manure 

management emissions are assumed to be nonseasonal. Information on CAFO manure 

management practices is obtained from facility-level data (beef CAFOs: MPCA, personal 

communication June 8, 2018; Swine CAFO A: IADNR, 2018) or state-level statistics 

(others: USEPA, 2018).

Uncertainties in the bottom-up enteric fermentation emissions are estimated at 20% for 

cattle and 30% for swine, following IPCC (2006) recommendations. Manure emission 

uncertainties are derived from a suite of sensitivity calculations using alternate assumptions 

for temperature and management practices, as follows. For liquid manure systems, heat from 

microbial activity typically maintains the lagoon temperature above freezing during winter. 

Accordingly, the U.S. EPA recommends a temperature floor of 5 °C (for uncovered 

anaerobic lagoons) or 7.5 °C (for liquid/slurry and deep pits; USEPA, 2018). Other 

approaches have also been proposed. In particular, Park et al. (2006) derived a linear 

relationship between manure and air temperature based on year-round measurements from 

three sites in Ontario, Canada (a cold climate zone). Sensitivity calculations used here 

therefore include the following. Case 1 sets temperature floors as recommended by the U.S. 

EPA, with weighting of manure management systems based on facility reports and state-

level statistics. Cases 2 and 3 likewise employ the EPA-recommended temperature floor but 

assume 100% uncovered anaerobic lagoons (Case 2) or 100% liquid/slurry or deep pit 

systems (Case 3). Cases 4 and 5 follow the temperature relationship from Park et al. (2006), 

assuming weighted management systems (Case 4) or 100% liquid systems (Case 5). Case 6 

assumes 100% dry systems, with no seasonal variation. Our best bottom-up estimates are the 

mean of Cases 1 and 4, with the uncertainty defined as the range from all six cases. Finally, 

while population uncertainty is not explicitly included in the above treatment, the herdsize 

data is obtained from a combination of site visits and permit data—which we assume to be a 

smaller error source than the other factors discussed above.

2.4.2. Sugar Processing Plant Emissions—Bottom-up emissions for the two 

targeted sugar plants are based on facility reports for year 2017 (GHGRP, 2019; while GEM 

included airborne sampling during both 2017 and 2018, the GHGRP emissions for these 

facilities differ by <2.5% between the 2 years). The reported data includes annual methane 

flux estimates for (1) stationary fuel combustion and (2) waste + landfill emissions. We 

disaggregate the former to monthly values based on fuel usage and assume the latter to be 

nonseasonal, following the gridded EPA inventory methodology (Maasakkers et al., 2016). 

The reported industrial waste + landfill methane emissions account for >99% of the total and 

reflect waste streams from handling and processing of sugar beets and pulp by-products and 

from sugar extraction (Dilek et al., 2003). These waste streams are distributed to a series of 

holding ponds, which can be used for spray irrigation or undergo treatment for discharge to 

surface waters (SMBSC, 2019). The resulting emissions reported to the GHGRP are 

estimated based on the load capacity of the waste system and recommended methane 

generation rates from the U.S. EPA (GHGRP, 2019). Bottom-up uncertainties for the above 
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sugar plant emissions are estimated here from the 2011–2018 range in GHGRP-reported 

values.

3. Results and Discussion

In this section we present the aircraft-based emission estimates for each point source 

category, assess their degree of consistency with bottom-up estimates, and discuss 

implications of our findings for bottom-up source estimation. The results of the airborne 

point source quantifications (performed over 15 days spanning three seasons) are 

summarized in Table 1 and Figure 3.

3.1. Consistency Between Top-Down and Bottom-Up Total Methane Emissions for Beef 
CAFOs

The aircraft-derived fluxes broadly support the bottom-up estimates for beef CAFOs, with a 

mean top-down: bottom-up ratio of 0.99 (averaged aircraft-based fluxes and bottom-up 

estimates have no significant difference at the 95% level based on a paired t test). As shown 

in Tables 1 and S1 and Figures 3(f) and 3(g), the top-down and bottom-up emissions agree to 

within 60% (difference/mean) in all cases except the Beef CAFO B summer visits, when a 

larger discrepancy is found (81%). Herd sizes at the two facilities are 10,500–12,000, 

leading to a mean bottom-up estimate of 66 kg/hr per facility for the months with GEM 

measurements—in good agreement with the mean top-down value of 61 kg/hr. The 

corresponding EF derived from the aircraft measurements is 51 kg/year per head, compared 

to the bottom-up values of 50 kg/year per head and 60 kg/year per head for beef-slaughter 

and beef-feeding categories, respectively.

We see in Figure 3 that the bottom-up seasonality assumed for beef CAFOs is significantly 

weaker than in the base-case bottom-up estimate for dairies, and the GEM airborne 

measurements are generally consistent with this lack of seasonal variation. Nearly all MN 

beef CAFOs use dry manure management systems (USEPA, 2018), which have an assumed 

methane conversion factor of only 1% that does not vary seasonally. Enteric fermentation is 

thus the dominant methane source from beef CAFOs in the bottom-up estimates, accounting 

for >96% of the total emissions. As a result, the bottom-up beef CAFO emissions are only 

5% higher in summer than in winter. The airborne methane emissions, while only 

representing temporal snapshots, are consistent with this picture as they show no clear 

evidence of a consistent difference in fluxes by season.

3.2. Aircraft-Derived Methane Fluxes Over Dairies: Consistency With Bottom-Up Enteric-
Only Emissions, Mismatch for Manure

The seasonally averaged best-estimate aircraft-derived fluxes (Tables 1 and S1 and Figures 

3(a)–3(e)) for dairies are lower than the total bottom-up estimates by on average 37%; mean 

top-down:bottom-up scale factors across facilities span 0.14–0.45, 0.54–0.98, and 0.44–0.77 

during summer, winter, and spring, respectively. Of the 22 site visits, only two top-down 

fluxes exceed the bottom-up estimates (by 4–10%). The dairies quantified each have 6,000–

8,000 animals on-site, leading to bottom-up emissions averaging 171 kg/hr per facility and 

varying with animal population from 147–204 kg/hr. In contrast, the airborne measurements 
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imply a mean emission rate for those same periods of 96 kg/hr per facility, ranging from 71–

129 kg/hr (Table 1). On a per-head basis, the GEM flights indicate an average methane EF 

across the sampled seasons and facilities of 132 kg/year per head versus 212 kg/year per 

head from the EPA inventory (USEPA, 2018) for dairy cow manure + enteric emissions. On 

the other hand, the aircraft-derived fluxes are consistent with the bottom-up enteric-only 

methane fluxes, with no statistical difference at the 90% significance level. Consequently, 

across the sensitivity tests described in section 2.4.1, the bottom-up estimates agreeing most 

closely with the aircraft-based fluxes are those with the lowest manure methane emissions. 

Potential implications of this are discussed later.

The above top-down versus bottom-up total flux differences for dairies vary by season: 

Mean top-down fluxes across facilities are 77% of the bottom-up value in winter, 60% in 

spring, and only 30% in summer. Figures 3(a)–3(e) show that current bottom-up 

methodologies imply a significant seasonal amplitude in methane emissions from dairies: 

The base-case inventory-based fluxes for our targeted facilities vary seasonally by ~45% 

(range/mean) due to the effect of temperature on predicted manure emissions (manure and 

enteric emissions make up ~40% and ~60% of the bottom-up flux for these dairies). 

However, this strong variation is not apparent in the aircraft measurements, which reveal no 

clear or consistent seasonal differences.

These mismatches in flux magnitude and seasonal pattern are persistent and manifest across 

all of the individual dairies visited (Figure 3). The results thus point either to some 

systematic misdiagnosis in our bottom-up estimates, or to a systematic error in the top-down 

calculations. Some potential explanations for this finding are discussed below.

1. The bottom-up estimates misdiagnose manure emissions from dairies due to 

management or other factors that modify the manure emission seasonality and/or 

magnitude. An overestimate of the manure-related methane source during the 

timeframes of the GEM flights could explain both the lack of observed 

seasonality and the bottom-up bias. As shown previously, the bottom-up beef 

CAFO emissions, which are predominantly enteric, agree well with the aircraft-

based fluxes, implying that the cattle enteric source is accurately represented in 

current inventories. Conversely, swine facility emissions (see next section), 

which mainly reflect manure sources, appear to be highly variable based on the 

aircraft-based fluxes. Our top-down measurements for dairies are consistent (in 

terms of magnitude and seasonal differences) with the enteric-only bottom-up 

fluxes (Figure 3), supporting the idea that the manure methane source is the most 

likely cause of the discrepancy.

Physical mechanisms that could explain this include both environmental and 

management factors. For example, the effective temperature dependence of 

microbial methane production from manure might be weaker than assumed in 

our calculations. We use diel-mean surface skin temperature to drive the bottom-

up manure emissions. Prior work has shown that manure temperatures can be 

warmer or cooler than ambient air temperature and that methane emissions have 

a lagged response to temperature changes (Kariyapperuma et al., 2018; Park et 

al., 2006). However, in situ measurements (Kariyapperuma et al., 2018; 
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Maldaner et al., 2018; Park et al., 2006; Ulyatt et al., 2002) clearly show a 

seasonal cycle in manure methane emissions, so that in the absence of mitigating 

factors the same should manifest here for the manure-driven fluxes.

Along with temperature, factors such as pH, humidity, and management practices 

(e.g., lagoon covers and separation of solid from liquid manure for use as 

bedding) can influence the timing and magnitude of manure-related methane 

emissions (Scheutz et al., 2009; VanderZaag et al., 2013). Furthermore, manure 

at these facilities is typically removed yearly (e.g., in fall) for land application, 

which may cause on-site manure amounts to vary significantly between seasonal 

visits. No such effects are accounted for in our bottom-up calculations or in 

current inventories. Finally, in-flight photographs show that some of the sampled 

dairies appear to employ synthetic lagoon covers under negative pressure, which 

can decrease manure methane emissions. Current bottom-up methodology 

assumes only a 25% reduction in facility-level manure emissions with the use of 

lagoon covers (USEPA, 2018), but the actual reduction may be greater for 

facilities targeted here.

2. An alternative explanation could be that the seasonality for enteric emissions is 

incorrectly described in the bottom-up calculations and in fact offsets the manure 

emission seasonality. Previous studies have shown that nutritional changes and 

other factors can have important effects on enteric methane emissions 

(Beauchemin et al., 2008; Boadi et al., 2004). However, to explain the airborne 

results, the enteric seasonality would have to be phase-shifted relative to the 

manure source (i.e., be higher in winter). We consider this explanation 

improbable as such reversed seasonality is not seen in the aircraft-derived beef 

CAFO emissions (see previous section), which are thought to mainly reflect 

enteric fluxes.

3. Sparse temporal sampling. Finally, it needs to be emphasized that the aircraft 

data provide only a snapshot in time and that sustained measurements are needed 

to fully characterize seasonal cycles. However, the fact that the same weak 

seasonal tendencies are seen in the aircraft fluxes for all of the targeted dairies 

suggests that the factors driving methane variability for these facilities are not 

well captured in current inventories used in models.

3.3. Highly Variable Methane Emissions From Swine Facilities

While the bottom-up estimates for the two targeted swine facilities are within 16% 

(difference/mean), the airborne measurements imply that their actual fluxes differ by >26 

times (Tables 1 and S1 and Figures 3(h) and 3 (i)), suggesting a large bottom-up 

underestimate in one case but a large overestimate in the other. The mean aircraft-derived 

flux is 2.5 times the bottom-up estimate for Swine CAFO A (~20,000 animals) but 0.08 

times the bottom-up value for Swine CAFO B (~29,000 animals; Table 1). The resulting 

aircraft-derived EFs are 71 kg/year per head (Swine CAFO A) versus only 2 kg/year per 

head (Swine CAFO B). For comparison, the EFs assumed in the bottom-up estimates for the 

same time periods range from 11–21 kg/year per head. A possible contributing factor is the 

fact that Swine CAFO B houses mostly (55%) smaller animals (<55 lbs), whereas the other 
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one does not—that is, the bottom-up calculations could underestimate methane emissions 

for large pigs and overestimate them for small pigs. Given the magnitude of the observed 

emission difference, however, it seems unlikely that this is the main explanation, and we 

hypothesize that differing management practices at the two facilities drive the observed 

disparity. For example, some swine facilities have significant under-barn manure storage, 

where environmental conditions can differ significantly from outdoors. Facility-to-facility 

variabilities in such factors likely play a role in the observed flux difference. Furthermore, 

the repeat aircraft visits to Swine CAFO A point to substantial temporal variability in 

emissions—which is unexplained and which we are unable to characterize for Swine CAFO 

B (single visit).

For both targeted swine facilities, manure management is the dominant methane source in 

the bottom-up calculations, accounting for 91% of the total. Enteric emissions (estimated at 

0.01–0.03 times those of cattle per animal; USEPA, 2018) account for the remainder. Based 

on state-level statistics from the U.S. EPA, ≥90% of the swine facilities in this region use 

liquid manure management systems; as a consequence, the bottom-up fluxes are strongly 

seasonal, with summertime emissions >4 times those during winter (Figures 3(h) and 3(i)). 

The GEM flights targeted these facilities only during spring and thus provide no constraint 

on this assumed seasonality.

3.4. A Large Bottom-Up Overestimate of Sugar Waste Methane Emissions

The airborne measurements imply a dramatic (3–14 times) overestimate of methane 

emissions from sugar plants and a possible underestimate of the associated seasonality 

(Table 1 and Figures 3(j) and 3(k)). The bottom-up emissions, based on facility-reported 

data to the 2017 GHGRP, are on average 472 kg/hr for Sugar Plant A and 569 kg/hr for 

Sugar Plant B (>99% from waste) during 2017. In contrast, the aircraft-derived fluxes for 

Sugar Plant A are only 0.3 times the bottom-up values during summer (146 kg/hr) and 

spring (161 kg/hr) and 0.1 times the bottom-up value during winter (38 kg/hr). Sugar Plant B 

was only visited during winter, but the derived top-down fluxes are very low (41 kg/hr) and 

consistent with those obtained for Sugar Plant A at the same time of the year.

The GEM flights only included a total of four site visits for the sugar plants and thus cannot 

fully characterize the seasonality of the associated methane emissions. However, the 

significantly lower airborne fluxes compared to the bottom-up estimates do suggest that the 

inventory values are too high, while the 4 times higher top-down fluxes derived for summer/

spring versus winter call into question the lack of bottom-up seasonality. Current methane 

emission reports for these types of facilities are highly generic, using default waste decay 

rates based on regional categories for annual rainfall and the recirculated leachate 

application rate (eCFR, 2019). In fact, noticeable odors from these facilities typically occur 

beginning in spring due to (i) thawing of the waste ponds that freeze over winter and (ii) 

thawing and subsequent deterioration of the frozen beet piles being stored for later 

processing (ACSC, 2019). Rainfall and snowmelt also lead to wastewater seasonality by 

flushing the waste from stored beets and by modifying the water volume that is transmitted 

to the holding ponds. Since the resulting seasonal odors reflect microbial decay, methane 

generation might follow a similar pattern. Revised EFs for sugar waste, plus an explicit 
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representation of the above seasonal factors, would likely improve the bottom-up emissions 

for this type of facility.

3.5. Remaining Uncertainties

Uncertainties relevant to above findings could arise from vertical extrapolation of the aircraft 

observations, temporal emission variability, and the assignment of livestock EFs. Below, we 

discuss each of these in turn and assess their implications for our analysis.

In the case of the top-down estimates, we compute surface layer fluxes based on the average 

value over the lowest measured vertical layer. We consider this to be the most robust general 

approach. However, depending on vertical mixing this assumption might misrepresent the 

surface layer fluxes in some cases (e.g., if the methane plume is confined to the near 

surface). An alternate approach is to compute the surface layer fluxes by extrapolating the 

vertical flux gradient between the two overlying layers to the ground. Using this 

methodology, the top-down emissions would be 1.2 times (median ratio) the current 

estimates. Overall, while estimation of the flux component below the sampling floor is an 

important source of uncertainty in the aircraft-based estimates, we find that our core findings 

are robust to the assumptions used therein.

Additional uncertainties could arise from temporal emission variability that is not captured 

by the aircraft snapshots. However, Table S1 and Figure 3 show that most facilities were 

revisited intraseasonally at least once, providing an opportunity to examine the variability of 

the airborne flux estimates. All revisits took place within 10 days of each other. During 

winter, the median normalized difference (range/average) of the derived fluxes for revisits is 

25%, while it is 62% during spring. On just two occasions (one dairy and one beef CAFO) 

does the normalized difference exceed 100% (102% and 188%, respectively). These larger 

differences (and the larger spread observed during spring compared to winter) may be due to 

meteorological factors affecting the accuracy of top-down quantification, but they may also 

reflect real temporal variance in emissions. While large changes in animal population in 

such a short time span appear unlikely, other management shifts can alter emissions, such as 

covering/uncovering of the lagoons, transferring of manure, or its application to fields. For 

example, when an on-site manure reservoir is emptied, it is often stirred, leading to short-

term emission spikes (VanderZaag et al., 2014). The GEM flights measured 11 facilities over 

23 flights. Clearly, more sustained measurements are needed to fully characterize the 

temporal variability and seasonality of methane emissions from these sources.

In the case of the bottom-up estimates, we rely on two important assumptions in the 

assignment of livestock EFs. First, we use state-level data to assign livestock categories and 

manure management practices. Factors such as animal age, weight, diet, and management 

systems can significantly influence livestock EFs. Thus, state-average versus facility-level 

differences for the above factors could account for some of the top-down/bottom-up 

discrepancies inferred here. We assessed some aspects of this uncertainty using a sensitivity 

analysis across management practices and assumed temperature dependencies, as described 

previously. However, there are likely other facility-to-facility differences relevant for 

methane that are difficult to capture accurately in large-scale inventories, and in the absence 

of more site-specific information. Second, we assume that all cattle present at the dairies fall 

Yu et al. Page 12

J Geophys Res Biogeosci. Author manuscript; available in PMC 2021 February 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



under the “dairy-cow” category. If some are in fact heifers (i.e., have not produced calves 

nor therefore milk), the bottom-up emission estimates would be reduced (heifer enteric and 

manure management EFs are 0.45 and 0.01 times those of cows). On average, 58% of the 

animals at the dairies would need to be heifers for the bottom-up estimates to agree with the 

aircraft-derived fluxes. However, the large dairies targeted here generally keep only milking 

cows on-site, with heifers raised at separate facilities.

4. Conclusions and Implications

The aircraft-based constraints derived here support current bottom-up methane estimates for 

beef CAFOs, while pointing to a substantial current overestimate of emissions from sugar 

plants (plus a possible bias in the associated seasonality). Top-down results for dairies and 

swine CAFOs suggest that the factors driving variability in manure related emissions are not 

well captured in current large-scale inventories used in models. While our present 

mechanistic understanding of these emissions is supported by many site-level studies (e.g., 

Kariyapperuma et al., 2018; Park et al., 2006; Ulyatt et al., 2002), some key management 

variables are described in large-scale inventories using regional- or national-scale statistics 

that may not accurately reflect a particular measurement setting. Our results therefore do not 

necessarily indicate a bias in the magnitude of manure methane emissions, since emissions 

may have occurred preferentially at times or locations not captured by the aircraft (e.g., 

following lagoon cover removal or application to fields).

Two recent regional-to-national scale inverse modeling studies inferred a substantial 

underestimate in current methane emission estimates for animal agriculture (Chen et al., 

2018; Miller et al., 2013). If correct, that finding implies bottom-up biases either in the 

activity rates or in the methane EFs themselves. The point-source results here do not point to 

a persistent EF underestimate, arguing against the latter explanation (though such biases 

may conceivably vary geographically between the study domains). To assess the potential 

role of activity biases, we compared our top-down point source fluxes with the total monthly 

methane emissions predicted for the surrounding 0.1° × 0.1° grid cells in the Gridded EPA 

inventory (Maasakkers et al., 2016). Indeed, the GEM aircraft-based fluxes (in kg/hr) are on 

average 3.9 times the Gridded EPA emissions for those grid cells containing CAFOs, despite 

the fact that the former represents a single facility and the latter represents the entire 

surrounding 0.1° × 0.1° land area. This disparity suggests errors in the magnitude or spatial 

allocation of livestock activity rates. Conversely, the aircraft-based fluxes are on average 

only 0.2 times the Gridded EPA emissions for grid cells containing sugar plants.

Such spatial and temporal errors in bottom-up methane emission estimates will also affect 

the prior estimates used for inverse modeling, potentially leading to miscategorization of 

sources. A possible step to reduce such biases is through more detailed spatial allocation of 

methane emissions from CAFOs (Hedelius et al., 2018). Recent studies (Varon et al., 2018, 

2019) have explored the possibility of using satellite data to quantify methane point sources, 

which, if anticipated performance targets are met, would offer the dual advantages of 

sustained temporal sampling and regional (or broader) spatial coverage. However, the 

estimated error is approximately 100–300 kg/hr for a 10 × 10 km2 satellite footprint (Varon 

et al., 2018), corresponding to an uncertainty of up to 360% for the median top-down fluxes 
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calculated here. A combination of remote and in situ techniques will therefore be needed to 

accurately quantify methane emissions across the full range of relevant facility sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Key Points:

• We used aircraft measurements to quantify methane emissions from key 

agricultural point sources in the Upper Midwest during three seasons

• Top-down methane fluxes are consistent with bottom-up values for beef 

facilities but reveal a mismatch for dairies and sugar plants

• These discrepancies point to potential spatial and temporal misattribution of 

emissions used for atmospheric inverse modelling
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Figure 1. 
GEM flight tracks and point source locations. Flight tracks are colored according to the 

observed methane mixing ratios (2-min average). Annual wetland methane emissions from 

the WetCHARTs inventory (Bloom et al., 2017) are shown in the left panel, annual livestock 

emissions from the gridded EPA inventory (Maasakkers et al., 2016) are shown in the 

middle panel, and annual other anthropogenic emissions (Maasakkers et al., 2016) are 

shown in the right panel. Detailed information for each point source is provided in Tables 1 

and S1.

Yu et al. Page 18

J Geophys Res Biogeosci. Author manuscript; available in PMC 2021 February 19.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 2. 
Illustration of the aircraft-based point source quantification approach, showing the flight 

direction (s) along with the heights of interpolated layers (Δzj) and of the surface layer (Δzi). 

Also shown are the vertical methane profiles for upwind and downwind sectors (dairy D; 28 

January 2018). Points indicate individual methane observations, while the bars show the 

range in observed methane for each layer. Facility is not drawn to scale. For details, see text 

and the supporting information.
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Figure 3. 
Aircraft-based versus bottom-up methane point source emission estimates. Aircraft-based 

best estimates are shown as red circles (error bars indicate the associated uncertainty). Red 

pluses show results from individual site visits. Bottom-up best-estimate emissions are shown 

as black lines, with gray shading indicating the uncertainty range. Panels (a)–(i) show results 

for dairies, beef, and swine concentrated animal feeding operations (CAFOs), which include 

bottom-up contributions from manure management (blue lines with uncertainty shown as 

light blue shading; see text for details) and enteric fermentation (green lines and shading). 

Panels (j) and (k) show sugar processing facility results, with >99% of the bottom-up 

methane flux from waste/landfill emissions. See text for details.
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Table 1

Point Sources Quantified by GEM Flights

Type Facility ID

Herd 

size
a 

(head) Season

Top-down 
emissions 

(kg/hr)

Top-down uncertainty 

range
b
 (kg/hr)

Bottom-up 
emissions 

(kg/hr)

Bottom-up 

uncertainty range
c 

(kg/hr)

Dairy Dairy A 8,000 Summer 98 [53,144] 221 [170, 277]

Winter 118 [96, 139] 166 [106, 218]

Spring 171 [146, 202] 226 [170, 285]

Dairy B 7,000 Summer 28 [11, 120] 193 [149, 242]

Winter 78 [64, 89] 145 [93, 190]

Spring 108 [72, 143] 189 [149, 233]

Dairy C 6,500 Summer 26 [23, 32] 179 [138, 225]

Winter 130 [113, 145] 135 [86, 177]

Spring 77 [47,107] 176 [138, 217]

Dairy D 6,500 Summer 78 [61, 95] 179 [138, 224]

Winter 132 [105, 148] 135 [87, 177]

Spring 91 [63, 113] 183 [138, 231]

Dairy E 6,000 Winter 82 [55, 98] 124 [80, 163]

Spring 124 [90, 160] 170 [127, 214]

Beef 
CAFO

Beef CAFO 
A 11,925 Winter 53 [40, 65] 70 [55, 85]

Spring 74 [63, 83] 72 [58, 86]

Beef CAFO 
B 10,500 Summer 26 [−13, 76] 61 [48, 73]

Winter 38 [19, 64] 58 [46, 71]

Spring 110 [90, 133] 61 [48, 73]

Swine 
CAFO

Swine CAFO 
A 20,080 Spring 162 [143, 182] 67 [39, 70]

Swine CAFO 
B 28,588 Spring 6 [−12, 37] 78 [51, 87]

Sugar 
Plant Sugar Plant A Summer 146 [128, 160] 473 [464, 622]

Winter 38 [−11, 96] 471 [463, 620]

Spring 161 [126, 198] 471 [463, 620]

Sugar Plant B Winter 41 [31, 53] 569 [424, 574]

a
On-site animal population (see text for details)

b
Top-down uncertainty ranges include contributions from meteorological factors, instrument error, and sampling lag as discussed in-text

c
Bottom-up uncertainty ranges for dairies and concentrated animal feeding operations (CAFOs) include contributions from enteric fermentation 

and manure emissions as described in-text
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