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1. Introduction

Using dynamical systems to describe behaviors of infectious
diseases is an effective way to study how these diseases spread
[1-3]. Mathematical models can greatly help researchers to bet-
ter understand behaviors of deadly diseases around the world. The
Susceptible-Infectious-Recovered (SIR) approach is a well-known
basic model to analyze and to predict the epidemic of contagious
diseases. Many researchers employed theoretical frameworks and
numerical simulations to survey the manner of transmission of dif-
ferent infectious diseases [4-13].

In recent months, a specific group of viruses, named Coron-
avirus, has disrupted life around the world. Coronaviruses have a
“crown” or corona of sugary-proteins. Thus, they have named Coro-
naviruses according to their specific appearance, in 1960. Special
cases of Coronaviruses are the main sources of certain popular dis-
eases such as the Middle East respiratory syndrome (MERS-CoV)
and severe acute respiratory syndrome (SARS-CoV). Researches
have shown that these viruses are conveyed between humans and
animals. For example, MERS-CoV and SARS-CoV have transmitted
from dromedary camels and civets to humans, respectively. Some
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Coronavirus strains are only active in animals and have not yet in-
fected human beings.

The Wuhan city in China was the first place that the Coron-
avirus disease 2019 (COVID-19) was identified. This new version of
Coronaviruses was not previously diagnosed in human beings. Ex-
perts refer to different sources for this disease. Some of them be-
lieve the virus was first transmitted from pangolins or bats to hu-
mans in China. The high rate of contagion has caused that coun-
tries all over the world are affected by COVID-19. Cough, fever,
difficulties in breathing and loss of sense of taste and smell are
the main signs of the disease. High mortality rate and the seri-
ous economic and financial crisis created by the Coronavirus pan-
demic have motivated many researchers to study the behaviors of
this virus and to find effective ways for facing this outbreak. Hence,
some suitable susceptible-exposed-infectious-recovered (SEIR) type
models are presented in these investigations to simulate the dy-
namic of the COVID-19 pandemic. The impact of asymptomatic cat-
egory and quarantine on the transmission of COVID-19 [14], mod-
eling the COVID-19 due to the interactivity between the animals,
humans and the infections reservoir such as seafood market [15],
investigating the dynamics of COVID-19 epidemics using real data
from Pakistan [16], a model for the transmission of COVID-19 based
on the Caputo-Fabrizio fractional order derivative [17], a stochas-
tic model to study the stationary distribution and extinction of
coronavirus epidemic [18], a stochastic model to evaluate health-
care impact of Coronavirus in India [19], modeling the potential for
mask use to curtail the COVID-19 [20], using fuzzy neural network
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models to predict COVID-19 time series in Mexico [21], investiga-
tion about the role of non-pharmaceutical interventions on reduc-
ing COVID-19 [22] and identifying the effect of social distancing in
diminishing COVID-19 in Canada [23] are some examples of these
scientific works.

In this work, first, we suggest a deterministic model to analyze
the impact of preventive and health-protective measures such as
quarantine, using masks and social distancing on the Coronavirus
prevalence. A parameter called the force of infection is considered
in the model. This parameter is affected by the factors related to
the mentioned safety health protocols. Thus, this novel biological
parameter helps us to verify the impact of safety strategies on
the control of the disease. Many relationships between people are
based on random contacts. So, by considering random parameters
in the proposed deterministic model, a more realistic stochastic
model for COVID-19 will be derived. Also, a new high-order nu-
merical technique is introduced to find more accurate and reliable
results for the presented biological system.

This paper has the following organization. In Section 2, a deter-
ministic model for COVID-19 is presented based on some general
strategies. Also, the analysis of this deterministic model will be de-
veloped. A stochastic model for the spread of Coronavirus is dis-
cussed in Section 3 and the existence of a unique positive solution
for this system will be proved. In Section 4, a step-by-step collo-
cation scheme is introduced and in Section 5, this method is em-
ployed to provide numerical simulations of the proposed stochastic
model. At the end, the main conclusions are presented in Section 6.

2. The deterministic COVID-19 model

In the rest, the supposed population will be divided into sev-
eral compartments to adapt a SEIR-type model describing the evo-
lution of the COVID-19 pandemic. For simulation, the total size of
the population under study is supposed to equal to N(t).

In the survey conducted, every individual belongs to one of the
following seven categories:

¢ the class S includes susceptible individuals who never in-
fected before;

¢ the class E includes the individuals that have been newly-
infected but those are not still sick and cannot transmit in-
fection;

4 the class I includes the infectious individuals with symptoms;

4 the class A includes the infectious individuals that are not yet
symptoms;

¢ the class Q includes the infectious individuals that are with
slight symptoms and hence are at home quarantine;

¢ the class H includes the infectious individuals that are hospi-
talized;
¢ the class R includes the recovered individuals from the dis-
ease;
where
N(t) = S(t) + E(t) + 1(t) + A(t) + Q(t) + H(t) + R(¢t).
Siri=c+i, &:i=-—cp(l-q), S3i=0i+ Y+ i+ M
Ssi=—¢p, Ge:=—C1-p)1-q), Gri=yatu+pu,
Go 1= —(q, S0 :=0a+ 9P+ UL, Sn ==y,

Now, to introduce our model, we need to define some param-
eters. Let ¢ and O show the contact and the transmission rates,
respectively. q represents the rate of quarantine for exposed per-
sons. A is the birth rate. To consider the effectiveness of social-
distancing, the effective contact rate S is defined. §; displays the
transition rate from the symptomatic infected category to the quar-
antined infected category. y; and y, are the recovery rates of
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symptomatic infected persons and asymptomatic infected persons,
respectively and yy is the recovery rate of individuals in the class
H. Also, s and o show the movement rate from the class Q to the
class A and the transition rate from A to the class I, respectively.
p and p; represent the symptoms rate among infected individu-
als and the mortality rate due to Coronavirus, respectively. More-
over, ¢y, is the proportion of people who use masks and &, rep-
resents the effect of using mask to prevent catching the infection
by susceptible individuals. 0 < 6 <1 is the efficacy of quarantine
and hospitalization admission in preventing virus transmission. Fi-
nally, ¢, p and u represent the proportion of infected individuals
with symptoms in quarantine, the movement rate from the cate-
gory Q to I and the natural death rate, respectively. Let, the force
of infection, A, be defined as:

[+ 6A

N—-6,(Q+H)’

Then, according to the above variables and parameters, we have
the following proposed system of equations for the dynamics of
COVID-19:
S=A—-(A+pn)s,
E=AS - (c+ n)E,
I=cp(1-QE+¢p Q+auA— (N + 8+ i+l
A=c(1-p)(1-@QE+aaQ— (o +ya+ A, (2)
Q=cqE - (aa+¢p+1)Q
H=381- (+ i+ wH,
R=nl+ yaA+ yuH — uR.

A =B —éemcm) (1)

The diagram of this model is illustrated in Fig. 1.
The disease free equilibrium point of the model (2) can be ob-
tained as

&= (%,0, 0,0,0,0,0)". (3)

To assess the transmissibility of the disease, it is needed to get
the basic reproduction number Ry, i.e. the expected number of
new infections that result from a single infectious person in a spe-
cific population of susceptible individuals. To determine this num-
ber for the COVID-19 model (2), we employ the method proposed
in [24]. Suppose @ := B(1 — emcm). The matrix of new infection
terms F and the matrix of the remaining transmission terms V for

the model (2) are defined as F(£9) = [f'?j]sXs where
w, i=1, j=2,
fi,j: 9w, i=1, ]=33
0, o.w.,
and
G 0 0 0 0
S2 63 64 65 O
VE)=]ss 0 7 ¢ 0 |,
Go O 0 6o O
0 ¢n 0 O S12
in which
G4 1= —Qy,
Gg 1= —0U}y,

S12 =M+ Y+ U

The required Ry is the spectral radius of the matrix V1. Hence,
we get
wc _ = s
=——"———(50+10B + 8), 4
J/n%‘(Hu)(gQ nop +q (4)

where 8 = (1 — p)(1 - g) and

Ro

y=o+Yat+u, N=8+n+m+un E=¢p+oas+u,
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Fig. 1. The diagram of the proposed coronavirus transmission model.

o=yp(l-+0a, B=E0+qan,  S=ann+yep.

Also, the endemic equilibrium point v =
T

<S*, E*, I*, A*, Q*, H*, R*) is determined by solving the system

—(A+w)S*=0

AS*—(c+p)E*=0
COE +9 0 Q +o A*—nl* =0,

ca E*+apQ — yA* =0, (5)
cqE" -§Q =0
SIF—CH =0

)/I[*+]/AA*+)/HH*—,U,R*=0,
where { =1+ yy+ . 0= p(1-q) and & = (1 - p)(1 -q). So

S* = WgE*, I* = W E*,
Q" = WE, H* = W,E*,
A* = W,E*, R* = WRE*,
where

f_ A(ARy — )

(C+m)(ARo — ) + (1 —0g) (Vg + Wy) + Wr + W + 2 + 1’

and
W = S, \IJQ =4,
Wa =S (@€ +anq),  Wi=5(06y +9pay + mEd + aaq),
Wy = 30, ﬁ(VA‘I’A + (Vl + y’f‘)%)-

3. Stochastic model

Real-world models are usually influenced by uncertain natu-
ral factors. Thus, incorporating environmental interactions helps to
find a better picture of the COVID-19 pandemic in a society. So, it is
more appropriate to present the model of disease by stochastic dif-
ferential equations. In the rest, we improve the model (2) by con-
sidering some noisy environmental effects. To this end, the Brow-
nian motion process will be employed to simulate randomness in
data.

In the spread of disease model (2), we focus on the three trans-
mission rates f, o and yy. In the environment, these parameters

are not fixed but oscillate around some average values. Let some
white noises be added to them as

B — B +o1Bi(t),
o] — o] + 0'28? (t),
YH = Vi +03B3(0),
where B;(t), i =1, 2, 3, are standard Brownian motions [25,26] and

o;, i=1,2,3, are the intensities of environmental oscillations that
oiz > 0. Now, we obtain the following stochastic model as

dS= (A - A+ w)S)dt— %AS dB; (1),
dE = (AS — (c+ p)E)dt + %AS dBy (),
=(p(1-PE+¢p Q+or A~ (i + 81 + i + pw)lyde
+ 0y A de (t),
A= (c(1-p)(1—QE+aaQ— (+ya+p)A)dt (6)
— 03 A dB;(t)
= (cgE — (aa + 9P + 1)Qydt,
H = (&l = (yu + 1 + w)H)dt — o3 H dBs(t),
= (Ml + yaA + yuH — puR)dt + o3 H dBs(t).
To investigate this improved model, first, we prove the existence of
unique global positive solution for this system. Let

R? :={(u1,..,u7) eR’ | 4; >0, i=1,..7}

Theorem 1. For any initial value (S(0),E(0),1(0),A(0),Q(0),
H(0),R(0)) € R’ and every t > 0, the system (6) have an unique so-
lution. This solution will remain positive with probability one.

Proof. The coefficients of system (6) are locally Lipschitz continu-
ous. Hence, this system has a unique local solution

(S(t), E(t). 1(t), A(t), Q(t). H(£). R(¢)).

on [0,t.), where t. is the “explosion time” [25], for any initial
value

(5(0), E(0), 1(0), A(0), Q(0), H(0), R(0)) € R].

Now, we show that t. = oo almost surely (a.s.) and as a result the
solution is global. Suppose wq > 0 is sufficiently large such that the
initial values S(0), E(0), I1(0), A(0), Q(0), H(0) and R(0) lie within
the interval [wio,wo]. Let

Pmin (t) © = min{S(t), E(t), 1(t), A(t), Q(t), H(t), R(D)},
Pmax (t) © = max{S(t), E(t), 1(t), A(t), Q(t), H(t), R(t)},



A. Babaei, H. Jafari, S. Banihashemi et al.

for any w > wyp, and

tw=inf{t € [0,te) : Pmin(t) 5% Or  Pmax(t) zW}‘ (7

Set infy) = co where @ shows the empty set. From this definition
it can be concluded that t is increasing when w — oo. Let to, =
limy— o tw. SO, too < tg a.s. Therefore, if we can prove to, = oo a.s.,
then t, = oo a.s. and

(S(t), E(t), 1(£), A(t), Q(t), H(t),R(t)) € RZ as., vt > 0.

To complete the proof, it is sufficient to prove that t,, = oo a.s.
Let this is not correct. Therefore, there exists two constants § > 0
and £ € (0, 1) such that P{t., < p} > k. So
dwi € Z, w1 > wg, st. Pty < p} >k, Yw> w,. (8)

Fort <tw
dN(t) = (A — () — (1) + H(t)))dr < (A — uN(D))dt.

Thus
A if N(O)
N@®) = {N(O) if N(0)

Consider the twice differentiable function ¥ : R} — R, with the
definition
¥ (S,E,LA,Q H,R):=(S—1-1ogS)+ (E—1—1logE)
+ (I-1-1logl)
+(A-1-1logA)+ (Q—-1-1ogQ)
+H-1-1logH)+ (R—1-1ogR).

)

=J.

=
>

=I>=>

)

Since logu < u — 1, for every u > 0, hence, i is nonnegative. Due

to the system (6) and Itd’s formula on
dy(S.E.I,A.Q.H,R) = £ (S.E. I, A, Q H, R)dt

+<71%(1 —§>dB1(t)

+O’2<1 — 7>d82(t)+0'3(

(1- —)(A (A+ M)S) + o O7A?
)RS = (c+ E) + 5502225 + Jo2 iy
)(€p(1 = OE + @D Q+atA— (Y + 8 + pur + i)l

)d& ®),

where
LY (S, E, LA, QH,R) =
+1-¢
( 1
I
+ 62
+(1=3) (€= p)(1 = QE + apaQ — (1 + ya + )A)
(1= 2)(eqE — an + 97+ Q) + (1~ )
x (8l = (Vi + 1 + w)H) .
+302+ (1 - %)l + vaA+ yuH — uR) + Jo2 i
=A+A+C+m+8[+m+a1+yA+aA+¢p+yH+m+7u
2 2
Fopot(1+ B) 5 (1 8) £ 5 (14 ) Nt )
—*—CP(1—Q)*—<P,0 -t —6(1—p)(1—Q)A
QA% CQQ 81]—[ VIR VAR VHR
SA+A+CHN+aF i+ +Ya+ A+ 90+ VH+ W
2 2
+TU+ 3 OPAP (ST + E2) + G (A2 + 1) + F (H2 + R?)
SA+A+CHY 0+ i+ o+ Ya+ A+ @0 + Vi
i+ 7+ (%012)»2 +03 +032)52 =Y,

which is bounded and Y € R,.. Therefore, we obtain

o P Ay (S(8). E(t). 1(t), A(t), Q(t) H(t). R(t)) =
Jo P ydt+ 37 015 (1 = 3)dBy (£)
+ o 02 (1= 2)dB (0) + [ o3(1 - B)dBs (1),
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and

E(Y(SO.E().1(), A(), Q(),. H(.),RO))

< E(¥(5(0),E(0),1(0), A(0). Q(0). H(0),R(0))) + YE()

< E(¥(5(0),E(0),1(0), A(0). Q(0). H(0). R(0))) + V7, 9)
where () = (tw A ) and E shows the mathematical expectation.
Let

Qu = {tw < 0}, w> .

(8), we have P(Q2y) > K. Moreover, for every ve

From Eq.
Q. at least one of the variables S, E, I, A, Q  H or R is
L Hence,

greater or equal to w, or less than or equal to .

Iy, = 1/f(5(tw), E(tw), [(tw), A(tw), Q(tw), H(tw), R(tw)) is not

less than w — 1 —logw or % —1+logw, ie.,

I, > (w—l - logw) A (:—v -1 +logw).
Then, (8) and (9) results

E(To) + Vp = B(Za, L., )

> E[(w— 1 —logw) A (% -1 +10gw>],

where I, is the usual notation for indicator of set Q. If w — oo,
then
oo > E(Tlg) + Yp = oo,

which is a contradiction. So, the hypothesis P{t,, < 0} > & is
wrong and ty, = oo a.s. O

3.1. Exponentially stability

In this subsection, we study the stability of disease-free equilib-
rium for model (6). Let C21(R" x R) is the family of non-negative
functions ¥ (u,t) on R" x R that are twice continuously differen-
tiable in u and once in t.

Theorem 2. [27] Suppose there exists a function v (u, t) € C>1(R" x
R) satisfying the following inequalities
Y@ <&luf, Ly @t) < -5lulP,

where {; > 0, i=1,2 and p > 0. Thus, the equilibrium point £° of the
system (6) is exponentially p-stable. Also, £0 is exponentially stable in
mean square and globally asymptotically stable, when p = 2.

Lemma 1. [4] Suppose p>2 and z,ve Ry and & > 0. Thus, we
have

! < & L= DeE,
p

267" —-2)¢e
F o (0=,
p p
Theorem 3. Let p > 2, the disease-free equilibrium point

)

Z2vP2% <

A
&= (5:0.0.0.0,0,0) € R
of the system (6) is exponentially p-stable, if

2
F(-1) <ar+yatp,
and  Z(p-1) < yu++u

Proof. Considering the following Lyapunov function

1/,_((S)P+EP+[P+AP+QP+HP+RP>
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Fig. 2. The trajectories of the solution for the cases Ry <1 and Ry > 1, when 07 = 03 =03 =0.
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25

0.5 4

Fig. 3. Reproduction number R, for several values of 8 (up) and ¢, (down).

where p > 2, then

Ly =- [A S (5 =) 4 €+ WP + (1 + 81+ pu + 1P

+(a1+yA+u)A”+l(aA+wﬁ+u)Qp+(yH+u1+u)H“+uRp]

++ w)S(4 = 9)" + ASEPF! 4 cp(1 - EIP + 9p QP! + AlP-!

+¢(1 - p)(1 — q)EAP! + QAP o QP+ BiIHP T 4 IR

+YaARPT £ yyHRP! 4 1Az(p 1)52( -5)" 112(1:71)525?*2
2

+ZF(p-1)AI2 4 %(p

1)AP + ;(p—l)HP+ 23(p 1)H2RP-2,

By using Lemma 1, we have
L < —[m(* =)+ (€ B+ (11 + 81+ + (0)I?

+(on+ ya+ 1)AP +(ozA+<pﬁ+u)QP+(VH+MI+M)H”+MR”]
HOm B 4 21 2>e)(~s)

+<(2A +u) Tl + i‘;lzkz(p— NHe’t)s

(“’ ) ()L—O—W)\Z(p 2))a+ el P)EP

+< o (Cp(l—q)+<pp+on+"z (p- 2))s+(81+74)8"’)1”

—+

@+ v L+ (ante(l - p)(1 - ) T2 4 % (p— 1)’
2 1
+5 (0= 1))AP + (g5 + (9P + an) )@
1- p o2
H(8052 LS+ o2 p - D+ Fp- D)
-De  9F o _ P
(14 v+ w0 5 + o - (- 2)e )R,

2
Fe-D<a+yatp
2
and %(p —1) < yu + Ky + p. Let ¢ is sufficiently small as the co-
efficients (% —S)P, EP, IP, AP, QP, HP and RP be negative. Thus,
from Theorem 2, £9 is exponentially p-stable. If the conditions
2

According to the assumption, we know

2
% <op+ya+pand - <y + p + 4 hold, then, in the special
case p = 2, the equilibrium point £° of system (6) will be globally
asymptotically stable. O
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4. Numerical Scheme

In this section, we describe a step-by-step collocation approach
based on the Legendre polynomials to solve a system of nonlinear
stochastic differential equations.

Definition 1. [28] The recurrence formula of Legendre polynomials
on interval [-1, 1] are defined as

i (t) = 77 {2+ DtO(t) — i1 ()},
where 6y(t) =1 and 0, (t) =t.

i=1,2,..,

Definition 2. The shifted Legendre polynomials on [tuin, tnax] are
defined as

b ™05 = 0; (=2 (t — tmax) + 1),

We use a step-by-step approach to solve the system (6) on the
interval [0, Tmax]. For this purpose, let e > 0 and B := [ 2], Now,
to find a numerical solution of the system on the subinterval [0, e],
we will employ a Legendre collocation method. Consider the nu-
merical solutions 1 Xi(t), i=1,...,7, as follows

i=01,2,...

max *[mm

1X(t) = ngg $0;(t) =Xl sO(t), i=1,...7, (10)

where S(t) ~ 1 X1, E(t) = 1X2(), 1(t) =~ 1X3(t), A(t) ~
Q(t) = 1 3(6), H(t) = 129(t), R(t) ~ 1.4 (t) and

1 ey eyl T
xO [XSO,...’Oxj,...’Oxn] R ;
OF(t) == [@8(t). -+~ .55 (E). - .5n(D)] .
for t € [0, e]. According to (6) and (10

W) £ 5X] §0(t) — A+ (ST1() + 1) §
"1 STT(H)gXT 5O (1) B (t) ~ 0,

wlt) £ gxz c@(t) — (en(t) eXT — (c+ p)eX?
+9 8TI(0) §XTBy (t)) O(t) ~ 0
wl(t) 2 X] 5O(t) (C,o(l —q) §X5 +9p gXT+ e §X]
~(n+ 84+ XD+ 02 §XIE(D)) §O(0) = 0
Wl (t) 2 X] 5O(t) (c(1 —p)(1—q) iXI+ap XI
— (@t yat WX - 02 §X1B () 500 20
Wl(t) 2 5XT 2O(t) — (cq §XT — (cta+ 0P + M)gxg) “O(t) ~ 0,
Wl (t) 2 eXT s@(t) —

147 (),

), we have

1600

81 X5 — (Vi + 1+ 1)EXG
—os OXTB3(t)) 20(t) ~ 0

WHO 26X 56 — (7 X1+ va §XE+ v X0
—p 3XT 4 o gxgzé3(t)> 20(t) ~ 0,

(11)
where
0°® (0):= [3: (0o (). -+, &
and

Oen(t) =801 - 8mCm)(

(0°0; (©)). - . B (a®n ()]

§X1 6O()+0 §X5 5O(t)
SL1oX §0(0)) 64 (X1 §00)+X150(0))

Also, from (10)

] £0X156(0) —S(0) ~
d120XTe@(0) — 1(0) ~
<I>”"’X§8®<0> Q(0) ~
d12XTe@(0) — R(0) :0

CDMQX%@(O) E(0) ~
®120XIe@(0) — A(0) ~

L0740 (12)
®120XI¢® (0) — H(0) ~ 0,
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Fig. 4. The trajectories of solution for the stochastic model (6) and the solution of the corresponding deterministic model (left) along with the histograms of frequencies for

the populations S(t), E(t), I(t) and A(t)(right).
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Fig. 5. The trajectories of solution for the stochastic model (6) and the solution of the corresponding deterministic model (left) along with the histograms of frequencies for
the populations Q(t), H(t) and R(t) (right).
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Fig. 6. Graphs of trajectories of I(t), Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of q.

let tg°=0, t7°=e, and ¢°, j=1,..n—1, be the roots of
§0n—1(t). By evaluating Eqs. (11) and (12) at the n+ 1 collocation
points t;)'e, a system of 7(n+ 1) nonlinear algebraic equations is
extracted as

1(40.ey _ - i —
{\I!i(tj )=0, i=1..7. j=1,..n (13)

®! =0, i=1,..7.

Note that, the part Bi(t?’e) in (11) is evaluated by Bi(t?’e)—
B; (t?’_el). This system can be solved using a numerical method, such

as Newton’s iterative method. Solving this system leads to an ap-
proximate solution {X(t), i=1,...,7, for (6) on the interval [0, e].

In general, to find a numerical solution of (6) on the interval
[(x—1)e,re], r=2,..,B, suppose S(t) =~ X}(t), E(t) = X2(t),
I(t) ~ 2 X3 (), A(t) > X3 (t), Qt) =~ X3 (1), H(t) ~ AL (t), R(t) ~
X7 (t), in which

rXri (t) = Z?:O (PUgeX} (r71)reeej(t):
such that

i=1,..7, (14)

o i i
=1y Xi 1= |:(r—1)1:X0’ T eetye Kot
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Table 1
The parameters values for the considered COVID-19 models.
Parameter ~ Description Value Source
A Birth rate ©n x N(0) [31]
B Effective contact rate 0.8648 [22]
c Contact rate 14.781 [31]
0 Transmission rate 0.5944 [30]
q The quarantine rate 1.8887 x 1077 [31]
S Transition rate from E to H 0.13266 [31]
Y Recovery rate of | 0.33029 [31]
YA Recovery rate of A 0.13978 [31]
Y Recovery rate of H 0.11624 [31]
op Movement rate from Q to A 0.059 [22]
7 Transition rate from A to I 0.078 [22]
P Symptoms rate among infected individuals 0.86834 [31]
Cm Proportion of individuals who use masks 0.0546 [22]
i Mortality rate due to COVID-19 0.01 [30]
Em Efficacy of using masks to prevent catching the infection by S 0.5 [22]
6y Efficacy of quarantine and hospitalization 1 [22]
7] Proportion of Q with clinical symptoms 0.05 [29]
P Movement rate from Q to I with clinical symptoms 0.1259 [29]
I Natural death rate 1/69.5 [30]

and

-1 O(t) = (r—1)e" o (1),
Similarly, by (6) and (14

T
5 (O, .,.,(rqr)ee(pn(t)] )

), we get

WO 1>e l(r 1e €Ot - A+ (e H(t)+ﬂ)((r 1)ZEXT
(r-1e O(t)) + /3 (r-1e H(t)(r ])rex}'(r 1e O(t)B1 (t) ~
VO 0 Zg 1>e0(t) Looae cIHO 17X
7(C+,u)(r 1)eX + /3 (r—1)e l_[(t)(r 1)eX 81(t))(r 1)”"@)(0 ~ 0,
vl (t)—(,,m 3-1y6 @ (t) — (cp(1 - q)(r e X3+ 9B, XL
+al(r l)e - + &+ M+ /’L)(r—l)e
+02(,_ ])e 4132(1'))(r 1)re®(t) ~
LGRS 1>e 4(r BCIOE (C(1 —p)(1
+aA(r 1)e (aI+VA+M)(r l)e
—02_1ye X} BZ([))v 1e OO =
wr (t)_(r e S(r 1):6(1') (Cq (r— 1)2exT
7(aA+(pp+H«)(,- m XD U”-’@(t),
wr (t)_(r 1)3 6(r 1); O(t) (5|(r 1)9
-+ +/'L)(r 1)e — 03, ])EX 83(t))(r 1)’?0([’) ~
v (t)f(r 1):3€ 7(r-1)e ®(t) - (yl(r l)ex +VA(, 1)8
+y"‘(r—1>ex M(r—l)ex 031 °X§ 53(t))(r_1)e ()(t) ~0

- Q)(H)Zexg (15)

where
(- 1)ere(:)(t) =
[3t (1) Po (D)), -

e IL(E) =
BA=EnCn) ;17 X8 130 TOO+0,_

7 re
(Zi:l(m)e X{ (r-Tye reO(f)) Xg(r e

((r e ¢](t)) ((r 1)e ¢n(t))] s

(r-T)e

rexT

Lo "0

T
xG(r 1)e

1)e
E‘)(r)+(r—])e

1)e

((r—l)e ®(t))

Let t(()r_l)e’re =(r—1)e, l.“,(lr_l)e’re =re, and t;r_l)e‘re, j=1,..,n-
1, be the roots of (1_1)r:9n—1 (t). By evaluating Eqs. (15) at this col-
location points, we have

rEEee) =0, i=1,..7, j= (16)

Here, B;(t{"""°™) is estimated by B;(t{™ V™) - B;(t{";"*™).

Also, from Eq. (14) at t(r’l)“e, we get
XT reO(t(r Te, re) 1)(1:' (t((Jr—l)are) ~0.

i(r—1)e
So, for each step r = 2, ..., B, the relations (16) and (17) give a sys-
tem of 7(n + 1) nonlinear equations for the unknown coefficients
,j=0,1,..,n, i=1,.. 7. After solving this systems, the

*(r T)e (17)

(r— 1)e 1

10

numerical solutions Xj(t), i=1,...,
val [0, Tpayx], as

7, are computed on the inter-

1X1(E), te[0,e],
X,i(t) = rXIT';(t), te [(r —1)e, re], (18)
SO, Ee(—1)e, Tuusl,

in which S(t) =~ x!(t), E(t) = X2(t), 1(t) = X2 (t), At) = X (),
Q(t) =~ X3 (t), H(t) ~ x5(t) and R(t) ~ X/ (¢).

5. Numerical results

In this section, we employ the numerical approach introduced
in the previous section to illustrate the obtained results of the pro-
posed models (2) and (6) for COVID-19. These simulations help
us to investigate the dynamical behaviors of this pandemic when
some safety protocols are observed and random effects are added
to the model. To this end, some estimations are considered for the
parameters of the model according to some published researches
about this disease [22,29-31]. These approximations are displayed
in Table 1. Also, we need some initial values for the variables of
these models. So, the following initial conditions are supposed:

1(0) =
H(0) =1,

27.676,
R(0) =2
(19)

All numerical experiments are performed using Matlab on a PC
with a 1.70GHz Core i5-4210 CPU and main memory 8 GB.

Fig. 2 shows the endemic equilibrium &, and the trajectories
of the solution for the case Ry =0.7730 <1 with 8 =0.36 and
the case Rg = 1.8569 > 1 with 8 = 0.8648, when 01 =0y =03 =
0. Fig. 3 displays the reproduction number Ry for several val-
ues of B €[0,1] and ¢y, € [0, 1], with o4 = 05 = 03 = 0. Fig. 4 and
Fig. 5 display the trajectories of solution for the stochastic model
(6) with o7 =0.15, 03 = 0.32, 03 =0.26 and the solution of the
corresponding deterministic model along with the histograms of
frequencies for S(t), E(t), I(t), A(t), Q(t), H(t) and R(t). These
figures confirm that model (6) has a positive solution. Also, from
the conditions

S(0) = 11081739,
A(0) = 53.839,

E(0) = 106.2642,
Q(0) = 1.1642,

o3
7(p—1) <o+ yYat+u,



A. Babaei, H. Jafari, S. Banihashemi et al. Chaos, Solitons and Fractals 145 (2021) 110788

18

——pB=05

16 - —B=0.75
—— 3=0.8648
14r- —— 3 =0.95

0 |
0 50 100 150 200 250 0 50 100 150 200 250
Time(days) Time(days)

0 50 100 150 200 250 ] 50 100 150 200 250
Time(days) Time(days)

0 50 100 150 200 250 0 50 100 150 200 250
Time(days) Time(days)
5
12 x10
—3=0.5
- 3=0.75
10+
sl
g =
al
Pys
0
0 50 100 150 200 250
Time(days) Time(days)

Fig. 7. The trajectories of I(t), A(t), Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of 8.
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Fig. 8. The trajectories of I(t), Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of cp,.

and

o3
T(P—1)<VH+MI+M,

for p > 2 in Theorem 3, we have

p=2: % =0.0512 < oy + ya+ pu = 0.2322,
2
% =0.0338 < yy + i + p = 0.1406,
p=3: 07=0.1024 <0.2322, o= 0.0676 < 0.1406.

Hence, in the case p =2, £0 is globally asymptotically stable and
in the case p =3, the disease-free equilibrium point £° is expo-
nentially 3-stable.

12

Fig. 6 shows the trajectories of I(t), Q(t) and H(t) for the
stochastic model when o = 0.2, 0, = 0.15, 03 = 0.22 and the de-
terministic model, for several values of q. Fig. 7 displays the tra-
jectories of I(t), A(t), Q(t) and H(t) for the stochastic model
with 01 =0.3, 03 =0.2, 03 =0.15 and the deterministic model,
with different values of S. Also, Fig. 8 indicates the trajectories of
I(t), Q(t) and H(t) for the deterministic model and the stochastic
model with oy = 0.15, 0, = 0.24, 03 = 0.36 for different values of
Cm-

6. Conclusion

A stochastic model based on some health protocols such as
quarantine, social distancing and wearing masks has outlined to
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describe the trend of COVID-19 pandemic in a population. The
existence and uniqueness of a positive global solution for the
proposed model were proved. Stability analysis of the stochastic
model and its special deterministic case have been discussed. In
order to simulate the dynamical behaviors of the model, a step-by-
step collocation method based on the Legendre polynomials was
introduced. Based on the numerical result , it can be seen that
considering random effects for the parameters of the model helps
to depict a more realistic aspect of the disease development. Also,
these results confirm that preventative actions and health strate-
gies have a direct effect on the virus prevalence and control of the
pandemic. Considering more public health strategies in the model
and studying the impact of underlying diseases or other viral epi-
demics such as influenza, on the spread of Coronavirus, are some
research directions that can be investigated for future works. Also,
verifying the frequency of the disease among different age groups
may be another useful subject.
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