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a b s t r a c t 

This paper is associated to investigate a stochastic SEIAQHR model for transmission of Coronavirus disease 

2019 that is a recent great crisis in numerous societies. This stochastic pandemic model is established 

due to several safety protocols, for instance social-distancing, mask and quarantine. Three white noises 

are added to three of the main parameters of the system to represent the impact of randomness in the 

environment on the considered model. Also, the unique solvability of the presented stochastic model is 

proved. Moreover, a collocation approach based on the Legendre polynomials is presented to obtain the 

numerical solution of this system. Finally, some simulations are provided to survey the obtained results 

of this pandemic model and to identify the theoretical findings. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Using dynamical systems to describe behaviors of infectious 

iseases is an effective way to study how these diseases spread 

1–3] . Mathematical models can greatly help researchers to bet- 

er understand behaviors of deadly diseases around the world. The 

usceptible-Infectious-Recovered (SIR) approach is a well-known 

asic model to analyze and to predict the epidemic of contagious 

iseases. Many researchers employed theoretical frameworks and 

umerical simulations to survey the manner of transmission of dif- 

erent infectious diseases [4–13] . 

In recent months, a specific group of viruses, named Coron- 

virus, has disrupted life around the world. Coronaviruses have a 

crown” or corona of sugary-proteins. Thus, they have named Coro- 

aviruses according to their specific appearance, in 1960. Special 

ases of Coronaviruses are the main sources of certain popular dis- 

ases such as the Middle East respiratory syndrome (MERS-CoV) 

nd severe acute respiratory syndrome (SARS-CoV). Researches 

ave shown that these viruses are conveyed between humans and 

nimals. For example, MERS-CoV and SARS-CoV have transmitted 

rom dromedary camels and civets to humans, respectively. Some 
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oronavirus strains are only active in animals and have not yet in- 

ected human beings. 

The Wuhan city in China was the first place that the Coron- 

virus disease 2019 (COVID-19) was identified. This new version of 

oronaviruses was not previously diagnosed in human beings. Ex- 

erts refer to different sources for this disease. Some of them be- 

ieve the virus was first transmitted from pangolins or bats to hu- 

ans in China. The high rate of contagion has caused that coun- 

ries all over the world are affected by COVID-19. Cough, fever, 

ifficulties in breathing and loss of sense of taste and smell are 

he main signs of the disease. High mortality rate and the seri- 

us economic and financial crisis created by the Coronavirus pan- 

emic have motivated many researchers to study the behaviors of 

his virus and to find effective ways for facing this outbreak. Hence, 

ome suitable susceptible-exposed-infectious-recovered (SEIR) type 

odels are presented in these investigations to simulate the dy- 

amic of the COVID-19 pandemic. The impact of asymptomatic cat- 

gory and quarantine on the transmission of COVID-19 [14] , mod- 

ling the COVID-19 due to the interactivity between the animals, 

umans and the infections reservoir such as seafood market [15] , 

nvestigating the dynamics of COVID-19 epidemics using real data 

rom Pakistan [16] , a model for the transmission of COVID-19 based 

n the Caputo-Fabrizio fractional order derivative [17] , a stochas- 

ic model to study the stationary distribution and extinction of 

oronavirus epidemic [18] , a stochastic model to evaluate health- 

are impact of Coronavirus in India [19] , modeling the potential for 

ask use to curtail the COVID-19 [20] , using fuzzy neural network 

https://doi.org/10.1016/j.chaos.2021.110788
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odels to predict COVID-19 time series in Mexico [21] , investiga- 

ion about the role of non-pharmaceutical interventions on reduc- 

ng COVID-19 [22] and identifying the effect of social distancing in 

iminishing COVID-19 in Canada [23] are some examples of these 

cientific works. 

In this work, first, we suggest a deterministic model to analyze 

he impact of preventive and health-protective measures such as 

uarantine, using masks and social distancing on the Coronavirus 

revalence. A parameter called the force of infection is considered 

n the model. This parameter is affected by the factors related to 

he mentioned safety health protocols. Thus, this novel biological 

arameter helps us to verify the impact of safety strategies on 

he control of the disease. Many relationships between people are 

ased on random contacts. So, by considering random parameters 

n the proposed deterministic model, a more realistic stochastic 

odel for COVID-19 will be derived. Also, a new high-order nu- 

erical technique is introduced to find more accurate and reliable 

esults for the presented biological system. 

This paper has the following organization. In Section 2 , a deter- 

inistic model for COVID-19 is presented based on some general 

trategies. Also, the analysis of this deterministic model will be de- 

eloped. A stochastic model for the spread of Coronavirus is dis- 

ussed in Section 3 and the existence of a unique positive solution 

or this system will be proved. In Section 4 , a step-by-step collo- 

ation scheme is introduced and in Section 5 , this method is em- 

loyed to provide numerical simulations of the proposed stochastic 

odel. At the end, the main conclusions are presented in Section 6 . 

. The deterministic COVID-19 model 

In the rest, the supposed population will be divided into sev- 

ral compartments to adapt a SEIR-type model describing the evo- 

ution of the COVID-19 pandemic. For simulation, the total size of 

he population under study is supposed to equal to N(t) . 

In the survey conducted, every individual belongs to one of the 

ollowing seven categories: 

� the class S includes susceptible individuals who never in- 

fected before; 

� the class E includes the individuals that have been newly- 

infected but those are not still sick and cannot transmit in- 

fection; 

� the class I includes the infectious individuals with symptoms; 

� the class A includes the infectious individuals that are not yet 

symptoms; 

� the class Q includes the infectious individuals that are with 

slight symptoms and hence are at home quarantine; 

� the class H includes the infectious individuals that are hospi- 

talized; 

� the class R includes the recovered individuals from the dis- 

ease; 

here 

(t) = S(t) + E(t) + I(t) + A(t) + Q(t) + H(t) + R(t) . 

Now, to introduce our model, we need to define some param- 

ters. Let c and θ show the contact and the transmission rates, 

espectively. q represents the rate of quarantine for exposed per- 

ons. � is the birth rate. To consider the effectiveness of social- 

istancing, the effective contact rate β is defined. δI displays the 

ransition rate from the symptomatic infected category to the quar- 

ntined infected category. γ and γ are the recovery rates of 

ς 1 := c + μ, ς 2 := −cρ( 1 − q ) , ς 3 := δI + γI + μI +
ς 5 := −ϕ ρ, ς 6 := −c ( 1 − ρ) ( 1 − q ) , ς 7 := γA + αI + μ,

ς 9 := −cq , ς 10 := αA + ϕ ρ + μ, ς 11 := −δI , 
I A 

2 
ymptomatic infected persons and asymptomatic infected persons, 

espectively and γH is the recovery rate of individuals in the class 

 . Also, αA and αI show the movement rate from the class Q to the 

lass A and the transition rate from A to the class I , respectively. 

and μI represent the symptoms rate among infected individu- 

ls and the mortality rate due to Coronavirus, respectively. More- 

ver, c m 

is the proportion of people who use masks and ε m 

rep- 

esents the effect of using mask to prevent catching the infection 

y susceptible individuals. 0 ≤ θq ≤ 1 is the efficacy of quarantine 

nd hospitalization admission in preventing virus transmission. Fi- 

ally, ϕ, ρ̄ and μ represent the proportion of infected individuals 

ith symptoms in quarantine, the movement rate from the cate- 

ory Q to I and the natural death rate, respectively. Let, the force 

f infection, λ, be defined as: 

= β(1 − ε m 

c m 

) 
I + θA 

N − θq (Q + H) 
. (1) 

Then, according to the above variables and parameters, we have 

he following proposed system of equations for the dynamics of 

OVID-19: 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙ S = � − (λ + μ)S , 
˙ E = λS − (c + μ)E , 

˙ I = cρ(1 − q )E + ϕ ρ̄ Q + αI A − (γI + δI + μI + μ)I , 
˙ A = c(1 − ρ)(1 − q )E + αA Q − (αI + γA + μ)A , 

˙ Q = cq E − (αA + ϕ ρ̄ + μ)Q , 

˙ H = δI I − (γH + μI + μ)H , 

˙ R = γI I + γA A + γH H − μR . 

(2) 

he diagram of this model is illustrated in Fig. 1 . 

The disease free equilibrium point of the model (2) can be ob- 

ained as 

 

0 = ( 
�

μ
, 0 , 0 , 0 , 0 , 0 , 0) T . (3)

o assess the transmissibility of the disease, it is needed to get 

he basic reproduction number R 0 , i.e. the expected number of 

ew infections that result from a single infectious person in a spe- 

ific population of susceptible individuals. To determine this num- 

er for the COVID-19 model (2) , we employ the method proposed 

n [24] . Suppose � := β(1 − ε m 

c m 

) . The matrix of new infection

erms F and the matrix of the remaining transmission terms V for 

he model (2) are defined as F(E 0 ) = 

[
f i, j 

]
5 ×5 

where 

 i, j = 

{ 

� , i = 1 , j = 2 , 

θ� , i = 1 , j = 3 , 

0 , o.w., 

nd 

(E 0 ) = 

⎛ ⎜ ⎜ ⎝ 

ς 1 0 0 0 0 

ς 2 ς 3 ς 4 ς 5 0 

ς 6 0 ς 7 ς 8 0 

ς 9 0 0 ς 10 0 

0 ς 11 0 0 ς 12 

⎞ ⎟ ⎟ ⎠ 

, 

n which 

ς 4 := −αI , 

ς 8 := −αA , 

ς 12 := μ + γH + μI . 

he required R 0 is the spectral radius of the matrix FV −1 . Hence, 

e get 

 0 = 

� c 

γ ηξ (c + μ) 

(
ξ �̄ + ηθ ˜ β + q ̄δ

)
, (4) 

here ˜ θ = (1 − ρ)(1 − q ) and 

= αI + γA + μ, η = δI + γI + μI + μ, ξ = ϕ ρ̄ + αA + μ, 
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Fig. 1. The diagram of the proposed coronavirus transmission model. 
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�̄ = γ ρ(1 − q ) + 

˜ θαI , ˜ β = ξ ˜ θ + qαA , δ̄ = αA αI + γϕ ρ̄. 

lso, the endemic equilibrium point E ∗ = 

S ∗, E ∗, I ∗, A 

∗, Q 

∗, H 

∗, R 

∗
)T 

is determined by solving the system 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� − ( λ + μ) S ∗ = 0 , 

λ S ∗ − ( c + μ) E 

∗ = 0 , 

c ˙ θ E 

∗ + ϕ ρ Q 

∗ + αI A 

∗ − η I ∗ = 0 , 

c ˙ α E 

∗ + αA Q 

∗ − γ A 

∗ = 0 , 

c q E 

∗ − ξ Q 

∗ = 0 , 

δI I 
∗ − ˙ ζ H 

∗ = 0 , 

γI I 
∗ + γA A 

∗ + γH H 

∗ − μR 

∗ = 0 , 

(5) 

here ˙ ζ = μI + γH + μ, ˙ θ = ρ(1 − q ) and ˙ α = (1 − ρ)(1 − q ) . So 

S ∗ = �S E 

∗, I ∗ = �I E 

∗, 

 

∗ = �Q E 

∗, H 

∗ = �H E 

∗, 

A 

∗ = �A E 

∗, R 

∗ = �R E 

∗, 

here 

 

∗ = 

�(�R 0 − μ) 

(c + μ)(�R 0 − μ) + (1 − θq )(�Q + �H ) + �I + �R + μ2 + 1

nd 

S = 

c+ μ
λ

, �Q = 

cq 
ξ

, 

A = 

c 
ξγ ( ˙ αξ + αA q ) , �I = 

c 
ηξγ

(
˙ θξγ + ϕ ρqγ + αI ξ ˙ α + αA αI q 

)
H = 

δI 

ω �I , �R = 

1 
μ

(
γA �A + 

(
γI + 

γH δI 

˙ ζ

)
�I 

)
. 

. Stochastic model 

Real-world models are usually influenced by uncertain natu- 

al factors. Thus, incorporating environmental interactions helps to 

nd a better picture of the COVID-19 pandemic in a society. So, it is 

ore appropriate to present the model of disease by stochastic dif- 

erential equations. In the rest, we improve the model (2) by con- 

idering some noisy environmental effects. To this end, the Brow- 

ian motion process will be employed to simulate randomness in 

ata. 

In the spread of disease model (2) , we focus on the three trans-

ission rates β, α and γ . In the environment, these parameters 
I H 

3 
re not fixed but oscillate around some average values. Let some 

hite noises be added to them as 

β → β + σ1 ˙ B 1 ( t ) , 
αI → αI + σ2 ˙ B 2 ( t ) , 

H → γH + σ3 ˙ B 3 ( t ) , 

here B i (t) , i = 1 , 2 , 3 , are standard Brownian motions [25,26] and

i , i = 1 , 2 , 3 , are the intensities of environmental oscillations that
2 
i 

> 0 . Now, we obtain the following stochastic model as 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dS = ( � − ( λ + μ) S ) dt − σ1 

β
λS d B 1 ( t ) , 

dE = ( λS − ( c + μ) E ) dt + 

σ1 

β
λS d B 1 ( t ) , 

dI = ( cρ( 1 − q ) E + ϕ ρ Q + αI A − ( γI + δI + μI + μ) I ) dt 
+ σ2 A d B 2 ( t ) , 

dA = ( c ( 1 − ρ) ( 1 − q ) E + αA Q − ( αI + γA + μ) A ) dt 
− σ2 A d B 2 ( t ) 

dQ = ( cqE − ( αA + ϕ ρ + μ) Q ) dt , 
dH = ( δI I − ( γH + μI + μ) H ) dt − σ3 H d B 3 ( t ) , 
dR = ( γI I + γA A + γH H − μR ) dt + σ3 H d B 3 ( t ) . 

(6) 

o investigate this improved model, first, we prove the existence of 

nique global positive solution for this system. Let 

 

7 
+ := { (u 1 , ..., u 7 ) ∈ R 

7 | u i > 0 , i = 1 , ... 7 } . 
heorem 1. For any initial value (S(0) , E(0) , I(0) , A(0) , Q(0) ,

(0) , R(0)) ∈ R 

7 + and every t ≥ 0 , the system (6) have an unique so-

ution. This solution will remain positive with probability one. 

roof. The coefficients of system (6) are locally Lipschitz continu- 

us. Hence, this system has a unique local solution 

S(t) , E(t) , I(t) , A(t) , Q(t) , H(t) , R(t)) , 

n [0 , t e ) , where t e is the “explosion time ” [25] , for any initial

alue 

S(0) , E(0) , I(0) , A(0) , Q(0) , H(0) , R(0)) ∈ R 

7 
+ . 

ow, we show that t e = ∞ almost surely (a.s.) and as a result the 

olution is global. Suppose ω 0 > 0 is sufficiently large such that the 

nitial values S(0) , E(0) , I(0) , A(0) , Q(0) , H(0) and R(0) lie within

he interval [ 1 
ω 0 

, ω 0 ] . Let 

ρmin (t) : = min { S(t) , E(t) , I(t) , A(t) , Q(t) , H(t) , R(t) } , 
max (t) : = max { S(t) , E(t) , I(t) , A(t) , Q(t) , H(t) , R(t) } , 
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or any w ≥ ω 0 , and 

 w 

= in f 

{ 

t ∈ [ 0 , t e ) : ρmin ( t ) ≤
1 

w 

or ρmax ( t ) ≥ w 

} 

. (7) 

et inf ∅ = ∞ where ∅ shows the empty set. From this definition 

t can be concluded that t w 

is increasing when w → ∞ . Let t ∞ 

=
im w →∞ 

t w 

. So, t ∞ 

≤ t 0 a.s. Therefore, if we can prove t ∞ 

= ∞ a.s., 

hen t e = ∞ a.s. and 

 

S ( t ) , E ( t ) , I ( t ) , A ( t ) , Q ( t ) , H ( t ) , R ( t ) ) ∈ R 

7 
+ a.s., ∀ t ≥ 0 . 

To complete the proof, it is sufficient to prove that t ∞ 

= ∞ a.s. 

et this is not correct. Therefore, there exists two constants ˆ ρ > 0 

nd ˜ κ ∈ (0 , 1) such that P { t ∞ 

≤ ˆ ρ} > ˜ κ . So 

 ω 1 ∈ Z , ω 1 > ω 0 , s.t. P { t w 

≤ ˆ ρ} ≥ ˜ κ, ∀ w ≥ ω 1 . (8)

or t ≤ t w 

N(t) = 

(
� − μN(t) − μI (I(t) + H(t)) 

)
d t ≤ (� − μN(t ))d t . 

hus 

(t) = 

{
�
μ , i f N(0) ≤ �

μ , 

N(0) , i f N(0) > 

�
μ , 

:= 

˜ J . 

onsider the twice differentiable function ψ : R 

7 + → R + with the 

efinition 

 ( S , E , I , A , Q , H , R ) := ( S − 1 − log S ) + ( E − 1 − log E ) 
+ ( I − 1 − log I ) 

+ ( A − 1 − log A ) + ( Q − 1 − log Q ) 
+ ( H − 1 − log H ) + ( R − 1 − log R ) . 

ince log u ≤ u − 1 , for every u ≥ 0 , hence, ψ is nonnegative. Due 

o the system (6) and It ̂ o ’s formula on ψ

 ψ ( S , E , I , A , Q , H , R ) = L ψ ( S , E , I , A , Q , H , R ) d t 

+ σ1 
λ

β

(
1 − S 

E 

)
d B 1 (t) 

+ σ2 

(
1 − A 

I 

)
d B 2 (t) + σ3 

(
1 − H 

R 

)
d B 3 (t) , 

here 

 ψ ( S , E , I , A , Q , H , R ) = 

(
1 − 1 

S 

)
( � − ( λ + μ) S ) + 

1 
2 β2 σ

2 
1 λ

2 

+ 

(
1 − 1 

E 

)
( λS − ( c + μ) E ) + 

1 
2 β2 σ

2 
1 λ

2 S 2 

E 2 
+ 

1 
2 
σ 2 

2 
A 2 

I 2 

+ 

(
1 − 1 

I 

)
( cρ( 1 − q ) E + ϕ ρ Q + αI A − ( γI + δI + μI + μ) I ) 

+ 

1 
2 
σ 2 

2 

+ 

(
1 − 1 

A 

)
( c ( 1 − ρ) ( 1 − q ) E + αA Q − ( αI + γA + μ) A ) 

+ 

(
1 − 1 

Q 

)
( cq E − ( αA + ϕ ρ + μ) Q ) + 

(
1 − 1 

H 

)
( δI I − ( γH + μI + μ) H ) 

+ 

1 
2 
σ 2 

3 + 

(
1 − 1 

R 

)
( γI I + γA A + γH H − μR ) + 

1 
2 
σ 2 

3 
H 2 

R 2 

= � + λ + c + γI + δI + μI + αI + γA + αA + ϕ ρ + γH + μI + 7 μ

+ 

1 
2 β2 σ

2 
1 λ

2 
(
1 + 

S 2 

E 2 

)
+ 

σ 2 
2 

2 

(
1 + 

A 2 

I 2 

)
+ 

σ 2 
3 

2 

(
1 + 

H 2 

R 2 

)
− μN − μI ( I + H ) 

− �
S 

− cρ( 1 − q ) E I − ϕ ρ Q 
I 

− αI 
A 
I 

− c ( 1 − ρ) ( 1 − q ) E A 

−αA 
Q 
A 

− cq E 
Q 

− δI 
I 
H 

− γI 
I 
R 

− γA 
A 
R 

− γH 
H 
R 

≤ � + λ + c + γI + δI + μI + αI + γA + αA + ϕ ρ + γH + μI 

+7 μ + 

1 
2 β2 σ

2 
1 λ

2 
(
S 2 + E 2 

)
+ 

σ 2 
2 

2 

(
A 

2 + I 2 
)

+ 

σ 2 
3 

2 

(
H 

2 + R 

2 
)

≤ � + λ + c + γI + δI + μI + αI + γA + αA + ϕ ρ + γH 

+ μI + 7 μ + 

(
1 
β2 σ

2 
1 λ

2 + σ 2 
2 + σ 2 

3 

) ˜ J 

2 := Y, 

hich is bounded and Y ∈ R + . Therefore, we obtain 

 t w ∧ ̂ ρ
0 d ψ ( S ( t ) , E ( t ) , I ( t ) , A ( t ) , Q ( t ) , H ( t ) , R ( t ) ) ≤∫ t w ∧ ̂ ρ

0 Yd t + 

∫ t w ∧ ̂ ρ
0 σ1 

λ
β

(
1 − S 

E 

)
d B 1 ( t ) 

+ 

∫ t w ∧ ̂ ρ
0 σ2 

(
1 − A 

I 

)
d B 2 ( t ) + 

∫ t w ∧ ̂ ρ
0 σ3 

(
1 − H 

R 

)
d B 3 ( t ) , 
4 
nd 

E ( ψ ( S() , E ( . ) , I ( . ) , A ( . ) , Q ( . ) , H ( . ) , R() ) ) 

≤ E ( ψ ( S ( 0 ) , E ( 0 ) , I ( 0 ) , A ( 0 ) , Q ( 0 ) , H ( 0 ) , R ( 0 ) ) ) + YE () 

≤ E ( ψ ( S ( 0 ) , E ( 0 ) , I ( 0 ) , A ( 0 ) , Q ( 0 ) , H ( 0 ) , R ( 0 ) ) ) + Y ˆ ρ, (9) 

here (. ) = (t w 

∧ ˆ ρ) and E shows the mathematical expectation. 

et 

w 

:= { t w 

≤ ˆ ρ} , w ≥ ω 1 . 

rom Eq. (8) , we have P (�w 

) ≥ ˜ κ . Moreover, for every v ∈ 

w 

at least one of the variables S , E , I , A , Q , H or R is

reater or equal to w, or less than or equal to 1 
w 

. Hence, 

t w := ψ 

(
S( t w 

) , E( t w 

) , I( t w 

) , A( t w 

) , Q( t w 

) , H( t w 

) , R( t w 

) 
)

is not

ess than w − 1 − log w or 1 
w 

− 1 + log w, i.e., 

t w ≥
(

w − 1 − log w 

)
∧ 

(
1 

w 

− 1 + log w 

)
. 

hen, (8) and (9) results 

 ( �0 ) + Y ˆ ρ ≥ E 

(
I �w 

�t w 

)
≥ ˜ κ

[ (
w − 1 − log w 

)
∧ 

(
1 

w 

− 1 + log w 

)] 
, 

here I �w 
is the usual notation for indicator of set �w 

. If w → ∞ ,

hen 

 > E ( �0 ) + Y ˆ ρ = ∞ , 

hich is a contradiction. So, the hypothesis P { t ∞ 

≤ ˆ ρ} > ˜ κ is 

rong and t ∞ 

= ∞ a.s. �

.1. Exponentially stability 

In this subsection, we study the stability of disease-free equilib- 

ium for model (6) . Let C 

2 , 1 (R 

n × R ) is the family of non-negative

unctions ψ(u, t) on R 

n × R that are twice continuously differen- 

iable in u and once in t . 

heorem 2. [27] Suppose there exists a function ψ(u, t) ∈ C 

2 , 1 (R 

n ×
 ) satisfying the following inequalities 

 ψ(u, t) | ≤ ζ1 | u | p , L ψ(u, t) ≤ −ζ2 | u | p , 
here ζi > 0 , i = 1 , 2 and p > 0 . Thus, the equilibrium point E 0 of the

ystem (6) is exponentially p -stable. Also, E 0 is exponentially stable in 

ean square and globally asymptotically stable, when p = 2 . 

emma 1. [4] Suppose p ≥ 2 and z, v ∈ R + and ε > 0 . Thus, we

ave 

v p−1 ≤ ε 1 −p 

p 
z p + 

( p − 1 ) ε 

p 
v p , 

z 2 v p−2 ≤ 2 ε 
2 −p 

2 

p 
z p + 

( p − 2 ) ε 

p 
v p . 

heorem 3. Let p ≥ 2 , the disease-free equilibrium point 

 

0 = ( 
�

μ
, 0 , 0 , 0 , 0 , 0 , 0) ∈ R 

7 
+ 

f the system (6) is exponentially p -stable, if 

σ 2 
2 

2 ( p − 1 ) < αI + γA + μ, 

nd 

σ 2 
3 

2 ( p − 1 ) < γH + μI + μ. 

roof. Considering the following Lyapunov function 

 = 

1 

p 

(
( 
�

μ
− S) p + E 

p + I p + A 

p + Q 

p + H 

p + R 

p 

)
, 
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Fig. 2. The trajectories of the solution for the cases R 0 < 1 and R 0 > 1 , when σ1 = σ2 = σ3 = 0 . 
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Fig. 3. Reproduction number R 0 for several values of β (up) and c m (down). 
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here p ≥ 2 , then 

 ψ = −
[ 

�μ
�−μS 

(
�
μ − S 

)p + ( c + μ) E p + ( γI + δI + μI + μ) I p 

+ ( αI + γA + μ) A p + ( αA + ϕ ρ + μ) Q 

p + ( γH + μI + μ) H 

p + μR p ] 

 ( λ + μ) S 
(

�
μ − S 

)p−1 + λSE p−1 + cρ( 1 − q ) EI p−1 + ϕ ρ QI p−1 + αI AI p−1 

 c ( 1 − ρ) ( 1 − q ) EA p−1 + αA QA p−1 + cq EQ 

p−1 + δI IH 

p−1 + γI IR 
p−1 

 γA AR p−1 + γH HR p−1 + 

σ2 
1 

2 β2 λ
2 ( p − 1 ) S 2 

(
�
μ − S 

)p−2 + 

σ2 
1 

2 β2 λ
2 ( p − 1 ) S 2 E p−2 

 

σ2 
2 
2 ( p − 1 ) A 2 I p−2 + 

σ2 
2 
2 ( p − 1 ) A p + 

σ2 
3 
2 ( p − 1 ) H 

p + 

σ2 
3 
2 ( p − 1 ) H 

2 R p−2 . 

y using Lemma 1 , we have 

 ψ ≤ −
[ 

�μ
�−μS 

(
�
μ − S 

)p + ( c + μ) E p + ( γI + δI + μI + μ) I p 

+ ( αI + γA + μ) A 

p + ( αA + ϕ ρ + μ) Q 

p + ( γH + μI + μ) H 

p + μR p ] 

 

(
( λ + μ) ( 

p−1 ) ε 
p 

+ 

σ 2 
1 

2 pβ2 λ
2 ( p − 1 ) ( p − 2 ) ε 

)(
�
μ − S 

)p 

 

(
( 2 λ + μ) ε 

1 −p 

p 
+ 

2 σ 2 
1 

pβ2 λ
2 ( p − 1 ) ε 

2 −p 
2 

)
S p 

 

(
( p−1 ) 

p 

(
λ + 

σ 2 
1 

2 β2 λ
2 ( p − 2 ) 

)
ε + 

c 
p 
ε 1 −p 

)
E p 

 

(
( p−1 ) 

p 

(
cρ( 1 − q ) + ϕ ρ + αI + 

σ 2 
2 

2 ( p − 2 ) 

)
ε + ( δI + γI ) 

ε 1 −p 

p 

)
I p 

 

(
( αI + γA ) 

ε 1 −p 

p 
+ ( αA + c ( 1 − ρ) ( 1 − q ) ) ( 

p−1 ) ε 
p 

+ 

σ 2 
2 

p ( p − 1 ) ε 
2 −p 

2 

+ 

σ 2 
2 

2 ( p − 1 ) 

)
A 

p + 

(
cq ( p−1 ) ε 

p 
+ ( ϕ ρ + αA ) 

ε 1 −p 

p 

)
Q 

p 

 

(
δI 

( p −1 ) ε 
p 

+ γH 
ε 1 −p 

p 
+ σ 2 

3 ( p − 1 ) ε 
2 −p 

2 

p 
+ 

σ 2 
3 

2 ( p − 1 ) 

)
H 

p 

 

(
( γI + γA + γH ) 

( p −1 ) ε 
p 

+ 

σ 2 
3 

2p ( p − 1 ) ( p − 2 ) ε 
)

R p . 

ccording to the assumption, we know 

σ 2 
2 
2 ( p − 1) < αI + γA + μ

nd 

σ 2 
3 
2 ( p − 1) < γH + μI + μ. Let ε is sufficiently small as the co-

fficients ( �μ − S) p , E p , I p , A 

p , Q 

p , H 

p and R 

p be negative. Thus,

rom Theorem 2 , E 0 is exponentially p -stable. If the conditions 
σ 2 

2 
2 < αI + γA + μ and 

σ 2 
3 
2 < γH + μI + μ hold, then, in the special 

ase p = 2 , the equilibrium point E 0 of system (6) will be globally
symptotically stable. � �

6 
. Numerical Scheme 

In this section, we describe a step-by-step collocation approach 

ased on the Legendre polynomials to solve a system of nonlinear 

tochastic differential equations. 

efinition 1. [28] The recurrence formula of Legendre polynomials 

n interval [ −1 , 1] are defined as 

i +1 ( t ) = 

1 
i +1 { ( 2 i + 1 ) t θi ( t ) − iθi −1 ( t ) } , i = 1 , 2 , ..., 

here θ0 (t) = 1 and θ1 (t) = t . 

efinition 2. The shifted Legendre polynomials on [ t min , t max ] are 

efined as 

 min 

t max θi = θi 

(
2 

t max −t min 
( t − t max ) + 1 

)
, i = 0 , 1 , 2 , .... 

We use a step-by-step approach to solve the system (6) on the 

nterval [0 , T max ] . For this purpose, let e > 0 and 

˜ P := 

[
T max 
e 

]
. Now,

o find a numerical solution of the system on the subinterval [0 , e ] ,
e will employ a Legendre collocation method. Consider the nu- 

erical solutions 1 X 

i 
n (t) , i = 1 , ..., 7 , as follows 

 

X 

i 
n (t) = 

n ∑ 

j=0 

e 
0 x 

i 
j 
e 
0 θ j (t) = 

e 
0 X 

T 
i 

e 
0 �(t) , i = 1 , ..., 7 , (10)

here S(t) � 1 X 

1 
n (t ) , E(t ) � 1 X 

2 
n (t ) , I(t ) � 1 X 

3 
n (t ) , A(t ) � 1 X 

4 
n (t) ,

(t) � 1 X 

5 
n (t ) , H(t ) � 1 X 

6 
n (t ) , R(t ) � 1 X 

7 
n (t) and 

 

0 
i 

:= 

[
x e 0 

i 
0 
, · · · , e 0 x 

i 
j 
, · · · , e 0 x 

i 
n 

]T 
, 

e 
0 ( t ) := 

[
φ0 

0 ( t ) , · · · , e 0 φ j ( t ) , · · · , e 0 φn ( t ) 
]T 

, 

or t ∈ [0 , e ] . According to (6) and (10) , we have 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

�1 
1 (t) � 

e 
0 X 

T 
1 

e 
0 

˜ �(t) − � + ( e 0 �(t) + μ) e 0 X 

T 
1 

e 
0 �(t) 

+ 

σ1 

β
e 
0 �(t) e 0 X 

T 
1 

e 
0 �(t) ˙ B 1 (t) � 0 , 

�1 
2 (t) � 

e 
0 X 

T 
2 

e 
0 

˜ �(t) −
(
e 
0 �(t) e 0 X 

T 
1 − (c + μ) e 0 X 

T 
2 

+ 

σ1 

β
e 
0 �(t) e 0 X 

T 
1 

˙ B 1 (t) 
)

e 
0 �(t) � 0 , 

�1 
3 (t) � 

e 
0 X 

T 
3 

e 
0 

˜ �(t) −
(

cρ(1 − q ) e 0 X 

T 
2 + ϕ ρ̄ e 

0 X 

T 
5 + αI 

e 
0 X 

T 
4 

−(γI + δI + μI + μ) e 0 X 

T 
3 + σ2 

e 
0 X 

T 
4 

˙ B 2 (t) 
)

e 
0 �(t) � 0 , 

�1 
4 (t) � 

e 
0 X 

T 
4 

e 
0 

˜ �(t) −
(

c(1 − ρ)(1 − q ) e 0 X 

T 
2 + αA 

e 
0 X 

T 
5 

−(αI + γA + μ) e 0 X 

T 
4 − σ2 

e 
0 X 

T 
4 

˙ B 2 (t ) 
)

e 
0 �(t ) � 0 , 

�1 
5 (t) � 

e 
0 X 

T 
5 

e 
0 

˜ �(t) −
(

cq e 0 X 

T 
2 − (αA + ϕ ρ̄ + μ) e 0 X 

T 
5 

)
e 
0 �(t) � 0

�1 
6 (t) � 

e 
0 X 

T 
6 

e 
0 

˜ �(t) −
(
δI 

e 
0 X 

T 
3 − (γH + μI + μ) e 0 X 

T 
6 

−σ3 
e 
0 X 

T 
6 

˙ B 3 (t) 
)

e 
0 �(t) � 0 , 

�1 
7 (t) � 

e 
0 X 

T 
7 

e 
0 

˜ �(t) −
(
γI 

e 
0 X 

T 
3 + γA 

e 
0 X 

T 
4 + γH 

e 
0 X 

T 
6 

−μ e 
0 X 

T 
7 + σ3 

e 
0 X 

T 
6 

˙ B 3 (t) 
)

e 
0 �(t) � 0 , 

(11) 

here 

 

e ˜ � ( t ) := 

[
∂ t ( 0 e φ0 ( t ) ) , · · · , ∂ t 

(
0 

e φ j ( t ) 
)
, · · · , ∂ t ( 0 e φn ( t ) ) 

]T 
, 

nd 

 

e �( t ) = β( 1 − ε m 

c m 

) 
e 
0 X 

T 
3 

e 
0 �( t ) + θ e 

0 X 
T 
4 

e 
0 �( t ) (∑ 7 

i =1 

e 

0 X 
T 
i 

e 
0 
�( t ) 

)
−θq ( e 0 

X T 
5 

e 
0 
�( t ) + e 0 X T 6 

e 
0 
�( t ) ) 

. 

lso, from (10) 

1 
1 � 

e 

0 X 

T 
1 

e 
0 �( 0 ) − S ( 0 ) � 0 , �1 

2 � 

e 

0 X 

T 
2 

e 
0 �( 0 ) − E ( 0 ) � 0 , 

1 
3 � 

e 

0 X 

T 
3 

e 
0 �( 0 ) − I ( 0 ) � 0 , �1 

4 � 

e 

0 X 

T 
4 

e 
0 �( 0 ) − A ( 0 ) � 0 , 

1 
5 � 

e 

0 X 

T 
5 

e 
0 �( 0 ) − Q ( 0 ) � 0 , �1 

6 � 

e 

0 X 

T 
6 

e 
0 �( 0 ) − H ( 0 ) � 0 , 

1 � 

e 

0 X 

T e �( 0 ) − R ( 0 ) � 0 . 

(12) 
7 7 0 
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Fig. 4. The trajectories of solution for the stochastic model (6) and the solution of the corresponding deterministic model (left) along with the histograms of frequencies for 

the populations S(t) , E(t) , I(t) and A(t) (right). 

7 



A. Babaei, H. Jafari, S. Banihashemi et al. Chaos, Solitons and Fractals 145 (2021) 110788 

Fig. 5. The trajectories of solution for the stochastic model (6) and the solution of the corresponding deterministic model (left) along with the histograms of frequencies for 

the populations Q(t) , H(t) and R(t) (right). 
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Fig. 6. Graphs of trajectories of I(t) , Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of q . 

L  

e
0

 

p

e{
N

B

a

p  

[  

I  

r

r

s

(

et t 0 , e 
0 

= 0 , t 0 , e n = e , and t 0 , e 
j 

, j = 1 , ..., n − 1 , be the roots of
 

 

θn −1 (t) . By evaluating Eqs. (11) and (12) at the n + 1 collocation

oints t 0 , e 
j 

, a system of 7(n + 1) nonlinear algebraic equations is 

xtracted as 

�1 
i 
(t 0 , e 

j 
) = 0 , i = 1 , ..., 7 , j = 1 , ..., n, 

�1 
i 

= 0 , i = 1 , ..., 7 . 
(13) 

ote that, the part ˙ B i (t 0 , e 
j 

) in (11) is evaluated by B i (t 0 , e 
j 

) −
 i (t 0 , e 

j−1 
) . This system can be solved using a numerical method, such 
9 
s Newton’s iterative method. Solving this system leads to an ap- 

roximate solution 1 X 

i 
n (t) , i = 1 , ..., 7 , for (6) on the interval [0 , e ] .

In general, to find a numerical solution of (6) on the interval 

( r − 1) e , r e ] , r = 2 , ..., ̃  P , suppose S(t) � r X 

1 
n (t ) , E(t ) � r X 

2 
n (t) ,

(t) � r X 

3 
n (t ) , A(t ) � r X 

4 
n (t ) , Q(t ) � r X 

5 
n (t ) , H(t ) � r X 

6 
n (t ) , R(t ) �

 

X 

7 
n (t) , in which 

 

X 

i 
n ( t ) = 

∑ n 
j=0 

re 
( r−1 ) e 

x i 
j 

re 
( r−1 ) e 

θ j ( t ) , i = 1 , ..., 7 , (14) 

uch that 

r e 
 r −1) e X i := 

[ 
r e 

( r −1) e x 
i 
0 , · · · , r e 

( r −1) e x 
i 
j , · · · , r e 

( r −1) e x 
i 
n 

] T 
, 
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Table 1 

The parameters values for the considered COVID-19 models. 

Parameter Description Value Source 

� Birth rate μ × N(0) [31] 

β Effective contact rate 0.8648 [22] 

c Contact rate 14.781 [31] 

θ Transmission rate 0 . 5944 [30] 

q The quarantine rate 1 . 8887 × 10 −7 [31] 

δI Transition rate from E to H 0 . 13266 [31] 

γI Recovery rate of I 0.33029 [31] 

γA Recovery rate of A 0.13978 [31] 

γH Recovery rate of H 0.11624 [31] 

αA Movement rate from Q to A 0.059 [22] 

αI Transition rate from A to I 0.078 [22] 

ρ Symptoms rate among infected individuals 0.86834 [31] 

c m Proportion of individuals who use masks 0.0546 [22] 

μI Mortality rate due to COVID-19 0.01 [30] 

ε m Efficacy of using masks to prevent catching the infection by S 0.5 [22] 

θq Efficacy of quarantine and hospitalization 1 [22] 

ϕ Proportion of Q with clinical symptoms 0.05 [29] 

ρ̄ Movement rate from Q to I with clinical symptoms 0 . 1259 [29] 

μ Natural death rate 1 / 69 . 5 [30] 

a
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w

o  
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t

nd 

 

r−1 ) e 
re �( t ) := 

[
( r−1 ) e 

re φ0 ( t ) , · · · , re 
( r−1 ) e 

φ j ( t ) , · · · , re 
( r−1 ) e 

φn ( t ) 
]T 

. 

Similarly, by (6) and (14) , we get 
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1 (t) � 

re 

(r−1) e X 

T 
1 

re 
(r−1) e 

˜ �(t) − � + ( re 
(r−1) e 

�(t) + μ)( re 
(r−1) e 

X 

T 
1 

re 
(r −1)e 

�(t)) + 

σ1 

β
re 

(r−1) e 
�(t) 

re 
(r−1) e X 

T 
1 

re 
(r−1) e 

�(t) ˙ B 1 (t) � 0 , 

�r 
2 (t) � 

re 

(r−1) e X 

T 
2 

re 
(r−1) e 

˜ �(t) − ( re 
(r−1) e 

�(t) re 
(r−1) e 

X 

T 
1 

−(c + μ) 
re 

(r−1) e X 

T 
2 + 

σ1 

β
re 

(r−1) e 
�(t) re 

(r−1) e 
X 

T 
1 

˙ B 1 (t)) re 
(r−1) e 

�(t) � 0 , 

�r 
3 (t) � 

re 

(r−1) e X 

T 
3 

re 
(r−1) e 

˜ �(t) − (cρ(1 − q ) re 
(r−1) e 

X 

T 
2 + ϕ ρ re 

(r−1) e 
X 

T 
5 

+ αI 
re 

(r−1) e 
X 

T 
4 − (γI + δI + μI + μ) 

re 
(r−1) e X 

T 
3 

+ σ2 
re 

(r−1) e 
X 

T 
4 

˙ B 2 (t)) re 
(r−1) e 

�(t) � 0 , 

�r 
4 (t) � 

re 

(r−1) e X 

T 
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re 
(r−1) e 

˜ �(t) − (c(1 − ρ)(1 − q ) re 
(r−1) e 

X 

T 
2 

+ αA 
re 

(r−1) e 
X 

T 
5 − (αI + γA + μ) 

re 
(r−1) e X 

T 
4 

−σ2 
re 

(r−1) e 
X 

T 
4 

˙ B 2 (t)) re 
(r−1) e 

�(t) � 0 , 

�r 
5 (t) � 

re 

(r−1) e X 

T 
5 

re 
(r−1) e 

˜ �(t) − ( cq re 
(r−1) e 

X 

T 
2 

−(αA + ϕ ρ + μ) 
re 

(r−1) e X 

T 
5 ) 

re 
(r−1) e 

�(t) � 0 , 

�r 
6 (t) � 

re 

(r−1) e X 

T 
6 

re 
(r−1) e 

˜ �(t) − (δI 
re 

(r−1) e 
X 

T 
3 

−(γH + μI + μ) 
re 

(r−1) e X 

T 
6 − σ3 

re 
(r−1) e 

X 

T 
6 

˙ B 3 (t)) re 
(r−1) e 

�(t) � 0 , 

�r 
7 (t) � 

re 

(r−1) e X 

T 
7 

re 
(r−1) e 

˜ �(t) − (γI 
re 

(r−1) e 
X 

T 
3 + γA 

re 
(r−1) e 

X 

T 
4 

+ γH 
re 

(r−1) e 
X 

T 
6 − μ re 

(r−1) e 
X 

T 
7 + σ3 

re 
(r−1) e 

X 

T 
6 

˙ B 3 (t)) re 
(r−1) e 

�(t) � 0 , 

(15) 

here 

 

r−1 ) e 
re ˜ �( t ) := [

∂ t 
(
( r−1 ) e 

re φ0 ( t ) 
)
, · · · , ∂ t 

(
( r−1 ) e 

re φ j ( t ) 
)
, · · · , ∂ t 

(
( r−1 ) e 

re φn ( t ) 
)]T 

,

re 
 

r−1 ) e 
�( t ) = 

β( 1 −ε m c m ) re 
( r−1 ) e 

X T 3 
re 

( r−1 ) e 
�( t ) + θ re 

( r −1 ) e 
X T 4 

re 
( r −1 ) e 

�( t ) (∑ 7 
i =1 

re 

( r−1 ) e X T 
i 

re 
( r−1 ) e 

�( t ) 

)
−θq 

(
re 

( r −1 ) e 
X T 

5 
re 

( r−1 ) e 
�( t ) + re 

( r−1 ) e 
X T 

6 
re 

( r−1 ) e 
�( t ) 

)
et t ( r −1) e , r e 

0 
= ( r − 1) e , t ( r −1) e , r e 

n = r e , and t ( r −1) e , r e 
j 

, j = 1 , ..., n −
 , be the roots of r e 

( r −1) e θn −1 (t) . By evaluating Eqs. (15) at this col-

ocation points, we have 

r 
i (t ( r −1) e , r e 

j 
) = 0 , i = 1 , ..., 7 , j = 1 , ..., n. (16)

ere, ˙ B i (t ( r −1) e , r e 
j 

) is estimated by B i (t ( r −1) e , r e 
j 

) − B i (t ( r −1) e , r e 
j−1 

) . 

lso, from Eq. (14) at t ( r −1) e , r e 
0 

, we get 

r 
i 
� 

re 

( r−1 ) e X 

T 
i 

re 
( r−1 ) e 

�
(
t ( 

r−1 ) e, re 
0 

)
−r−1 X 

i 
n 

(
t ( 

r−1 ) e, re 
0 

)
� 0 . (17) 

o, for each step r = 2 , ..., ̃  P , the relations (16) and (17) give a sys-

em of 7(n + 1) nonlinear equations for the unknown coefficients 
r e 

 r −1) e x 
i 
j 
, j = 0 , 1 , ..., n, i = 1 , ..., 7 . After solving this systems, the
10 
umerical solutions X 

i 
n (t) , i = 1 , ..., 7 , are computed on the inter-

al [0 , T max ] , as 

 

i 
n (t) = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

1 X 

i 
n (t) , t ∈ [0 , e ] , 
. . . 

. . . 

r X 

i 
n (t) , t ∈ [( r − 1) e , r e ] , 
. . . 

. . . 

˜ P X 

i 
n (t) , t ∈ [( ̃ P − 1) e , T max ] , 

(18) 

n which S(t) � X 

1 
n (t ) , E(t ) � X 

2 
n (t ) , I(t ) � X 

3 
n (t ) , A(t ) � X 

4 
n (t) ,

(t) � X 

5 
n (t ) , H(t ) � X 

6 
n (t) and R(t) � X 

7 
n (t) . 

. Numerical results 

In this section, we employ the numerical approach introduced 

n the previous section to illustrate the obtained results of the pro- 

osed models (2) and (6) for COVID-19. These simulations help 

s to investigate the dynamical behaviors of this pandemic when 

ome safety protocols are observed and random effects are added 

o the model. To this end, some estimations are considered for the 

arameters of the model according to some published researches 

bout this disease [22,29–31] . These approximations are displayed 

n Table 1 . Also, we need some initial values for the variables of 

hese models. So, the following initial conditions are supposed: 

 ( 0 ) = 11081739 , E ( 0 ) = 106 . 2642 , I ( 0 ) = 27 . 676 , 

 ( 0 ) = 53 . 839 , Q ( 0 ) = 1 . 1642 , H ( 0 ) = 1 , R ( 0 ) = 2 . 

(19) 

ll numerical experiments are performed using Matlab on a PC 

ith a 1.70GHz Core i5-4210 CPU and main memory 8 GB. 

Fig. 2 shows the endemic equilibrium E ∗ and the trajectories 

f the solution for the case R 0 = 0 . 7730 < 1 with β = 0 . 36 and

he case R 0 = 1 . 8569 > 1 with β = 0 . 8648 , when σ1 = σ2 = σ3 =
 . Fig. 3 displays the reproduction number R 0 for several val- 

es of β ∈ [0 , 1] and c m 

∈ [0 , 1] , with σ1 = σ2 = σ3 = 0 . Fig. 4 and

ig. 5 display the trajectories of solution for the stochastic model 

6) with σ1 = 0 . 15 , σ2 = 0 . 32 , σ3 = 0 . 26 and the solution of the

orresponding deterministic model along with the histograms of 

requencies for S(t) , E(t ) , I(t ) , A(t ) , Q(t ) , H(t ) and R(t ) . These

gures confirm that model (6) has a positive solution. Also, from 

he conditions 

σ 2 
2 ( p − 1) < αI + γA + μ, 
2 



A. Babaei, H. Jafari, S. Banihashemi et al. Chaos, Solitons and Fractals 145 (2021) 110788 

Fig. 7. The trajectories of I(t) , A(t) , Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of β . 
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Fig. 8. The trajectories of I(t) , Q(t) and H(t) for the stochastic model (left) and the deterministic model (right) with different values of c m . 

a

f

p

H

i

n

s  

t

j

w  

w

I

m  

c

6

q

nd 

σ 2 
3 

2 

( p − 1) < γH + μI + μ, 

or p ≥ 2 in Theorem 3 , we have 

p = 2 : 
σ 2 

2 

2 
= 0 . 0512 < αI + γA + μ = 0 . 2322 , 

σ 2 
3 

2 
= 0 . 0338 < γH + μI + μ = 0 . 1406 , 

 = 3 : σ 2 
2 = 0 . 1024 < 0 . 2322 , σ 2 

3 = 0 . 0676 < 0 . 1406 . 

ence, in the case p = 2 , E 0 is globally asymptotically stable and 

n the case p = 3 , the disease-free equilibrium point E 0 is expo- 

entially 3-stable. 
12 
Fig. 6 shows the trajectories of I(t) , Q(t) and H(t) for the 

tochastic model when σ1 = 0 . 2 , σ2 = 0 . 15 , σ3 = 0 . 22 and the de-

erministic model, for several values of q . Fig. 7 displays the tra- 

ectories of I(t) , A(t) , Q(t) and H(t) for the stochastic model 

ith σ1 = 0 . 3 , σ2 = 0 . 2 , σ3 = 0 . 15 and the deterministic model,

ith different values of β . Also, Fig. 8 indicates the trajectories of 

(t) , Q(t) and H(t) for the deterministic model and the stochastic 

odel with σ1 = 0 . 15 , σ2 = 0 . 24 , σ3 = 0 . 36 for different values of

 m 

. 

. Conclusion 

A stochastic model based on some health protocols such as 

uarantine, social distancing and wearing masks has outlined to 
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escribe the trend of COVID-19 pandemic in a population. The 

xistence and uniqueness of a positive global solution for the 

roposed model were proved. Stability analysis of the stochastic 

odel and its special deterministic case have been discussed. In 

rder to simulate the dynamical behaviors of the model, a step-by- 

tep collocation method based on the Legendre polynomials was 

ntroduced. Based on the numerical result , it can be seen that 

onsidering random effects for the parameters of the model helps 

o depict a more realistic aspect of the disease development. Also, 

hese results confirm that preventative actions and health strate- 

ies have a direct effect on the virus prevalence and control of the 

andemic. Considering more public health strategies in the model 

nd studying the impact of underlying diseases or other viral epi- 

emics such as influenza, on the spread of Coronavirus, are some 

esearch directions that can be investigated for future works. Also, 

erifying the frequency of the disease among different age groups 

ay be another useful subject. 
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