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Abstract

Lung cancer is the leading cause of cancer-related death and patients most commonly present with 

incurable metastatic disease. National guidelines recommend screening for high-risk patients with 

low-dose computed tomography (LDCT), but this approach has limitations including high false 

positive rates. Activity-based nanosensors (ABNs) detect dysregulated proteases in vivo and 

release a reporter to provide a urinary readout of disease activity. Here, we demonstrate the 

translational potential of ABNs by coupling ABN multiplexing with intrapulmonary delivery to 

detect early-stage lung cancer in an immunocompetent, genetically engineered mouse model 

(GEMM). The design of the multiplexed panel of sensors was informed by comparative 

transcriptomic analysis of human and mouse lung adenocarcinoma data sets and in vitro cleavage 
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assays with recombinant candidate proteases. When employed in a Kras and Trp53 mutant lung 

adenocarcinoma mouse model, this approach confirmed the role of metalloproteases in lung 

cancer and enabled accurate early detection of disease, with 92% sensitivity and 100% specificity.

Introduction

Lung cancer is the most common cause of cancer-related death (25.3% of cancer deaths in 

the U.S), with dismal 18.6% five-year survival rates1. Key to this high mortality is the fact 

that 57% of lung cancer patients have distant spread of disease at the time of diagnosis1. 

Because patients with regional or localized disease have six- to 13-fold higher five-year 

survival rates than patients with distantly spread disease1, significant effort has been 

dedicated to improving diagnostic sensitivity. Screening with low-dose computed 

tomography (LDCT) is recommended in high-risk patients (adults aged 55 to 80 with a 30 

pack-year smoking history2) and enables a relative reduction in mortality of 20% when 

compared to the previous standard, chest radiography3. However, these screening tests are 

expensive4, have high false positive rates (~96%3) and potentially expose patients to biopsy-

related complications, raising concern for overdiagnosis and increased healthcare-associated 

cost burden5,6.

Great strides in the field of molecular diagnostics have yielded promising approaches that 

may be used in conjunction with LDCT for lung cancer screening. Circulating tumor DNA 

(ctDNA) has emerged as a promising tool for noninvasive molecular profiling of lung 

cancer7–10. However, the presence of ctDNA has been shown to scale with tumor burden and 

there are fundamental sensitivity limits for early stage disease7,10,11. To achieve high-

sensitivity detection of ctDNA in stage I-II cancer patients, it is estimated that large (>80 

mL) blood volumes would be needed with current methodologies, potentially limiting the 

widespread adoption of this approach12. Similarly, circulating tumor cells (CTCs) may be 

detected in patients with advanced-stage non-small cell lung cancer (NSCLC), but the 

sensitivity of CTCs for detection of non-metastatic disease remains low at present13–16. 

Finally, transcriptional profiling of bronchial brushings can enhance the diagnostic 

sensitivity of bronchoscopy alone, even for peripheral and early-stage pulmonary lesions, an 

approach that leverages the “field of injury” that results from smoking and other 

environmental exposures6,17. However, as with any invasive procedure, bronchoscopy 

carries the risk of attendant complications such as pneumothorax18.

Rather than relying on imaging techniques or detection of endogenous biomarkers in 

circulation, we have developed a class of “activity-based nanosensors” (ABNs) that monitor 

for a disease state by detecting and amplifying activity of aberrant proteases to generate 

urinary reporters19–24. Protease activity is dysregulated in cancer, and proteases across 

catalytic classes play a direct role in all of the hallmarks of cancer, including tumor growth, 

angiogenesis, invasion, and metastasis25–30. ABNs leverage dysregulated protease activity to 

overcome the insensitivity of previous biomarker assays, amplifying disease-associated 

signals generated in the tumor microenvironment and providing a highly concentrated urine-

based readout. We have previously explored the sensitivity of this approach via 

mathematical modeling31 and cell transplant models23. However, to drive accurate diagnosis 
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in a heterogeneous disease, a diagnostic must also be highly specific. Here, we explore the 

potential to attain both sensitive and specific early disease detection through multiplexing of 

14 ABNs in an immunocompetent GEMM, which better recapitulates key aspects of human 

disease and allows for evaluation of diagnostic accuracy at the earliest stages of 

tumorigenesis. To this end, we established intrapulmonary ABN delivery as a means of 

eliminating activation in blood and off-target organs (reducing noise), while maximizing 

delivery to the target organ (increasing signal) (Fig. 1A–B). After cleavage of ABN 

substrates by proteases in the lung, reporters rapidly entered the urine via the blood, where 

they were quantified by mass spectrometry (Fig. 1C–D). Finally, we leveraged a machine 

learning classification algorithm, termed random forest, to achieve diagnostic sensitivity of 

92% and specificity of 100% in detecting early-stage disease in a genetically engineered, 

Kras and Trp53 mutant mouse model of lung adenocarcinoma (Fig. 1E).

Results

Proteases are overexpressed in a Kras and Trp53 mutant mouse model of lung 
adenocarcinoma

Common driver mutations of NSCLC in humans are those that activate KRAS (10-30%) or 

inactivate function of TP53 (50-70%)32. To examine the ability of ABNs to detect lung 

cancer in a relevant mouse model, we selected a genetically driven model of 

adenocarcinoma (a type of NSCLC that accounts for 38% of all cases of lung cancer33) that 

incorporates mutations in these genes. This extensively characterized model uses 

intratracheal administration of virus expressing Cre recombinase to activate mutant 

KrasG12D and delete both copies of Trp53 in the lungs of KrasLSL-G12D/+;Trp53fl/fl (KP) 

mice (fig. S1A), initiating tumors that closely recapitulate human disease progression from 

alveolar adenomatous hyperplasia to grade IV adenocarcinoma over the course of about 

18-20 weeks (fig. S1B)34

In anticipation of our use of the KP model to validate ABNs in vivo, we sought to 

characterize protease expression in tumor-bearing KP mice to nominate protease targets. To 

that end, we selected a recently published RNA-Seq dataset that profiled KP tumors across 

disease stages, and we used it to identify overexpressed secreted protease genes35. In this 

study, tumor cells expressing a fluorescent reporter had been isolated by FACS and profiled 

by RNA-Seq. We pooled samples from metastatic (Tmet, n = 9), non-metastatic (Tnon-met, n 
= 10), and early stage (KP-Early, n = 3) tumors, as well as Kras-mutant, Trp53-intact (K, n = 

3) tumors and identified proteases that were overexpressed in tumor cells relative to normal 

lung cells (n = 2) (Fig. 2A).

Because this dataset was derived from FACS-purified tumor cells, it failed to take into 

account contributions from the KP tumor microenvironment. In addition, it was limited in its 

representation of early-stage disease. We therefore analyzed an additional gene expression 

dataset profiling the K model36, which is transcriptionally similar to early-stage KP tumors 

and human lung adenomas35. Significance analysis of microarrays (SAM) was used to 

identify proteases with increased expression in K tumors relative to normal lungs37 (Fig. 

2B).
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Proteases overexpressed in the KP mouse model are relevant to human lung 
adenocarcinoma

To ensure that ABNs were tuned to address human lung adenocarcinoma (LUAD)-

associated proteases38–40 in addition to proteases enriched in the KP model, we mined The 

Cancer Genome Atlas (TCGA) dataset, with mRNA sequencing (RNA-Seq) and clinical 

data collected from 527 LUAD patients41. We analyzed expression levels of 168 candidate 

human extracellular endoprotease genes in these patients using the DESeq2 differential 

expression analysis package (Fig. 2C)42. Of the 527 TCGA patients with RNA-Seq data for 

primary LUAD (294 stage I, 123 stage II, 84 stage III, and 26 stage IV), 59 had matched 

normal adjacent tissue suitable for use as a comparison (Fig. 2C, top). Of the 20 most highly 

upregulated proteases, nine were metalloproteases, 11 were serine proteases, and several 

overlapped with proteases overexpressed in KP tumors (Fig. 2C, bottom).

We then sought to assess whether proteases associated with benign lung diseases could 

confound the specificity of ABNs for lung cancer. To this end, we performed receiver 

operating characteristic (ROC) analysis on RNA-Seq data from interstitial lung disease 

(ILD) and chronic obstructive pulmonary disease (COPD), curated by the Lung Genomics 

Research Consortium (LGRC). In ROC analysis, the sensitivity and specificity of a given 

classifier (e.g. protease gene expression) in discriminating between two cohorts (e.g. disease 

and control) are assessed across a series of cutoff values. The area under the curve (AUC) is 

then calculated as measure of classification accuracy, where a perfect diagnostic has an AUC 

of 1 and a random diagnostic has an AUC of 0.5. ROC analysis revealed that proteases 

overexpressed in LUAD were not increased in COPD or ILD (fig. S2A)43; none of the 10 

proteases included in the analysis classified benign lung diseases from healthy lungs with an 

AUC greater than 0.6. In contrast, classification efficiency in LUAD reached above 0.9 in 

eight out of ten cases (fig. S2B–D). The finding that genes upregulated in LUAD are not 

overexpressed in COPD or ILD may be due to our use of NAT as “normal” tissue when 

nominating proteases for the panel, as NAT is known to harbor inflammatory gene 

expression changes that distinguish it from “true normal” tissue44. Therefore, the genes of 

the LUAD protease panel are more likely to be specific to cancer, rather than inflammation 

or other nonspecific disease-associated processes.

To assess whether the proteolytic landscape of the KP model recapitulates that of human 

lung cancer, we performed gene set enrichment analysis (GSEA)45 in the TCGA dataset 

using the top 20 overexpressed proteases in the KP model (Fig. 2D). GSEA assesses the 

extent to which a particular gene set (S) is enriched in a gene expression dataset by rank-

ordering all genes in the dataset and iterating through the list, increasing the enrichment 

score each time a gene in S is encountered, and decreasing it otherwise. This approach 

revealed significant enrichment of 14 of the top 20 KP-expressed protease genes in human 

lung adenocarcinoma, yielding a maximum enrichment score of 0.455 (P = 0.0002).

A panel of proteases overexpressed in human and mouse lung adenocarcinoma enables 
robust classification of human disease

A set of 15 proteases overexpressed across all or a subset of the mouse and human datasets 

was then selected as a “LUAD protease panel”, consisting of six metallo-, seven serine, and 
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two aspartic proteases (Fig. 2E, and indicated in bold red text in Fig. 2A–C). We next 

returned to the TCGA dataset and evaluated the performance of this panel in classifying 

human lung cancer from healthy lungs on the transcriptional level. Generalized linear model 

classification was performed using the Caret package, using the 15 LUAD proteases as 

features. ROC analysis revealed that the AUC increases with increasing information (i.e. 

number of proteases), achieving nearly perfect classification in the validation cohort with all 

15 proteases (Fig. 2F).

Cleavage of multiplexed substrate panel follows class-specific patterns

We have previously designed and validated hundreds of peptide sequences as protease 

substrates, leveraging known catalytic specificities of different protease families, published 

datasets, and substrate sequences in databases like cutDB and MEROPS46,47 We nominated 

14 of these substrates in an effort to encompass the cleavage preferences of metalloproteases 

(MP), serine proteases (SP), and aspartic proteases (AP), all of which were included in our 

LUAD protease panel, and characterized the catalytic reactivity of each protease-substrate 

pair. We synthesized quenched probes that incorporated the 14 peptide substrates 

(PPQ1-14), such that they fluoresce upon proteolytic cleavage to enable real-time 

monitoring of protease activity in vitro (Fig. 3A and table S1). We incubated each individual 

probe with each protease in the LUAD panel and measured protease activity by monitoring 

fluorescence increase over the course of 45 minutes. Shown are sample kinetic plots 

monitoring proteolytic dequenching of the 14 FRET-paired probes when incubated with 

(above) and without (below) recombinant matrix metalloprotease 3 (MMP3) (Fig. 3B). We 

found that hierarchical clustering of fluorescence fold changes of each substrate led to the 

separation of proteases of different classes (Fig. 3C). We also found that while certain 

probes were cleaved selectively by individual classes of protease (e.g. PPQ2 and PPQ11 for 

MP and SP, respectively), others were cleaved well by proteases of multiple classes (e.g. 

PPQ3, PPQ12 for MP/AP and MP/SP, respectively) (fig. S3). Overall, the dequenching panel 

results indicated that the set of 14 probes provided robust coverage of the cleavage profiles 

of all three classes represented by the LUAD protease panel.

Pulmonary-delivered nanoparticles distribute throughout the lung and reach the tumor 
periphery

The lung efficiently and rapidly exchanges compounds with the bloodstream owing to high 

surface area and very thin barriers; human adult lungs have an area of ~100 m2 and, in 

alveoli, type I cells can be <0.1 μm thick48. Inhaled molecules and particles cross into the 

bloodstream by passive diffusion, transcytosis, or paracytosis, with rate and route of transit 

largely dependent on size and hydrophobicity48.

To adapt the ABN platform for highly sensitive and specific detection of early-stage lung 

cancer, we sought to circumvent background protease activity present in the blood and off-

target organs, which can nonspecifically liberate reporters, by administering the nanosensors 

via localized intrapulmonary, rather than systemic intravenous, delivery. We built ABNs 

using a 40 kDa eight-arm poly(ethylene glycol) (PEG-840kDa) nanoparticle coupled to 

protease substrates bearing terminal mass-encoded reporters (Fig. 1B). Similarly sized PEG 

particles have been shown to remain in the lung with half-lives of several hours and 
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relatively little phagocytosis49; consequently, we anticipate that the ABNs are largely free to 

sample extracellular lung protease activity over the time period during which we monitor 

urinary reporter accumulation. To assess biodistribution of ABNs following intrapulmonary 

delivery, we labeled the PEG-840kDa scaffold with a near-infrared dye, VivoTag750, 

delivered the nanoparticles to mice by intratracheal (IT) intubation or intravenous (IV) 

injection, and collected organs after 60 minutes (Fig. 4A). Fluorescence imaging revealed 

deep delivery of nanoparticles to all lung lobes in mice receiving IT particles, but negligible 

delivery to other organs (Fig. 4B–C). In contrast, only 14% of organ fluorescence was 

confined to the lung in the IV-delivered group. In terms of absolute delivery of ABNs, lung 

fluorescence in the IT group was 263 times greater than liver fluorescence (P < 0.0001), 

while lung fluorescence was 30% lower than liver fluorescence in the IV group. As blood is 

a rich, non-specific proteolytic matrix and achieving organ-specific biodistribution of 

systemically delivered nanoparticles remains difficult, IT ABNs offer distinct advantages 

over IV-delivered variants.

To assess microscopic distribution of the ABN scaffold within the lung following IT 

delivery, we labeled the PEG-840kDa scaffold with biotin and administered the nanoparticles 

to healthy mice by intratracheal intubation. Lungs were collected from mice 20-30 minutes 

post-IT delivery, fixed, and stained for biotin. While lungs from untreated mice were 

negative for biotin (Fig. 4D, top), lungs from mice that received the scaffold demonstrated 

broad distribution of nanoparticles throughout the lung (Fig. 4D, bottom left) and 

specifically within terminal alveoli (Fig. 4D, bottom right).

We then administered biotin-labeled PEG-840kDa scaffold in high grade KP tumor-bearing 

mice, by intratracheal intubation, to assess whether these particles are able to reach the site 

of disease. Again, while lungs from untreated KP mice were negative for biotin (Fig. 4E, 

top), lungs from KP mice that received intrapulmonary delivery of the biotinylated scaffold 

demonstrated presence of nanoparticles at the margin of tumors where protease activity is 

relevant to disease growth and invasion28–30 (Fig. 4E, bottom).

Mass-encoded reporters filter from the lung to the urine via the blood and are detectable 
by mass spectrometry

In order to enable multiplexed detection of a broad spectrum of disease-associated proteases 

via a single in vivo administration of nanosensors, we conjugated each member of the 

LUAD substrate panel to a uniquely identifiable mass-encoded reporter (PP1-14; Table 1). 

Following substrate proteolysis, the encoded reporters diffuse away from the nanoparticle 

scaffold and, due to their small size, efficiently cross into the bloodstream and are 

subsequently concentrated into the urine by glomerular filtration (Fig. 1B). As previously 

described19, we used variable labeling of the 14-mer Glu-Fibrinopeptide B (Glu-Fib) with 

stable isotope-labeled amino acids to uniquely barcode each of the 14 peptide substrates. 

Multiple reaction monitoring via a liquid chromatography triple quadrupole mass 

spectrometer (LC-MS/MS) enables quantitative assessment of peptide-liberated urinary 

reporter concentration within a broad linear range (1-1000 ng/mL, fig. S4A). To assess the 

efficiency of urinary accumulation of reporters after liberation from the PEG scaffold 

(termed “free reporters”), we administered mass-encoded free reporters by IT and IV 

Kirkpatrick et al. Page 6

Sci Transl Med. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



administration, collected urine, and performed LC-MS/MS. We found that urinary 

accumulation scaled linearly with input doses between 2.5 ng and 25 ng for both routes of 

delivery (slopeIT = 0.075 ng−1, slopeIV = 0.077 ng−1; fig. S4B). We also investigated 

pharmacokinetics of the free reporter by administering a Cy7-labeled version of Glu-Fib (the 

cleavage product after liberation from the PEG scaffold) both IT and IV. Pharmacokinetic 

data revealed characteristic single-exponential concentration decay following intravenous 

injection (fig. S4C). In contrast, the pharmacokinetic behavior of the free reporter following 

IT administration is suggestive of an initial phase of partitioning from the alveoli into the 

blood (peaking at 1 to 2 hours after delivery), followed by renal filtration from the blood.

Early-stage lung tumors in the KP model are detectable by ABNs

With the observation that IT delivery of mass-encoded reporters leads to their partitioning 

from lung to circulation and subsequent concentration in the urine, we sought to 

longitudinally monitor disease progression in KP mice with ABNs and benchmark their 

diagnostic performance against microCT. After initiating disease via administration of 

adenovirus, we monitored development of tumor burden by performing microCT at 5 weeks, 

7.5 weeks, and 10.5 weeks (Fig. 5A, representative microCT slice at each time point, with 

arrow indicating development of a single nodule over time). At 5 weeks, only grade 1 

tumors are present in the KP model, while at 7.5 and 10.5 weeks, grade 2 disease is expected 

(fig. S1B)34. Tumor burden was quantified on microCT by a blinded radiation oncologist at 

each time point (maximum nodule size shown in bar graph form to the right of each image). 

Median nodule multiplicity by microCT was 0 (range 0-3) at 5 weeks, 2 (range 0-6) at 7.5 

weeks, and 4 (range 1-8) at 10.5 weeks. The sensitivity of microCT at 100% specificity was 

27.3% at 5 weeks, 72.7% at 7.5 weeks, and 100% at 10.5 weeks.

To characterize ABN performance relative to microCT in vivo, we administered all 14 

protease-sensitive ABNs to the lungs of KP mice and healthy, age and sex-matched controls 

at 5, 7.5, and 10.5 weeks after tumor initiation. Mouse bladders were voided one hour after 

intrapulmonary delivery and all fresh urine produced during the subsequent hour (from 

60-120 minutes after ABN administration) was pooled and collected. LC-MS/MS was 

performed and peak area ratios (defined as peak area of urinary reporter divided by peak 

area of spiked-in internal standard) of protease-sensitive reporters were mean-normalized 

within each urine sample to reduce mouse-to-mouse variation. Several reporters 

differentiated KP mice from the healthy control group, with some reporter differences 

becoming amplified over time (e.g. PP07, PP11) (Fig. 5B). At 7.5 weeks and 10.5 weeks, 

5/14 reporters were significantly different between KP and healthy mice (Padj < 0.05), while 

none of the reporters differed at 5 weeks (fig. S5). Three of the 5 reporters enriched in KP 

urine were the same at 7.5 and 10.5 weeks (PP02, PP03, and PP09), and these corresponded 

to peptides cleaved by metallo or both metallo and aspartic proteases in vitro. However, the 

most significantly enriched reporter in the urine of KP mice at 10.5 weeks (PP11) 

corresponded to a peptide cleaved only by serine proteases in vitro. Unsupervised clustering 

by principal component analysis (PCA) succeeded in separating most KP and control mice 

at the 7.5 week and 10.5 week time points, but not at 5 weeks (Fig. 5C–E).
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Machine learning classification enables sensitive and specific disease diagnosis

As a step toward clinical translation of ABNs as a prospective diagnostic tool, we sought to 

demonstrate that a classifier could be trained on a subset of healthy and tumor-bearing mice 

and validated on an independent cohort. We trained a random forest classifier using the ABN 

reporter output from 50% of control mice tested at 5 weeks, 7.5 weeks, and 10.5 weeks, as 

well as from 50% of the KP mice tested at 7.5 weeks (Fig. 6A). Random forest is a high-

performance classifier, applicable to a wide variety of classification tasks, that generates a 

collection of decision trees (a “forest”) that are sampled to produce classification results50. 

The classifier assigned a probability that each mouse belonged to either the KP cohort or the 

healthy control cohort (Fig. 6B, “Training” panel), achieving perfect separation of control 

and KP mice. We then locked and tested the classifier on an independent validation cohort 

consisting of classifier-naive KP mice assayed at 5 weeks, 7.5 weeks, and 10.5 weeks post-

induction, as well as the remaining control mice from each time point. KP mice were 

significantly more likely to be classified as “KP” than were control mice at 7.5 weeks and 

10.5 weeks but not at 5 weeks (Fig. 6B, “Validation” panel). Accordingly, ROC analysis on 

the validation subset of this probability data revealed no classification power at 5 weeks 

(AUC5wks = 0.58, P = 0.7) but significant classification at 7.5 weeks and 10.5 weeks 

(AUC7.5wks = 0.96, P = 0.02; AUC10.5wks = 0.95, P = 0.0005) (Fig. 6C). With 100% 

specificity, ABNs exhibited sensitivity of 80% at 7.5 weeks and 92% at 10.5 weeks, 

outperforming microCT in the detection of millimeter-scale tumors at 7.5 weeks (Fig. 5A). 

Together, these data illustrate the power of multiplexed, lung-specific ABNs to intercept 

lung tumors early in disease development.

Discussion

In this work, we present an advance toward clinical translation of a new class of biomarkers, 

ABNs. We found that multiplexed ABNs, when delivered by intratracheal instillation, 

performed with diagnostic sensitivity of up to 92% and specificity of 100% for local, early-

stage disease in an immunocompetent, genetically engineered, Kras and Trp53 mutant lung 

adenocarcinoma model (Fig. 6C). Importantly, this model recapitulates the proteolytic 

landscape of human lung cancer (Fig. 2D) and is notable for overexpression of key enzymes 

associated with human disease, including MMP13 and several kallikreins (Fig. 2A, C). Our 

approach overcomes the intrinsic sensitivity limitation of blood-based diagnostic assays for 

early-stage disease by profiling disease activity directly within the tumor microenvironment 

and providing multiple steps of signal amplification31. We further ensure, by delivery via 

intratracheal instillation, that virtually all ABNs reach the lung and bypass nonspecific 

activation in off-target organs (Fig. 4B–C).

Improved diagnostic tools are needed for lung cancer, as most patients present to the clinic 

when their disease has reached too advanced a stage for potentially curative therapy (e.g. 

surgical resection and/or chemoradiation) to be administered1. Screening by LDCT results in 

high false positive rates, leading many healthy patients to undergo unnecessary follow-up 

procedures that are costly and invasive4. Though there exist no widely accepted endogenous 

biomarkers for lung cancer51, several recently reported molecular diagnostic strategies hold 

promise. Multiplexed ctDNA profiling may be combined with protein biomarkers (as in 
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CancerSEEK) to improve diagnostic accuracy for early-stage disease52. However, while the 

sensitivity of this approach is high for certain cancer types, it is modest at 60% for lung 

cancer. Analysis of volatiles in exhaled breath (by mass spectrometry or nanosensor arrays) 

has been shown to distinguish lung cancer patients from healthy controls, but further 

validation is needed to verify the specificity of these volatiles for malignant, rather than 

benign, pulmonary diseases53,54. Combining ABNs with orthogonal diagnostic approaches 

that leverage ctDNA, protein biomarkers, CTCs, and/or volatiles may enhance diagnostic 

accuracy over any one modality alone.

This study represents a significant step toward clinical implementation of ABNs, validating 

the efficacy of the tool in an early-stage, immunocompetent GEMM, rather than a flank 

xenograft model. Though a preclinical model cannot fully recapitulate the heterogeneity of 

human lung cancer, a GEMM offers several advantages over a cell transplant model. In 

addition to its genetic and phenotypic homology to human lung cancer, the KP model 

enables evaluation of immune cell-associated protease activity, as well as assessment of 

stage-specific differences in proteolytic signatures. For instance, though metalloprotease-

sensitive ABNs are, as expected, preferentially cleaved in KP lungs at both 7.5 and 10.5 

weeks, the activation of PP11 (a serine protease-sensitive substrate, fig. S3) in KP mice 10.5 

weeks after disease induction could point to an unexpected role of serine protease activity in 

tumor progression at this disease stage (fig. S5). An intriguing hypothesis is that endogenous 

serine protease inhibitors may be downregulated during the maturation of primary tumors. 

Indeed, maspin is a serine protease inhibitor known to inhibit the metastatic and angiogenic 

potential of tumor cells55,56 and its transcript (Serpinb5) is significantly downregulated in 

pleural, soft tissue, and liver metastases relative to primary tumors in the KP model35. 

Dysregulated coagulation, which is driven by a cascade of serine proteases, has also been 

implicated in tumorigenesis and could drive ABN activation in vivo57. Transcriptomic, 

proteomic, and ex vivo protease activity assays could be leveraged to rigorously define the 

mechanistic underpinnings of such stage-specific differences in ABN cleavage patterns.

In this work, we have demonstrated the sensitivity of intrapulmonary ABNs for local, early-

stage lung cancer, but a challenge to overcome prior to clinical implementation is ensuring 

the specificity of ABNs for cancer over benign lung diseases. Though we provide 

preliminary evidence that proteases associated with lung cancer are not overexpressed in 

COPD or ILD on the RNA level (fig. S2), further validation in mouse models and human 

samples will be needed. We can further improve the specificity of ABNs for malignancy by 

screening a large, diverse panel of peptide substrates, via high throughput methods like 

substrate phage58 or CLiPS59 display, against ex vivo biospecimens from patients with 

LUAD, COPD, ILD, granulomas, and hamartomas60. Substrates can then be downselected 

on the basis of preferential cleavage by LUAD tissue to yield a highly specific panel. In 

parallel, we will also explore the compatibility of ABNs with pulmonary delivery systems 

like dry powder inhalers and nebulizers, with an eye toward clinical implementation.

In summary, intrapulmonary ABNs perform with high sensitivity and specificity for 

detection of local, early-stage lung cancer in a GEMM, via a non-invasive urine test. This 

performance is enabled by integrating across gene expression datasets of human and mouse 

lung adenocarcinoma to identify candidate proteases, screening these candidates against 
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FRET-paired peptide substrates in vitro, and directly delivering ABNs incorporating these 

substrates into the lungs of mice. Future efforts will center on exploring protease biology at 

the earliest stages of lung cancer development in humans, designing ABNs that are highly 

specific for these proteases via high throughput screening methods, and evaluating their 

responsiveness in human biospecimens. Clinically, ABNs may be used in conjunction with 

LDCT to enhance specificity and reduce the number of patients referred for invasive follow 

up procedures. With further optimization and validation studies, ABNs may one day provide 

an accurate, noninvasive, and radiation-free strategy for screening.

Materials and Methods

Study design

The goal of this study was to determine whether intrapulmonary administration of a 

multiplexed library of ABNs could be used to detect localized, early-stage, lung cancer. All 

mouse studies were approved by the MIT committee on animal care (protocol 0414-022-17) 

and were conducted in compliance with all MIT ethical policies. Experiments involving 

intrapulmonary delivery of ABNs in KP mice consisted of 12 KP mice and 12 healthy 

control mice, and these mice were monitored, by intratracheal ABN administration and 

microCT, at 5 weeks, 7.5 weeks, and 10.5 weeks after tumor induction. Sample size was 

selected to ensure a sample size greater than or equal to five for both training and validation 

groups at each time point and for each treatment group. Urine samples with peak area ratio 

(PAR) values of zero for two or more analytes were excluded, as these samples represented 

failed ABN deliveries and would confound analysis. For differential expression analysis of 

protease genes in KP mice, genes for which neither normal lung sample was nonzero were 

excluded, as calculation of fold changes (Tumor/Normal) would otherwise yield undefined 

values. For AUROC analysis in the LGRC dataset, genes for which greater than half of the 

samples had FPKM values of zero were excluded. During selection of KP and healthy 

control mice from the Jacks Lab breeding colony, we were blinded to all characteristics but 

age, sex, and genotype. For random forest classification, mice were randomly assigned to the 

training and validation cohorts using a randomly generated seed.

Gene expression analysis

Human RNA-Seq data was generated by the TCGA Research Network (http://

cancergenome.nih.gov; all 527 primary lung adenocarcinoma cases41) and the Lung 

Genomics Research Consortium (LGRC; all 89 patients43). The list of human extracellular 

protease genes was obtained from UniProt using the following query: (keyword:”Protease 

[KW-0645]”) locations:(location:secreted) AND reviewed:yes AND organism:”Homo 

sapiens (Human) [9606]”. Differential expression analysis on the TCGA data was performed 

using the DESeq2 differential expression library in the R statistical environment42,61. Area 

under the receiver operating characteristic curve (AUROC) analysis was performed for the 

TCGA and LGRC datasets using FPKM values from disease samples (LUAD, ILD, and 

COPD) and their respective controls (NAT for LUAD, normal lung for ILD and COPD), 

using GraphPad Prism version 7.0a for Mac OS X, GraphPad Software, La Jolla California 

USA, www.graphpad.com. Genes in the LGRC dataset for which at least half of the samples 

had FPKM values greater than zero were included in the AUROC analysis, but all zero 
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values were excluded. FPKM values for the KP model35 were downloaded from GEO. Top 

20 extracellular endoproteases were identified by averaging FPKM values across all tumor 

bearing mice (K, KP-Early, Tnon-met, and Tmet) and dividing by the average FPKM values 

for normal mice. Genes for which neither of the two normal lung samples had nonzero 

FPKM values were excluded. Microarray counts for the K dataset36 were downloaded from 

GEO. Gene expression fold changes were determined by performing quantitative 

significance analysis of microarrays (SAM) using the “Standard” regression method, 100 

permutations, and 10 neighbors for KNN37.

Pre-ranked gene set enrichment analysis (GSEA) was performed on the LUAD gene 

expression dataset from TCGA, using a gene set containing the top 20 overexpressed 

proteases in the KP model35. The pre-ranked list of log2(Fold Change) was generated 

previously by DESeq2. 10000 permutations by gene set were performed to calculate the P 
value. GSEA was performed via the GenePattern online software62.

Fluorogenic substrate characterization

Fluorogenic protease substrates were synthesized by CPC Scientific. Recombinant proteases 

were purchased from Enzo Life Sciences, R&D Systems, and Haematologic Technologies. 

For recombinant protease assays, fluorogenic substrates PPQ1-14 (1 μM final concentration) 

were incubated in 30 μL final volume in appropriate enzyme buffer, according to 

manufacturer specifications, with 12.5 nM recombinant enzyme at 37°C. Proteolytic 

cleavage of substrates was quantified by increases in fluorescence over time by fluorimeter 

(Tecan Infinite M200 Pro). Enzyme cleavage rates were quantified as relative fluorescence 

increase over time normalized to fluorescence before addition of protease. Hierarchical 

clustering was performed in GENE-E, using fluorescence fold changes at 45 minutes.

Biodistribution studies

For all mouse experiments, anesthesia was induced by isofluorane inhalation (Zoetis) and 

mice were monitored during recovery. Biodistribution studies were performed in C57BL/6 

mice. VT750-NHS Ester (PerkinElmer) was coupled to 8-arm 40 kDa PEG-amine 

(PEG-840kDa-amine, JenKem) at a 4:1 molar ratio, reacted overnight, and purified by spin 

filtration. Mice were lightly anesthetized via isoflurane inhalation and PEG-840kDa-VT750 

(50 uL volume, 5 uM concentration by VT750 absorbance) was administered by passive 

inhalation following intratracheal intubation with a 22G flexible plastic catheter (Exel), as 

described elsewhere34. Mice in the IV cohort were intravenously administered an equal dose 

of PEG-840kDa-VT750. Animals were sacrificed by CO2 asphyxiation 60 min post-

inhalation/injection and organs were removed for imaging (LICOR Odyssey). Organ 

fluorescence was quantified in Fiji63 by manually outlining organs, using the “Measure” 

feature, and taking the mean intensity.

Blood for pharmacokinetics measurements was collected using retro-orbital bleeds with 15 

μL glass capillary collection tubes. Blood was diluted in 40 μL PBS with 5 mM EDTA to 

prevent clotting, centrifuged for 5 min at 5,000 x g, and fluorescent reporter concentration 

was quantified in 384-well plates relative to standards (LICOR Odyssey).
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For immunohistochemical visualization of nanoparticles following IT administration, EZ-

Link NHS-Biotin (Thermo Scientific) was coupled to PEG-840kDa-amine at 2:1 molar ratio 

and reacted overnight, followed by spin filtration. Pulmonary delivery (50 uL volume, 10 

uM concentration) was performed by intratracheal intubation. Fixation was performed 20-30 

minutes later by inflating lungs with 10% formalin. Lungs were excised, fixed in 10% 

formalin at 4°C overnight, and embedded in paraffin blocks. 5 μm tissue slices were stained 

for biotin using the streptavidin-HRP ABC kit (Vector Labs) with DAB. Slides were scanned 

using the 20x objective of the Pannoramic 250 Flash III whole slide scanner (3DHistech).

Mouse model and in vivo characterization

Male B6/SV129 KrasLSL-GI2D/+; Trp53fl/fl (KP) mice between 18 and 30 weeks old were 

used for lung adenocarcinoma experiments. Tumors were initiated, as described 

previously34, by the intratracheal administration of 50 μL of adenovirus-SPC-Cre (2.5 x 108 

PFU in Opti-MEM with 10 mM CaCl2) under isoflurane anesthesia. Control cohorts 

consisted of age and sex-matched mice that did not undergo intratracheal administration of 

adenovirus. Tumor growth was monitored by microCT imaging (General Electric) and was 

scored by a blinded radiation oncologist. Each cage consisted of a combination of KP and 

control animals.

ABN constructs (GluFib-Substrate-PEG-840kDa) for urinary experiments were synthesized 

by CPC Scientific (Sunnyvale, CA). ABNs were dosed (50 μL total volume, 20 μM 

concentration per ABN) by intratracheal intubation, as described above. All ABN 

experiments were performed in the morning at the Koch Institute animal facility. Bladders 

were voided 60 minutes after ABN administration and all urine produced 60-120 min after 

ABN administration was collected using custom tubes in which the animals rest upon 96-

well plates that capture urine. Urine was pooled and frozen at −80°C until analysis by LC-

MS/MS.

LC-MS/MS reporter quantification

Liquid chromatography/tandem mass spectrometry was performed by Syneos Health 

(Princeton, NJ) using a Sciex 6500 triple quadrupole instrument. Briefly, urine samples were 

treated with UV irradiation to photocleave the 3-Amino-3-(2-nitro-phenyl)propionic Acid 

(ANP) linker and liberate the Glu-Fib reporter from residual peptide fragments. Samples 

were extracted by solid-phase extraction and analyzed by multiple reaction monitoring by 

LC-MS/MS to quantify concentration of each Glu-Fib mass variant. Analyte quantities were 

normalized to a spiked-in internal standard and concentrations were calculated from a 

standard curve using peak area ratio (PAR) to the internal standard. Mean normalization was 

performed on PAR values to account for mouse-to-mouse differences in ABN inhalation 

efficiency and urine concentration.

Statistical analysis

For all urine experiments, PAR values were mean normalized across all reporters in a given 

urine sample prior to further statistical analysis. Significantly different reporters were 

identified by unpaired two tailed t-test followed by correction for multiple hypothesis using 

the Holm-Sidak method. Principal component analysis (PCA) was performed on mean 
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normalized PAR values in the R statistical environment61 using the prcomp function. Binary 

classification was performed using the Caret package64 in the R statistical environment. 

Generalized linear model was used for RNA-seq data and random forest50 was used for 

ABN classification of urine samples. Pre-specified training and validation cohorts were 

randomly assigned (75% training/25% validation for RNA-seq data, 50% training/50% 

validation for urine data). Classifiers used cross-validation on the training cohort and were 

trained with optimization for AUC.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Approach and overview.
(A) ABNs are administered intratracheally and reach the lung epithelium. (B) At the tumor 

periphery, disease-associated proteases cleave protease substrates, liberating mass-encoded 

(MS) reporters from the PEG scaffold. (C) These reporters are small enough to diffuse into 

the bloodstream and passively filter into the urine for detection. (D) Synthetic disease 

reporters are detected in the urine by liquid chromatography followed by tandem mass 

spectrometry (LC-MS/MS). (E) Random forest classification is performed on a training 

cohort of mice and subsequently tested on an independent validation cohort in order to 

provide a positive or negative diagnosis of malignancy.
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Fig. 2. Proteases are overexpressed in lung cancer and enable classification of human disease.
(A-C) Existing RNA-Seq (A,C) and microarray (B) datasets were analyzed to identify 

extracellular endoproteases overexpressed in human and murine lung cancer. Gene 

expression fold changes in lung cancer compared to control lung tissue were calculated by 

FPKM in the KP dataset (A), significance analysis of microarrays (SAM) in the K dataset 

(B), and DESeq2 in the human dataset (C). Protease genes in red are those that were selected 

for the “LUAD protease panel”. (D) Gene set enrichment analysis (GSEA) was performed in 

the TCGA (human) dataset using the top 20 overexpressed protease genes in KP tumors. 

Red bars are genes included in the “LUAD protease panel”. The maximum enrichment score 

was 0.455 (P = 0.0002). (E) A set of 15 proteases was selected as the “LUAD protease 

panel”. Red: FoldDisease > 1. Grey: FoldDisease < 1. Black: Not included in dataset. (F) 

Generalized linear model classification was performed in the TCGA dataset using the 15 

protease genes in the “LUAD protease panel” as features. Area under the receiver operating 

characteristic curve (AUC) for the validation cohort is shown as a function of the number of 

proteases included in the classifier (n = 50 combinations of protease genes for each point). 

Error bars represent SD.
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Fig. 3: LUAD substrate panel cleavage patterns are driven by protease class.
(A) All 15 proteases in the “LUAD protease panel” were screened against a panel of 14 

FRET-paired (quenched) protease substrates and fluorescence activation was monitored over 

45 minutes. (B) Kinetic fluorescence curves are shown for 14 FRET-paired substrates with 

(upper panel) and without (lower panel) addition of MMP3. (C) Fluorescence fold changes 

at 45 minutes (average of 2 replicates) were tabulated and hierarchical clustering was 

performed to cluster proteases (vertical) by their substrate specificities and substrates 

(horizontal) by their protease specificities. Proteases labeled in green, orange or blue 

represent metallo, serine or aspartic proteases, respectively.
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Fig. 4: Intrapulmonary-administered nanoparticle scaffolds penetrate deep within the lung and 
reach the periphery of KP tumors.
(A) Wild-type mice were treated intratracheally (IT) or intravenously with VT750-labeled 

PEG-840kDa and biodistribution was assessed. (B) Fluorescent imaging of organs was 

performed 60 min post-IT delivery. Clockwise from top-left: lung, spleen, heart, liver, 

kidneys. (C) Organ-specific biodistribution was quantified (n = 4 each condition). Error bars 

represent SD. (D) Healthy mice were either untreated (above, n = 1) or treated with IT 

administration of biotin-labeled PEG scaffold (below, n = 2), followed by excision of lungs 

and immunohistochemical staining for biotin (brown). (E) Advanced-stage (16.5 week) KP 

mice were either untreated (top, n = 3) or treated with IT administration of biotin-labeled 

PEG scaffold (bottom, n = 3), followed by excision of lungs and immunohistochemical 

staining as in (D).
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Fig. 5: ABNs distinguish between diseased and healthy mice.
(A) Tumor development was monitored by microCT in healthy (left, n = 11) and KP mice at 

5 weeks (n = 11), 7.5 weeks (n = 11), and 10.5 weeks (n = 11) after tumor induction. Right 

three panels represent time series of a single mouse, with arrow indicating development of a 

single nodule over time. Size of the largest tumor nodule was assessed by a blinded radiation 

oncologist (quantification at right of each image). (B) ABNs were administered to KP and 

control animals at 5 weeks (KP: n = 11; Control: n = 9), 7.5 weeks (KP: n = 11; Control: n = 

12), and 10.5 weeks (KP: n = 12; Control: n = 12) after tumor initiation, bladder was voided 

at 1 hr, and urine was collected and pooled over the following 1 hour interval. LC-MS/MS 

was performed, peak area ratio (PAR, peak area of reporter divided by peak area of spiked-in 

internal standard) was calculated, and all reporters were mean normalized within each 

sample. Y axis represents 
MeanNormPARKP

MeanNormPARControl
 for each reporter at each time point. For 

clarity, PP06 is presented on a larger scale y axis. Asterisks indicate significant differences 

from 5 weeks. * Padj < 0.05, ** Padj < 0.01; by two-tailed t-test with adjustment for multiple 

hypotheses using the Holm-Sidak method. Error bars represent SEM. (C-E) Unsupervised 
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clustering by principal component analysis (PCA) was performed on mean normalized MS 

data for KP mice and controls at 5 weeks (C), 7.5 weeks (D), and 10.5 weeks (E).
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Fig. 6. ABNs enable highly sensitive and specific detection of early-stage lung cancer.
(A) Schematic of approach. Random forest classifier was trained on mean normalized 

urinary reporters from KP mice at 7.5 weeks, as well as control mice at 5 weeks, 7.5 weeks, 

and 10.5 weeks. Classifier was validated on KP mice and control mice at all 3 time points. 

(B) Random forest classifier returned the probability that each mouse was either “Control” 

or “KP”. ** P < 0.01, **** P < 0.0001; by two tailed t-test. Error bars represent SEM. (C) 

ROC analysis was performed on probability data to generate AUC values for the validation 

cohorts at 5 weeks (AUC = 0.58), 7.5 weeks (AUC = 0.96), and 10.5 weeks (AUC = 0.95).
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Table 1.
Reporter and substrate sequences for in vivo urinary diagnostics.

ANP, 3-Amino-3-(2-nitrophenyl)propionic Acid; Cha, 3-Cyclohexylalanine; Cys(Me), 

(methylsulfanyl)propanoic acid; lowercase letters, D-amino acids

Name Reporter Photolabile Group Substrate Nanocarrier

PP1 e(+2G)(+6V)ndneeGFFsAr ANP GGPQGIWGQC PEG8-40kDa

PP2 eG(+6V)ndneeGF(+1F)s(+1A)r ANP GGPVGLIGC PEG8-40kDa

PP3 e(+3G)(+1V)ndneeGFFs(+4A)r ANP GGPVPLSLVMC PEG8-40kDa

PP4 e(+2G)Vndnee(+2G)FFs(+4A)r ANP GGPLGLRSWC PEG8-40kDa

PP5 eGVndnee(+3G)(+1F)Fs(+4A)r ANP GGPLGVRGKC PEG8-40kDa

PP6 e(+2G)(+6V)ndnee(+3G)(+1F)(+1F)s(+1A)r ANP GGfPRSGGGC PEG8-40kDa

PP7 eG(+6V)ndnee(+3G)(+1F)Fs(+4A)r ANP GGLGPKGQTGC PEG8-40kDa

PP8 e(+3G)(+1V)ndneeG(+10F)FsAr ANP GGGSGRSANAKGC PEG8-40kDa

PP9 eGVndneeGF(+10F)s(+4A)r ANP GGKPISLISSGC PEG8-40kDa

PP10 e(+2G)(+6V)ndneeG(+10F)(+1F)s(+1A)r ANP GGILSRIVGGGC PEG8-40kDa

PP11 e(+3G)(+1V)ndnee(+2G)(+10F)Fs(+4A)r ANP GGSGSKIIGGGC PEG8-40kDa

PP12 eGVndneeG(+10F)(+10F)sAr ANP GGPLGMRGGC PEG8-40kDa

PP13 e(+2G)(+6V)ndnee(+3G)(+10F)(+1F)s(+4A)r ANP GGP-(Cha)-G-Cys(Me)-HAGC PEG8-40kDa

PP14 e(+3G)(+1V)ndnee(+2G)(+10F)(+10F)sAr ANP GGAPFEMSAGC PEG8-40kDa
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