TABLE 3.
Feature selection method | Performance metrics | Mean (%) | Standard deviation | Max (%) | Min (%) |
LASSO | Accuracy | 87.723 | 0.468 | 88.663 | 85.82 |
Sensitivity | 90.93 | 0.341 | 91.525 | 89.50 | |
Specificity | 84.52 | 0.792 | 85.891 | 82.14 | |
F-measure | 0.883 | ||||
FSASL | Accuracy | 76.181 | 1.069 | 78.551 | 73.45 |
Sensitivity | 76.233 | 1.255 | 78.839 | 72.58 | |
Specificity | 75.664 | 1.264 | 77.868 | 72.20 | |
F-measure | 0.785 | ||||
LLCFS | Accuracy | 75.737 | 1.004 | 78.690 | 71.64 |
Sensitivity | 74.205 | 1.069 | 77.031 | 70.11 | |
Specificity | 77.881 | 1.378 | 81.036 | 73.64 | |
F-measure | 0.817 | ||||
CFS | Accuracy | 80.517 | 1.737 | 82.86 | 74.005 |
Sensitivity | 80.035 | 1.813 | 82.22 | 73.25 | |
Specificity | 79.16 | 1.977 | 81.79 | 73.084 | |
F-measure | 0.867 | ||||
SVM-RFE | Accuracy | 68.57 | 1.186 | 70.474 | 65.60 |
Sensitivity | 75.99 | 1.676 | 78.832 | 71.715 | |
Specificity | 60.92 | 1.301 | 63.426 | 57.34 | |
F-measure | 0.6743 |