TABLE 4.
Feature selection method | Performance metrics | Mean (%) | Standard deviation | Max (%) | Min (%) |
LASSO | Accuracy | 96.11 | 0.859 | 96.88 | 91.33 |
Sensitivity | 95.03 | 1.080 | 95.93 | 89.84 | |
Specificity | 97.18 | 0.798 | 97.84 | 92.93 | |
F-measure | 0.973 | ||||
FSASL | Accuracy | 85.85 | 0.9129 | 87.503 | 80.88 |
Sensitivity | 79.27 | 0.986 | 81.484 | 76.01 | |
Specificity | 92.03 | 1.4433 | 93.308 | 85.40 | |
F-measure | 0.937 | ||||
LLCFS | Accuracy | 82.29 | 0.624 | 83.39 | 80.77 |
Sensitivity | 77.54 | 0.73 | 78.566 | 75.408 | |
Specificity | 86.81 | 1.081 | 88.41 | 83.74 | |
F-measure | 0.85 | ||||
CFS | Accuracy | 80.67 | 1.68 | 90.427 | 74.48 |
Sensitivity | 88.43 | 2.328 | 74.968 | 80.49 | |
Specificity | 72.38 | 1.3677 | 74.486 | 68.58 | |
F-measure | 0.795 | ||||
SVM-RFE | Accuracy | 80.20 | 0.920 | 82.001 | 77.89 |
Sensitivity | 84.00 | 1.207 | 85.99 | 79.86 | |
Specificity | 75.91 | 1.251 | 77.806 | 73.29 | |
F-measure | 0.815 |