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A B S T R A C T   

This study investigates the influence of climate variables (pressure, relative humidity, temperature and wind 
speed) in inducing risk due to COVID 19 at rural, urban and total (rural and urban) population scale in 623 
pandemic affected districts of India incorporating the socioeconomic vulnerability factors. We employed 
nonstationary extreme value analysis to model the different quantiles of cumulative COVID 19 cases in the 
districts by using climatic factors as covariates. Wind speed was the most dominating climatic factor followed by 
relative humidity, pressure, and temperature in the evolution of the cases. The results reveal that stationarity, i. 
e., the COVID 19 cases which are independent of pressure, relative humidity, temperature and wind speed, 
existed only in 148 (23.7%) out of 623 districts. Whereas, strong nonstationarity, i.e., climate dependence, was 
detected in the cases of 474 (76.08%) districts. 334 (53.6%), 200 (32.1%) and 336 (53.9%) districts out of 623 
districts were at high risk (or above) at rural, urban and total population scales respectively. 19 out of 35 states 
were observed to be under high (or above) Kerala, Maharashtra, Goa and Delhi being the most risked ones. The 
study provides high-risk maps of COVID 19 pandemic at the district level and is aimed at supporting the decision- 
makers to identify climatic and socioeconomic factors in augmenting the risks.   

1. Introduction 

Although several studies have been carried out to understand the 
environment-pandemic relationship, there lacks a consensus among the 
research community about COVID 19 spread and its relationship with 
climatic factors. For example, Wu et al. (2020) by studying the records of 
166 countries recommended that an increase in temperature and hu-
midity may limit the COVID 19 pandemic partially. Oppositely, Zhu and 
Xie (2020) by investigating the cases of 122 cities in China, suggested 
that 1-degree Celsius rise in the average temperature was positively 
related with 4.9% of daily confirmed cases. They added that there was 
no strong evidence of COVID 19 cases declining with possible warming 
in the weather. However, earlier studies show that the spread of disease 
generated by the ‘severe acute respiratory syndrome’ (SARS) family of 
viruses was related to factors like air pollution, temperature, relative 
humidity and other meteorological and environmental factors (Bao 
et al., 2016; Cui et al., 2003; Lin et al., 2006). An important study over 
China indicated that COVID-19 decreases with the increase of 

temperature (Shi et al., 2020). Recent studies have shown that COVID 19 
is associated with extreme climate as well as the local factors in India. 
For instance, Sasikumar et al. (2020) showed that COVID 19 cases were 
clustered around high temperature zones relating them to the warming 
conditions in South Asia (India). Similarly, (Gupta et al., 2020)suggested 
that comparatively hot and dry regions in lower altitude of the Indian 
territory are more prone to the infection by COVID-19 transmission. 
These studies, in combination, indicate that the interrelationship of so-
cioeconomic and climatic factors with COVID 19 still needs to be 
explored for better risk assessment, preparedness and prevention (Sedik 
et al., 2021). The risk of communicable diseases, in general, are known 
to be affected primarily by factors such as the carrier of transmission, the 
host and the surroundings (Lin et al., 2006). COVID 19, being a 
pandemic now, is a risk to population all around the globe of varying 
socioeconomic characteristics and climatic exposure (Masud et al., 
2020; Wang et al., 2020; Dwivedi et al., 2021). India, which, after China 
is the most populous country on earth, faces a considerable risk of 
damage. The first COVID 19 case was reported in India in the state of 
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Kerala in January 2020 (Rawat, 2020). The number of confirmed cases 
increased to 20,000 from 1000 within a short span of 20 days. Some of 
the urgent steps which the government took were, for instance, boosting 
the efficiency of healthcare and management, lockdowns to confirm 
social distancing, recommending home quarantine for suspected people, 
home delivery of essential services, efficient surveillance and tracing etc. 
(Ghoneim et al., 2018; Dorgham et al., 2018; AlZu’bi et al., 2020). 
However, despite these efforts, as on 14th June 2020, the total number 
of confirmed COVID 19 cases had increased exponentially to 3,20,922. It 
is essential to understand that the fate of COVID 19 pandemic depends 
on the progression of the disease in countries like India. Moreover, In-
dia’s exposure to climate change and inadequate socioeconomic ca-
pacity to fight a disaster makes it more susceptible to the pandemic 
situation (Ali et al., 2019; Das et al., 2020a; Jha et al., 2020, 2019b; 
Sathaye et al., 2012; Sinha et al., 2019). Therefore, understanding the 
complexities of the relationship between the pandemic and climatic and 
socioeconomic factors is necessary for a more comprehensive assess-
ment of the risks (Anees et al., 2020; Sam et al., 2020; Vittal et al., 2020; 
Kumar et al., 2021). An inclusive framework which could incorporate 
the impact of climatic as well as the socioeconomic factors on the 
pandemic will help to formulate practical risk assessment, reduction and 
mitigations strategies. 

Most of the recent studies about the statistical dependence of COVID 
19 risk with natural and anthropogenic factors have been done by 
investigating the characteristics of involved variables. It is also rare to 
find any study which incorporates the time-varying probabilistic 

characteristics of COVID 19 cases. The association of the pandemic with 
the environmental and socioeconomic factors is not only intricate but is 
also varies with time in space. For instance, the climatic variables itself 
are time and space varying; therefore, their relationship with the 
exponentially evolving COVID cases also tend to vary. Many studies in 
different areas have shown that time-varying probabilistic models often 
prove to be more productive in comparison to their stationary coun-
terparts (Das et al., 2020b; Jha et al., 2020; Ragno et al., 2019; Song 
et al., 2020). In this study, we utilize a nonstationary extreme value 
model to estimate the COVID 19 risk in India. The major objectives of 
this study can be summarized as (i) to assess the association of climatic 
factors (pressure, relative humidity, temperature and wind speed) in 
augmenting the COVID 19 risks in India at rural, urban and total (rural 
and urban) population scales. (ii) to estimate vulnerability and exposure 
elements by assessing the socioeconomic condition of the population 
(iii) to prepare the high resolution (district-wise) map of the pandemic 
risk by combining the nonstationary COVID 19 hazard measure and the 
vulnerability and exposure elements. The recent study can help the 
policy makers in identifying the possible high risk hotspots of the COVID 
19 like pandemics as well in understanding the possible reasons gov-
erning the risks. The current study provides a simple, computationally 
efficient, data intensive and feasible mechanism to perform risk analysis 
at several scales. This can help policy makers in deciding the response 
measures at different administrative division scale and identify the 
natural as well human factors to keep an eye on to minimize the risk. 

Fig. 1. Districts and state boundaries. The 
abbreviation of the regions are as: Andaman 
and Nicobar- AN-UT, Andhra Pradesh-AP, Aru-
nachal Pradesh-AR, Assam-AS, Bihar-BR, 
Chandigarh-CH-UT,Chhattisgarh-CG, Dadra 
and Nagar Haveli-DH-UT,Daman and Diu-DD- 
UT, Delhi-DL-UT, Goa-GA, Gujarat-GJ, 
Haryana-HR, Himachal Pradesh-HP, Jammu 
and Kashmir-JnK, Jharkhand-JH, Karnataka- 
KA, Kerala-KL, Lakshadweep-LD-UT, Madhya 
Pradesh-MP, Maharashtra-MH, Manipur-MN, 
Meghalaya-ML, Mizoram-MZ, Nagaland-NL, 
Orissa-OR, Puducherry-PY-UT, Punjab-PB, 
Rajasthan-RJ, Sikkim-SK, Tamil Nadu-TN, Tri-
pura-TR, Uttar Pradesh-UK, Uttaranchal-UP, 
West Bengal-WB.   
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2. Study area and data 

2.1. Study area 

The current study is performed for 623 COVID 19 affected districts of 
India as on June 14th, 2020. Districts are the smallest administrative 
units of the country and also base units of COVID 19 response hierarchy. 
According to the last available census- the 2011 census of India, there 
are 35 states and union territories in the country. We performed the 
analysis at the district levels so that the conclusions drawn from the risk 
analysis could be implemented at the ground level. Please refer to the 
map in Fig. 1 for the details about the district and state boundaries. The 
administrative boundaries have been obtained from the global admin-
istrative boundaries (GADM) database, which has been used in several 
studies (Hijmans et al., 2011; Kugler et al., 2015). 

2.2. District-wise confirmed COVID 19 cases data 

Several websites are available which provide the updated record of 
COVID 19 cases in India primarily maintained by the governmental or 
non-government organizations. For this study, we obtained the daily 
confirmed district-wise COVID 19 cases for 103 days period of March 
4th, 2020 to June 14th, 2020, from the website https://howindialives. 
com/gram/metrics.php. The data sets have been prepared by collecting 
the information from various central and state government sources, and 
have been verified before utilizing in this study. 

2.3. Climate data 

The climate data was collected from the NCEP/NCAR Reanalysis 
project data set, which comprise of several meteorological data set 
starting from 1948 to present (Kalnay et al., 1996). The NCEP reanalysis 
data set are results of a comprehensive project designated to support the 
climate research, monitoring and investigation communities. The 
dataset continues to be updated with real-time data, and gridded output 
can be downloaded from the website https://www.psl.noaa.gov/da-
ta/gridded/. This data set has been extensively compared with several 
other meteorological observations to formulate prediction systems and 
is found to be good enough for climate studies (Bonaccorso et al., 2003; 
Kanamitsu et al., 2002; Sachindra et al., 2014; Sillmann et al., 2013). We 
obtained the daily near-surface data of pressure, relative humidity, 
temperature and wind speed for 103 days (March 4th, 2020, to June 
14th, 2020). These data, from the available coarse resolution of 2.5-de-
gree latitude x 2.5-degree longitude, were re-gridded on 0.5-degree 
latitude x 0.5-degree longitude grid and then extracted according to 
Indian administrative boundary. The re-gridding was performed using 
the inverse distance weighted average (IDWA) method (Snell et al., 
2000). The advantage of using IDW is that it simple, easy to comprehend 
and efficient in modeling the data which do not have outliers (Wu and 
Hung, 2016). The chances of getting outliers is rare in the climate data 
which we have analyzed as a very short duration data has been used. 
Therefore, IDW was utilized to keep the local spatial characteristics of 
the variables intact as this method interpolates the data based on the 
magnitude of its nearest neighbor. Once the climate data was re-gridded, 
district-wise average time series were obtained. 

2.4. Census data for household population and socioeconomic indicator 

In this study, we considered the last available census data, i.e. Census 
of India 2011 data to estimate the exposure and vulnerability of rural, 
urban and total population to COVID 19 pandemic in different districts 
of the country. The dataset was obtained from the official Census web-
site (http://censusindia.gov.in/) of Government of India. The exposure 
to the pandemic was estimated by considering the old (>65 years) and 
child population (0–14 years) for each of the districts according to the 
census records. Further, irrespective of the age, we also considered the 

‘other working’ population assuming that easing in eventual easing the 
lockdown restrictions will enhance the risks. Here, ‘other working’ 
population implies the number of people working in the sectors other 
than cultivation, agriculture or household industry. 

The vulnerability to COVID 19 was estimated by considering sig-
nificant factors which are crucial in managing the pandemic risk. We 
assumed that spreading awareness about COVID 19 in masses depends 
on what is the literacy level of population. Thus, the total number of 
illiterate population in a district was considered as one of the measures 
of vulnerability. Similarly, regular cleaning and washing as one of the 
critical measures to protect oneself are related to the availability of 
potable water in the household. Therefore, we quantified the number of 
household in each district which does not have freshwater availability in 
the premises. Further, one more parameter, i.e. the number of house-
holds with no electricity and sanitation facility was added to enhance 
the accuracy of vulnerability analysis. 

3. Methodology 

The methodology for COVID 19 risk estimation revolves around the 
nonstationary extreme value modeling of the confirmed cases in all 
districts of the country. The nonstationary extreme value analysis was 
chosen considering the time-varying extreme nature of the confirmed 
cases time series. In this study, we fit the extreme value distribution 
using the linear combination of climate variables (temperature, pres-
sure, relative humidity and wind speed) as possible covariates. The 
suitability of nonstationary and stationary distribution fits was checked, 
and then the probabilities of exceedance at different quantiles were 
calculated. The average of these probabilities served as a measure of 
COVID 19 hazard, which was eventually combined with the vulnera-
bility and exposure measures to get the risk estimates. Fig. 2 shows the 
flowchart of the methodology implemented during this study. 

3.1. Nonstationary extreme value modeling 

In this study, we considered the probability distribution of confirmed 
COVID 19 cases as the Generalized Extreme Value (G.E.V.) distribution. 
For the sake of simplicity, cases were modeled using G.E.V. distribution, 
considering they are continuous random variables. The cumulative 
probability distribution function of the G.E.V. distribution is given by 
Eq. (1) 

F(x;μ,σ,ξ)= {

exp
{

−
[
1+

ξ(x − μ)
σ

]− 1/ξ
}

, σ > 0, 1+
ξ(x − μ)

σ > 0,ξ∕= 0

exp
{
− exp

[
−
(x − μ)

σ

]}
, σ > 0, ξ= 0

(1)  

here, x is the time series of COVID 19 confirmed cases and μ, σ, and ξ 
mean the location, scale, and shape parameters of the G.E.V. probability 
distribution, respectively. Therefore, F(x; μ, σ, ξ) denotes the C.D.F. of 
the time series x with parameters μ, σ, and ξ. Two scenarios of extreme 
value modeling were used. First was the stationary case in which the 
parameters of G.E.V. distribution were considered constant. Second, in 
the nonstationary case, the parameters of the G.E.V. distribution were 
considered varying with time and could be explained by linear combi-
nations of climatic covariates. In other words, we related the climatic 
influence on the COVID 19 cases by modeling the G.E.V. distribution 
parameters as linear combinations of the climate covariates. It should be 
noted that nonstationary is introduced only in the location and scale 
parameters of G.E.V. distribution as it is difficult to model the shape 
parameter in nonstationary setting (Coles, 2001; Jha et al., 2020; Yil-
maz and Perera, 2014). Therefore, we kept the shape parameter constant 
to avoid complexity in modeling. 

29 linear combinations of the location and the scale parameters were 
formulated using the climatic covariates of pressure, relative humidity, 
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temperature and wind speed (termed as C1,C2, C3 and C4 respectively 
in the models). The combinations can be understood from models named 
as M0, M1, M2 … as shown in Table 1 in the supplementary information. 
Here, M0 is the stationary model where the values of distribution pa-
rameters are constant; therefore, independent of the climatic influence. 
Few examples of nonstationary G.E.V. models are given as follows: 

M2 : X ∼ GEV[(μ0 + μ1C1, σ, ξ)] (2)  

M19 : X ∼ GEV[(μ0 + μ1C1 + μ2C2), (σ0 + σ1C1 + σ2C2), ξ] (3) 

Here, in model M2 as shown by Eq. (2), μ1 defines the trend in the 
location parameter through physical covariate C1 which is the pressure 
time series. Similarly, in Model M19, C1 and C2 denoting pressure and 
relative humidity have been used to describe the location and scale 
parameters of COVID 19 confirmed cases time series. The significance of 
all 29 models can be understood following a similar concept. 

3.2. Best-fit model and parameters 

As discussed in the previous section, the stationary and nonsta-
tionary distributions were fit utilizing different covariate combinations. 
The significance of stationary and nonstationary models was checked by 
employing the likelihood ratio test (L.R. test) (Coles, 2001). The LR test 
has been utilized to select between the two model types- stationary and 
nonstationary GEV models. This selection is done based on the statistics 
obtained using the following equation: 

2[nllh(S) − nllh(NS)]〉cα (4)  

where, nllh(S) is the negative log likelihood of the stationary model and 
nllh(NS) is the negative log likelihood of the nonstationary model. Also, 
where, cα is the (1 − α) quantile of the Chi-square distribution. The dif-
ference between the stationary and nonstationary models is expected to 
follow an approximate chi-squared distribution at a particular signifi-
cance level α (5% in this study). Further, if nonstationarity is found true, 
then best nonstationary model is obtained by examining the p-value of 
the Chi-squared distribution. The null hypothesis of stationarity is 
rejected once p-value is greater than 0.05. The L.R. test was done for all 
28 nonstationary model combinations. The parameter estimation of G.E. 

Fig. 2. Methodological flowchart.  

Table 1 
Description of the models used in the present study.  

Model 
ID 

Description 

M0 X ∼ GEV[μ,σ, ξ]
M1 X ∼ GEV[(μ0 + μ1C1,σ,ξ]
M2 X ∼ GEV[(μ0 + μ2C2,σ, ξ]
M3 X ∼ GEV[(μ0 + μ3C3,σ,ξ]
M4 X ∼ GEV[(μ0 + μ4C4,σ,ξ]
M5 X ∼ GEV[(μ0 + μ1C1 + μ2C2,σ, ξ]
M6 X ∼ GEV[(μ0 + μ2C2 + μ3C3,σ, ξ]
M7 X ∼ GEV[(μ0 + μ3C3 + μ4C4,σ, ξ]
M8 X ∼ GEV[(μ0 + μ4C4 + μ2C2,σ, ξ]
M9 X ∼ GEV[(μ0 + μ4C4 + μ1C1,σ, ξ]
M10 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ3C3 σ,ξ]
M11 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ4C4 σ,ξ]
M12 X ∼ GEV[(μ0 + μ1C1 + μ2C3 + μ4C4 σ,ξ]
M13 X ∼ GEV[(μ0 + μ1C2 + μ2C3 + μ3C4 σ,ξ]
M14 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ3C3 + μ4C4, σ,ξ]
M15 X ∼ GEV[(μ0 + μ1C1), (σ0 + σ1C1), ξ]

M16 X ∼ GEV[(μ0 + μ2C2), (σ0 + σ2C2), ξ]

M17 X ∼ GEV[(μ0 + μ3C3), (σ0 + σ3C3), ξ]

M18 X ∼ GEV[(μ0 + μ4C4), (σ0 + σ4C4), ξ]

M19 X ∼ GEV[(μ0 + μ1C1 + μ2C2), (σ0 + σ1C1 + σ2C2), ξ]

M20 X ∼ GEV[(μ0 + μ2C2 + μ3C3), (σ0 + σ2C2 + σ3C3), ξ]

M21 X ∼ GEV[(μ0 + μ3C3 + μ4C4), (σ0 + σ3C3 + σ4C4), ξ]

M22 X ∼ GEV[(μ0 + μ4C4 + μ2C2), (σ0 + σ4C4 + σ2C2), ξ]

M23 X ∼ GEV[(μ0 + μ4C4 + μ1C1), (σ0 + σ4C4 + σ1C1), ξ]

M24 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ3C3), (σ0 + σ1C1 + σ2C2 + σ3C3), ξ]

M25 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ4C4), (σ0 + σ1C1 + σ2C2 + σ4C4), ξ]

M26 X ∼ GEV[(μ0 + μ1C1 + μ3C3 + μ4C4), (σ0 + σ1C1 + σ3C3 + σ4C4), ξ]

M27 X ∼ GEV[(μ0 + μ2C2 + μ3C3 + μ4C4), (σ0 + σ2C2 + σ3C3 + σ4C4), ξ]

M28 X ∼ GEV[(μ0 + μ1C1 + μ2C2 + μ3C3 + μ4C4), (σ0 + σ1C1 + σ2C2 +

σ3C3 + σ4C4),ξ]

Here, C1, C2,C3 and C4 denotes the climatic covariates pressure, relative hu-
midity, temperature and wind speed respectively. 
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V. models was done using the maximum likelihood estimation (MLE) 
method. The MLE method is very popular and upfront as compared to 
other parameter estimation methods such as the L-moments method in 
the context of nonstationary extreme value modeling (Katz et al., 2013). 
The parameters were estimated using the maximum likelihood function 
because this method is capable of incorporating the nonstationarity into 
the distribution parameter 

L(θ) = − nlogσ −

(

1+
1
ξ

)
∑n

i=1
log

[
1+

ξ(xi − μ)
σ

]

−
∑n

i=1
log

[
1 +

ξ(xi − μ)
σ

]−

(

1
ξ

)

, 1 +
ξ(xi − μ)

σ

> 0 (5) 

Here, L(θ) is the likelihood function of a particular parameter vector 
θ and n is the sample size. By minimizing the above function, the dis-
tribution parameters for both the nonstationary and stationary cases 
were obtained. 

3.3. Risk index estimation 

Once the best fit model and covariate combination is obtained, we 
obtained the exceedance probabilities of different quantiles (25th, 50th, 
75th and 95th) of COVID 19 cases. This was done in order to obtain the 
measure of hazard in terms of probabilities which could be later com-
bined with the vulnerability and exposure measures for estimation of 
risk. Based on the Intergovernmental Panel on Climate Change (IPCC) 
recommendations, the risk based on a hazard measure can be estimated 
as Risk = Hazard × Exposure × Vulnerability Based on the given for-
mula, the risk induced by COVID 19 was calculated for each district. The 
mathematical representation of formula applied for risk estimation, 
utilized in the study be given as: 

RC = PH × (PEC +PEO +PEW) ×
1

(PVILL + PVSE + PVWA)
(6) 

Here, 
RC: District wise COVID 19 risk index value. 
PH: The measure of hazard in terms of the average probability of 

different COVID 19 confirmed cases quantiles. 
PEC: The measure of exposure, i.e., the number of children per 

household. 
PEO: The measure of exposure, i.e., the number of old persons per 

household. 
PEW: The measure of exposure, i.e., the number of other working 

persons per household. 
PVILL: The measure of vulnerability, i.e., the number of illiterate 

persons per household. 
PVSE: The measure of vulnerability, i.e., the density of households 

with no electricity and sanitation facilities. 
PVWA: The measure of vulnerability, i.e., the density of households 

with no fresh water availability in the premises. 
The risk index value was calculated for each district 7and then 

classified into five classes of low (0–0.25), moderate (0.25–0.50), high 
(0.50–0.75), very high (0.75–1) and extreme (>1) risks. The risk index 
value was calculated for each district and later grouped for 35 different 
states and union territories. 

4. Results and discussion 

Fig. 3 shows the district-wise distribution of confirmed COVID 19 
cases across India. It was observed from the analysis that there were no 
cases in only 17 out of 640 selected districts until the last considered 
date of 14th June 2020. In 45 districts, mostly in the north east or upper 
Himalaya region, had less than 50 cases. Whereas, 417 districts had 
more than 1000 cumulative confirmed cases. The southern and western 
India had the most number of cases. As on 14th June, more than 10,000 
cumulative confirmed cases had been registered in 82 districts in the 
country. The central and northern part of the country had relatively less 
number of cases; however, this may be a result of poor testing facilities. 
It should be noted that the districts with zero cases were exempted from 
further analysis. Once the valid districts were finalized, the time series 

Fig. 3. The distribution of cumulative COVID 19 infected cases in 623 districts in India. ‘No Case represents districts with zero cases as on 14th June 2020.  
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for covariate data, including climatic variables, were prepared. Fig. 4 
represents the time average distribution of 103 days’ (March 4th, 2020 
to June 14th) pressure, relative humidity, temperature and wind speed 
data. The map of pressure distribution shows that the lowest values were 
obtained in the high altitude districts of the country. Maximum and 
minimum values of pressure were 1.02 bar and 0.58 bar in the districts 
in the northern and coastal area of the country, respectively. Similarly, 
the highest relative humidity was observed in the northern and south-
ernmost part of the country. These regions maintain a good amount of 
green cover throughout the year; therefore, high relative humidity in 
these regions is expected (Jha et al., 2019a). Moreover, the least relative 
humidity was found in the drier regions i.e. north west India. The 
relative humidity was found to be varying in the range of 26% to 92%. 
Further, the temperature was ranging from − 1.04 to 32.70 ◦Celsius with 
the high altitude regions having the lowest temperature and south-
western the lowest. The spatial distribution of mean temperature of the 
selected months is coherent with the average temperature distribution 
as suggested by other sources such as India Meteorological Department 

(IMD) (Srivastava et al., 2009). For estimating the wind speed, the 
magnitude of the u and v of the wind velocity components were 
computed and averaged for the grid points falling under the each indi-
vidual districts. It should be noted that instead of using time average 
values of the climatic data, we related their time with the confirmed 
COVID 19 cases of each corresponding districts. This modeling was done 
using the 29 covariate combination, as discussed in the methodology 
section. The covariate combination was prepared such that location and 
scale parameters which define the magnitude and variability of the 
number of confirmed COVID 19 cases could be explained by climatic 
variables. Further, the combinations were made such that the location 
and scale parameters are explained by both single and multiple climatic 
variables (Table 1). 

As discussed, it is assumed that the nonstationarity in the confirmed 
cumulative COVID 19 cases is due to the influence of climatic parame-
ters. The results from L.R. test reveal that stationarity, i.e., the COVID 19 
cases which are independent of pressure, relative humidity, temperature 
and wind speed, existed only in 148 (24%) out of 623 districts. Whereas, 

Fig. 4. The district-wise distribution of climatic covariates utilized in the study. The figure shows the average values of the climatic variables for the period of 2nd 
March 2020 to 14th June 2020. 
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strong nonstationarity, i.e., climate dependence was detected in the 
cases of 474 (76%)districts. Fig. 5 shows the spatial distribution of 
districts with stationarity and nonstationarity as the best fit results. It is 
evident from Fig. 3 and Fig. 4 that the districts which were found to be 
independent of the climate variables were also the ones where low 
COVID 19 cases were observed. This indicates that climate variables 
strongly govern the evolution of cases in India. Further, nonstationarity 
was observed in both magnitude (through location parameter) and 
variability (scale parameter). However, the majority of this influence 
was observed in the location parameter. It can be inferred from Table 2 
that the combinations involving the modeling of the location parameter 
as a linear function of climatic variables include model M1 to M14. Fig. 6 
and Table 2 reveal that climate parameters, particularly pressure, rela-
tive humidity and wind speed, individually govern the magnitude of 
COVID 19 cases. Moreover, the variability in confirmed cases across 
districts is influenced by the combined action of climate variables. It can 
be understood from the table and figure that the models which include 
single climatic covariate as an explanatory variable for location 
parameter were a good fit for most of the districts. The occurrence and 
evolution of cases in 133 districts of India were most significantly 
influenced by the surface pressure. Whereas, the wind speed was the 
most dominating factor in 80 districts. Further, relative humidity and 
temperature, as best fit covariates, were obtained in 74 and 46 districts 
respectively. It should also be noted that the combination of more than 
one climatic variables was generally not suited for location parameter 
modeling. However, the scale parameter, along with the location 
parameter, could be explained by such combinations. As discussed, it is 
also not advisable to model the scale parameter separately. Therefore, 
we estimated the scale parameter along with the location parameter in 
respective combinations of M15 to M28, as discussed in the previous 
section. The results revealed, using temperature as a possible covariate 
in location as well as scale parameter was best suited only for 14 dis-
tricts. However, pressure, relative humidity and wind speed had sig-
nificant influence in scale temperature was best suited for 8, 3, and 6 
districts respectively. The role of the combined impact of climate vari-
ables on case variability was most significantly observed in the south-
ernmost coastal districts where models M24, M26, M27 and M28 were 
the best combinations obtained for many districts in these regions (Fig. 6 
and Table 1) 

Once the best covariate combination or the model was obtained, the 
probabilities at different quantiles (25th, 50th, 75th and 95th) were also 
estimated using the parameters estimated in the previous step. The 

average of these probabilities was used as COVID 19 hazard measure. It 
is essential to understand that estimating different quantiles and then 
averaging them was performed to transform the occurrence of COVID 19 
cases into the probabilistic setting. This probabilistic setting was 
required to estimate the risk index values, as explained in Eq. (6). 
Further, according to the given formula, risk quantification required the 
estimation of exposure and vulnerability measures. For exposure, as 
discussed, the elderly and child population density along with the other 
working population was calculated for each district. The density here 
implies the number of people per household. In other words, the elderly, 
child and working population were calculated and then individually 

Fig. 5. The nonstationary and stationary classification of districts based on L.R. test results.  

Table 2 
Number of districts under different covariate based model categories.  

Model Climate variable combination No. of districts 

M0 Stationary 148 
M1 L-Pr 133 
M2 L-RH 74 
M3 L-T 46 
M4 L-W 80 
M5 L-Pr+RH 0 
M6 L-RH+T 2 
M7 L-T + W 1 
M8 L-W+RH 3 
M9 L-W+Pr 0 
M10 L-Pr+RH+T 4 
M11 L-Pr+RH+W 0 
M12 L-Pr+T + W 0 
M13 L-RH+T + W 0 
M14 L-Pr+RH+T + W 1 
M15 LS-Pr 8 
M16 LS-RH 3 
M17 LS-T 14 
M18 LS-W 6 
M19 LS-Pr+RH 2 
M20 LS-RH+T 8 
M21 LS-T + W 5 
M22 LS-W+RH 1 
M23 LS-W+Pr 1 
M24 LS-Pr+RH+T 25 
M25 LS-Pr+RH+W 6 
M26 LS-Pr+T + W 18 
M27 LS-RH+T + W 13 
M28 LS-Pr+RH+T + W 21 

Note: Pr, RH, T and W stand for Pressure, Relative Humidity, Temperature and 
Wind Speed respectively. 
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divided by the total number of households in each district. Similarly, the 
vulnerability measures were also estimated for each district and divided 
by the number of households. It has been observed that COVID 19 
propagation has been distinctive in the rural and urban areas. Consid-
ering this, we estimated the risk measures separately for rural, urban and 
total (combining rural and urban). Therefore, exposure and vulnera-
bility measures were also calculated separately for rural, urban and total 
population. Figure S1a and Figure S1b in the supplementary information 
represent the exposure and vulnerability distribution calculated for each 
district. Normalization of the exposure and vulnerability measures were 
done to bring all the values at a common scale. Eventually, the risk index 
was calculated using Eq. (6) at the scale of the rural, urban and total 
population. 

As discussed, the risk index values were classified into five different 
levels so that districts could be characterized into different classes of 
risk. It is very important to note that the stationary nature of COVID 19 
cases was observed only in 148 out of 623 districts. This is a very strong 
sign of climate variables controlling the magnitude of confirmed COVID 
19 cases. However, for more detailed analysis and characterization of 
results based on the role of climate variables in inducing risk, we 
calculated the risk by assuming two scenarios. In the first scenario 
(climate independent) it was assumed that COVID 19 cases were inde-
pendent of climatic conditions in all 623 districts rather than the orig-
inally obtained 148 districts. Whereas in the second scenario (climate 
dependent), 474 nonstationary and 148 stationary districts were 
considered as obtained from the previous steps. Table S1 and Table S2 in 
supplementary information represent the percentage of districts under 
different categories of risk under stationary as well as nonstationary 
condition. The inspection of results suggested that rural, urban and total 
population in 334, 200 and 336 out of 623 districts are under high risk 
under climate dependent condition as compared to 303, 187 and 305 
under climate independent condition respectively. 

The results were categorized on state-wise scale for the climate- 
dependent condition (Table 3). It was found that the rural population 
in 19 out of 35 states and union territories have at least 50% of their 
districts under the high or above risk classes. Whereas, the urban pop-
ulation of greater or equal to 50% districts in 11 states were under such 
risk classes. Associating the COVID 19 hazard measure with district-wise 
combined rural and urban population classes suggested that 50% or 
more districts in 19 out of 35 states exhibit a high risk of the pandemic. 
At the total population sale, 100% districts in 6 states and union terri-
tories demonstrate high risk when analyzed considering the climate 
characteristics. The spatial distribution of risk indicates that the rural 
population in the southern and northwestern districts are most vulner-
able (Fig. 7). This risk was observed to be relatively lesser at urban level, 

possibly because of the high capacity and low vulnerability of these 
population. Most of the districts in the country mainly comprise of the 
rural population; therefore, the combined analysis at total population 
scale suggest a similar pattern of risk estimates. Further, the spatial 
pattern of risk under the climate independent assumption was similar to 
the climate dependent condition; however, the risk was more severe in 
the latter case. 

Fig. 6. Model distribution with different climate variable combination for each district. Pr, RH, T and W stand for Pressure, Relative Humidity, Temperature and 
Wind Speed, respectively. 

Table 3 
The percentage districts (state-wise) due under high risk due to COVID 19 under 
climate dependent condition.  

Sl No State Rural Urban Total 

1 Jammu and Kashmir 54.55 63.64 50.00 
2 Himachal Pradesh 75.00 58.33 75.00 
3 Punjab 95.00 50.00 90.00 
4 Uttarakhand 69.23 15.38 76.92 
5 Haryana 80.95 52.38 80.95 
6 Rajasthan 42.42 21.21 48.48 
7 Uttar Pradesh 47.89 18.31 40.85 
8 Bihar 13.16 7.89 10.53 
9 Sikkim 25.00 0.00 25.00 
10 Arunachal Pradesh 6.25 0.00 0.00 
11 Nagaland 9.09 9.09 9.09 
12 Manipur 33.33 22.22 44.44 
13 Mizoram 37.50 25.00 37.50 
14 Tripua 50.00 50.00 50.00 
15 Meghalaya 14.29 14.29 14.29 
16 Assam 22.22 25.93 25.93 
17 West Bengal 0.00 0.00 0.00 
18 Jharkhand 20.83 16.67 16.67 
19 Odisha 36.67 23.33 36.67 
20 Chhattisgarh 22.22 16.67 22.22 
21 Madhya Pradesh 54.00 34.00 58.00 
22 Gujarat 76.92 50.00 73.08 
23 Maharashtra 100.00 0.00 100.00 
24 Andhra Pradesh 69.57 8.70 69.57 
25 Karnataka 93.33 33.33 93.33 
26 Goa 100.00 50.00 100.00 
27 Kerala 100.00 85.71 100.00 
28 Tamil Nadu 84.38 50.00 87.50 
29 NCT of Delhi (UT) 77.78 100.00 100.00 
30 Puducherry (UT) 50.00 75.00 75.00 
31 Andaman & Nicobar (UT) 100.00 33.33 100.00 
32 Chandigarh (UT) 100.00 100.00 100.00 
33 Daman & Diu (UT) 0.00 0.00 0.00 
34 Dadra & Nagar Haveli (UT) 85.71 54.29 91.43 
35 Lakshadweep (U.T.) 0.00 0.00 0.00  
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5. Conclusions 

This study enables the understanding of the influence of climate 
variables in inducing risk due to COVID 19 in rural, urban and combined 
population scale at the district level in India. The results reveal there is a 
significant relationship between climatic factors and COVID 19 risk. It 
was also found that the risk of the pandemic is greater in rural popu-
lation. The findings of our study are in line with some other recent works 
which suggest that there could be a possible link between the COVID 19 
risk and climate variables. The investigation draws the attention of the 
decision-makers to strengthen the capacity of the population, especially 
in rural areas. The vulnerability to the pandemic is also a factor of the 
density of the educated population. Therefore, the policymakers in India 
must focus on increasing awareness in climatically vulnerable rural 
areas in the country which are backward in terms of education, sanita-
tion and clean water availability. The study provides useful insights for 
the decision-makers to identify the high-risk hotspots of the pandemic in 
India and the exposure and vulnerability factors associated with it. 
Although, the pandemic risk depends upon a number of factors such as 
availability of testing facilities, efficient contact tracing, the success rate 
of the testing method, the analysis, with limited data, performs well in 
characterizing the climate and socioeconomic factors in inducing 

pandemic risks. 

Author Contributions 

Srinidhi Jha: conceptualized the problem, Performed the nonsta-
tionary analysis and prepared the first draft of the manuscript 

Manish Kumar Goyal: contributed for problem formulation, Anal-
ysis and played supervisory role 

Brij Gupta: contributed for problem formulation, Analysis and 
played supervisory role 

Anil Kumar Gupta: contributed for problem formulation, Analysis 
and played supervisory role 

Additional Information 

Data availability 

The confirmed COVID 19 data were collected from the website 
https://howindialives.com/gram/metrics.php 

Climate data (pressure, relative humidity, temperature and wind 
speed) from the NCEP/NCAR Reanalysis website https://www.psl.noaa. 
gov/data/gridded/. 

Census data were obtained from the official Census website (http:// 

Fig. 7. Spatial distribution of risk for climate dependent and climate independent cases.  

S. Jha et al.                                                                                                                                                                                                                                      



Technological Forecasting & Social Change 167 (2021) 120679

10

censusindia.gov.in/) of Government of India. 
All the data sets are freely available on the given websites. 

Declaration of Competing Interest 

The authors declare no competing interests. 

Supplementary materials 

Supplementary material associated with this article can be found, in 
the online version, at doi:10.1016/j.techfore.2021.120679. 

References 

Ali, H., Modi, P., Mishra, V., 2019. Increased flood risk in Indian sub-continent under the 
warming climate. Weather Clim. Extrem. 25, 100212. 

AlZu’bi, S., Shehab, M., Al-Ayyoub, M., Jararweh, Y., et al., 2020. Parallel 
implementation for 3d medical volume fuzzy segmentation. Pattern Recognit. Lett. 
130, 312–318. 

Anees, M.M., Shukla, R., Punia, M., Joshi, P.K., 2020. Assessment and visualization of 
inherent vulnerability of urban population in India to natural disasters. Clim. Dev. 
12, 532–546. 

Bao, J., Wang, Z., Yu, C., Li, X., 2016. The influence of temperature on mortality and its 
Lag effect: a study in four Chinese cities with different latitudes. BMC Public Health 
16, 375. 

Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., Sutera, A., 2003. Spatial variability of 
drought: an analysis of the SPI in Sicily. Water Resour. Manag. 17, 273–296. https:// 
doi.org/10.1023/A:1024716530289. 

Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer, 
London.  

Cui, Y., Zhang, Z.-.F., Froines, J., Zhao, J., Wang, H., Yu, S.-.Z., Detels, R., 2003. Air 
pollution and case fatality of SARS in the People’s Republic of China: an ecologic 
study. Environ. Heal. 2, 15. 

Das, J., Jha, S., Goyal, M.K., 2020a. On the relationship of climatic and monsoon 
teleconnections with monthly precipitation over meteorologically homogenous 
regions in India: wavelet & global coherence approaches. Atmos. Res. 238, 104889. 

Das, J., Jha, S., Goyal, M.K., 2020b. Non-stationary and copula-based approach to assess 
the drought characteristics encompassing climate indices over the Himalayan states 
in India. J. Hydrol. 580, 124356. 

Dorgham, O., Al-Rahamneh, B., Almomani, A., Khatatneh, K.F., 2018. Enhancing the 
security of exchanging and storing DICOM medical images on the cloud. Int. J. Cloud 
Appl. Comput. (IJCAC) 8 (1), 154–172. 

Dwivedi, R.K., Kumar, R., Buyya, R., 2021. Gaussian distribution-based machine learning 
scheme for anomaly detection in healthcare sensor cloud. Int. J. Cloud Appl. 
Comput. (IJCAC) 11 (1), 52–72. 

Ghoneim, A., Muhammad, G., Amin, S.U., et al., 2018. Medical image forgery detection 
for smart healthcare. IEEE Commun. Mag. 56 (4), 33–37. 

Gupta, A., Banerjee, S., Das, S., 2020. Significance of geographical factors to the COVID- 
19 outbreak in India. Model. earth Syst. Environ. 6, 2645–2653. 

Hijmans, R., Nell, G., Arnel, R., Maunahan, A., Wieczorek, J., Kapoor, J., 2011. Global 
Administrative areas. GADM v2 Global Shapefile. 

Jha, S., Das, J., Goyal, M.K., 2019a. Assessment of risk and resilience of terrestrial 
ecosystem productivity under the influence of extreme climatic conditions over 
India. Sci. Rep. 9, 1–12. 

Jha, S., Das, J., Goyal, M.K., 2020. Low frequency global-scale modes and its influence on 
rainfall extremes over India: nonstationary and uncertainty analysis. Int. J. Climatol. 
1, 1–9. https://doi.org/10.1002/joc.6935. 

Jha, S., Das, J., Sharma, A., Hazra, B., Goyal, M.K., 2019b. Probabilistic evaluation of 
vegetation drought likelihood and its implications to resilience across India. Glob. 
Planet. Change 176, 23–35. https://doi.org/10.1016/j.gloplacha.2019.01.014. 

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., 
Saha, S., White, G., Woollen, J., 1996. The NCEP/NCAR 40-year reanalysis project. 
Bull. Am. Meteorol. Soc. 77, 437–472. 

Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.K., Hnilo, J.J., Fiorino, M., Potter, G. 
L., 2002. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 
1631–1643. https://doi.org/10.1175/BAMS-83-11-1631(2002)083<1631: 
NAR>2.3.CO;2. +1559.  

Katz, R.W., AghaKouchak, A., Easterling, D., Hsu, K., Schubert, S., 2013. Statistical 
Methods for Nonstatonary Extremes. In: Sorooshian, S. (Ed.), Extremes in a Changing 
Climate: Detection, Analysis and Uncertainty, Water Science and Technology 
Library. Springer Netherlands, Dordrecht, pp. 15–37. https://doi.org/10.1007/978- 
94-007-4479-0. 

Kugler, T.A., Van Riper, D.C., Manson, S.M., Haynes II, D.A., Donato, J., Stinebaugh, K., 
2015. Terra Populus: workflows for integrating and harmonizing geospatial 
population and environmental data. J. Map Geogr. Libr. 11, 180–206. 

Kumar, N., Poonia, V., Gupta, B.B., Goyal, M.K., 2021. A novel framework for risk 
assessment and resilience of critical infrastructure towards climate change. Technol. 
Forecast. Soc. Change 165, 120532. 

Lin, K., Fong, D.Y.-T., Zhu, B., Karlberg, J., 2006. Environmental factors on the SARS 
epidemic: air temperature, passage of time and multiplicative effect of hospital 
infection. Epidemiol. Infect. 134, 223–230. 

Masud, M., Gaba, G.S., Alqahtani, S., Muhammad, G., Gupta, B.B., Kumar, P., 
Ghoneim, A., 2020. A lightweight and robust secure key establishment protocol for 
internet of medical things in COVID-19 patients care. IEEE Internet of Things 
Journal. 

Rawat, Mukesh, 2020. Coronavirus in India: Tracking country’s First 50 COVID-19 cases; 
What Numbers Tell [WWW Document]. India Today. URL. https://www.indiatoday. 
in/india/story/coronavirus-in-india-tracking-country-s-first-50-covid-19-cases-wh 
at-numbers-tell-1654468-2020-03-12. accessed 5.15.20.  

Ragno, E., AghaKouchak, A., Cheng, L., Sadegh, M., 2019. A generalized framework for 
process-informed nonstationary extreme value analysis. Adv. Water Resour. 130, 
270–282. 

Sachindra, D.A., Huang, F., Barton, A., Perera, B.J.C., 2014. Statistical downscaling of 
general circulation model outputs to precipitation-part 1: calibration and validation. 
Int. J. Climatol. https://doi.org/10.1002/joc.3914. 
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