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Abstract

We introduce a model-based deep learning architecture termed MoDL-MUSSELS for the 

correction of phase errors in multishot diffusion-weighted echo-planar MR images. The proposed 

algorithm is a generalization of the existing MUSSELS algorithm with similar performance but 

significantly reduced computational complexity. In this work, we show that an iterative re-

weighted least-squares implementation of MUSSELS alternates between a multichannel filter 

bank and the enforcement of data consistency. The multichannel filter bank projects the data to the 

signal subspace, thus exploiting the annihilation relations between shots. Due to the high 

computational complexity of the self-learned filter bank, we propose replacing it with a 

convolutional neural network (CNN) whose parameters are learned from exemplary data. The 

proposed CNN is a hybrid model involving a multichannel CNN in the k-space and another CNN 

in the image space. The k-space CNN exploits the annihilation relations between the shot images, 

while the image domain network is used to project the data to an image manifold. The experiments 

show that the proposed scheme can yield reconstructions that are comparable to state-of-the-art 

methods while offering several orders of magnitude reduction in run-time.
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I. INTRODUCTION

Diffusion MRI (DMRI), which is sensitive to anisotropic diffusion processes in the brain 

tissue, has the potential to provide rich information on white matter anatomy [1]. It has 

several applications, including the studies of neurological disorders [2], the aging process 

[3], and acute stroke [4]. Diffusion MRI relies on large bipolar directional gradients to 
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encode water diffusion, which attenuates the signals from diffusing molecules in the 

direction of the gradient. The diffusion-sensitized signal is often spatially encoded using 

single-shot echo-planar imaging (ssEPI), which allows the acquisition of the entire k-space 

in a single excitation and readout. While such acquisitions can offer high sampling 

efficiency, the longer readout makes the acquisition vulnerable to distortions induced by B0 

inhomogeneity. Specifically, the recovered images often exhibit geometric distortions [5]. 

These artefacts, resulting from the long readouts, essentially limit the extent of k-space 

coverage and thereby the spatial resolution that ssEPI sequences can achieve.

Multishot echo-planar imaging (msEPI) methods were introduced to minimize the 

distortions related to the long readouts in ssEPI. This scheme splits the k-space sampling 

over multiple excitations and readouts, resulting in shorter readout lengths for each shot, as 

shown in Fig. 1. While multishot imaging can offer high resolution, a challenge associated 

with this scheme is its vulnerability to inter-shot motion in the diffusion setting. Specifically, 

subtle physiological motion during the large bipolar gradients manifests as phase differences 

between different shots. The direct combination of the k-space data from these shots results 

in artefacts in the diffusion-weighted images (DWI) arising from phase inconsistencies.

We recently introduced a multishot sensitivity-encoded diffusion data recovery algorithm 

using structured low-rank matrix completion (MUSSELS) [6], which allows the 

reconstruction of DWI that are immune to the motion-induced phase artefacts. The method 

exploits the redundancy between the Fourier samples of the shots to jointly recover the 

missing k-space samples in each of the shots [7]. The k-space data recovery is then posed as 

a matrix completion problem that utilizes a structured low-rank algorithm and parallel 

imaging to recover the missing k-space data in each shot. While this scheme can offer state-

of-the-art results, the challenge is the high computational complexity. The large data size 

and the need for matrix lifting make it challenging to reconstruct the high-resolution data 

from different directions and slices despite the existence of fast structured low-rank 

algorithms [7], [8].

In this paper, we introduce a novel deep learning framework to minimize the computational 

complexity of MUSSELS [6]. This work is inspired by the convolutional network structure 

of MUSSELS and is formulated in k-space to exploit the convolutional relations between the 

Fourier samples of the shots. The proposed scheme is also motivated by our recent work on 

model-based deep learning (MoDL) [9] and similar algorithms that rely on the unrolling of 

iterative algorithms [10]–[12]. The main benefit of MoDL is the ability to exploit the physics 

of the acquisition scheme and the ability to incorporate multiple regularization priors [13], in 

a deep learning setting, to achieve improved performance. The use of the conjugate-gradient 

algorithm within the network to enforce data consistency in MoDL provides improved 

performance for a specified number of iterations. The sharing of network parameters across 

iterations enables MoDL to keep the number of learned parameters decoupled from the 

number of iterations, thus providing good convergence without increasing the number of 

trainable parameters. A smaller number of trainable parameters translates to significantly 

reduced training data demands, which is particularly attractive for data-scarce medical-

imaging applications.
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We first introduce an approach based on the iterative reweighted least-squares algorithm 

(IRLS) [14] to solve the MUSSELS cost function [6]. The MUSSELS algorithm [6], which 

is based on iterative singular value shrinkage, alternates between a data-consistency block 

and a low-rank matrix recovery block. By contrast, the IRLS-MUSSELS algorithm [7] 

alternates between a data-consistency block and a residual multichannel1 convolution block. 

The multichannel convolution block can be viewed as the projection of the data to the 

nullspace of the multichannel signals; the subtraction of the result from the original ones, 

induced by the residual structure, projects the data to the signal subspace, thus removing the 

artefacts in the signal. The IRLS-MUSSELS algorithm learns the parameters of the 

denoising filter from the data itself, which requires several iterations. Motivated by our 

earlier work [9], we propose replacing the multichannel linear convolution block in IRLS-

MUSSELS with a convolutional neural network (CNN). Unlike the self-learning strategy in 

IRLS-MUSSELS, where the filter parameters are learned from the measured data itself, we 

propose learning the parameters of the non-linear CNN from exemplar data. We hypothesize 

that the non-linear structure of the CNN will enable us to learn and generalize from 

examples. The learned CNN will facilitate the projection of each test dataset to the 

associated signal subspace. While the architecture is conceptually similar to MoDL, the 

main difference is the extension to multishot settings and the learning in the Fourier domain 

(k-space) enabled by the IRLS-MUSSELS reformulation.

The proposed framework has similarities to recent k-space deep learning strategies [16]–

[19], which also exploit the convolution relations in the Fourier domain. The main 

distinction of the proposed scheme with these methods is the model-based framework, along 

with the training of the unrolled network. Many of the current schemes [18] are not designed 

for the parallel imaging setting. The use of the conjugate gradient steps in our network 

allows us to account for parallel imaging efficiently, requiring few iterations. We also note 

the relation of the proposed work with that of Akcakaya et al. [20], which uses a self-learned 

network to recover parallel MRI data. The weights of the network are estimated from the 

measured data itself. Since we estimate the weights from exemplar data, the proposed 

scheme is significantly faster.

II. BACKGROUND

A. Problem formulation

The high-resolution DMRI requires long-duration EPI readouts that are vulnerable to field-

inhomogeneity-induced spatial distortions. Also, the large rewinder gradients make the 

achievable echo-time rather long, resulting in lower signal-to-noise ratio (SNR). To 

minimize these distortions, it is common practice to acquire the data using msEPI schemes 

for high-resolution applications. These schemes acquire a highly undersampled subset of the 

k-space at each shot. Since the subsets are complementary, the data from all these shots can 

be combined to obtain the final image. The image acquisition of the ith shot and the jth coil 

can be expressed as

1 The term multichannel is used in a traditional signal processing sense to refer to multichannel convolution using a multichannel 
filter. The different channels corresponds to the images from different shots of the multishot data. Since we rely on the SENSE 
forward model [15], the channels do not refer to multi-coil data in parallel MRI.
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yi, j[k] = ∫
ℝ2ρ(r)sj(r)exp i kTr dr + ni, j[k]; ∀k ∈ Θi . (1)

Here, sj(r) denotes the coil sensitivity of the jth coil and Θi, i = 1,.., N, denotes the subset of 

the k-space that is acquired at the ith-shot. Note that the sampling indices of the different 

shots are complementary, implying that the combination of the data from the different shots 

will result in a fully sampled image. Specifically, we have ∪i = 1
N Θi = Θ, where Θ is the 

Fourier grid corresponding to the fully sampled image. The above relation, to acquire the 

desired image ρ(r) from N shots, can be compactly represented as

yi = Ai(ρ(r)) + n,  i = 1, …, N (2)

in the absence of phase errors. Here, yi represents the under-sampled multichannel 

measurements of the ith shot acquired using the acquisition operator Ai, and n represents the 

additive Gaussian noise that may corrupt the samples during acquisition.

Diffusion MRI uses large bipolar diffusion gradients to encode the diffusion motion of water 

molecules. Unfortunately, subtle physiological motion between the bipolar gradients often 

manifests as phase errors in the acquisition. With the addition of the unknown phase 

function ϕi(r), |ϕi(r)| = 1 introduced by physiological motion, the forward model is modified 

as

yi = Ai ρ(r)ϕi(r)
ρi(r)

+ n, i = 1, .., N .
(3)

If the phase errors ϕi(r), i = 1, .., N, are uncompensated, the image obtained by the 

combination of yi, i = 1, .., N will show artefacts arising from the inconsistent phase. The 

widely used multishot method, termed MUSE [21], [22], relies on the independent 

estimation of ϕi(r) from low-resolution reconstructions of the phase-corrupted images ρi(r). 

The forward model can be compactly written as y = A(ρ), where ρ = ρ1
T ,  … ρNT T

 is the 

vector of multishot images. Once the phases are estimated, the reconstruction is posed as a 

phase-aware reconstruction [21], [22].

B. Brief Review of MUSSELS

The MUSSELS algorithm [6] relies on a structured low-rank formulation to jointly recover 

the phase-corrupted images ρi from their under-sampled multi-coil measurements. The 

MUSSELS algorithm capitalizes on the multi-coil nature of the measurements as well as 

annihilation relations between the phase-corrupted images. The key observation is that these 

phase-corrupted images satisfy an image domain annihilation relation [23]

ρi(r)ϕj(r) − ρj(r)ϕi(r) = 0, ∀r . (4)
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This multiplicative annihilation relation, resulting from phase inconsistencies, translates to 

convolution relations in the Fourier domain:

ρi(k) ∗ ϕj(k) − ρj(k) ∗ ϕi(k) = 0 ∀k, (5)

where x denotes the Fourier transform of x. Since the phase images ϕj(r) are smooth, their 

Fourier coefficients  ϕj(k) can be assumed to be support-limited to a region Λ in the Fourier 

domain. This allows us to rewrite the convolution relations in (5) in a matrix form using 

block-Hankel convolution matrices HΛ
Γ (ρ). The matrix product HΛ

Γ (ρ) s corresponds to the 2D 

convolution between a signal ρ supported on a grid Γ and the filter s of size Λ. Thus, the 

Fourier domain convolution relations can be compactly expressed using matrices [6] as

HΛ
Γ ρi ∣ HΛ

Γ ρj
ϕj

−ϕi
s

= 0.
(6)

We note that there exists a similar annihilation relation between each pair of shots, which 

implies that the structured matrix

T(ρ) = HΛ
Γ ρ1 |⋯|HΛ

Γ ρN (7)

is low-rank. The MUSSELS algorithm [6] recovers the multishot images from their 

undersampled k-space measurements by solving

ρ = argmin
ρ

∥ A(ρ) − y ∥2
2 + λ ∥ T(ρ) ∥∗ , (8)

where ∥ · ∥∗ denotes the nuclear norm. The above problem is solved in earlier work [6] using 

an iterative shrinkage algorithm.

III. DEEP LEARNED MUSSELS

A. IRLS reformulation of MUSSELS

To bring the MUSSELS framework to the MoDL setting, we first introduce an IRLS 

reformulation [14] of the MUSSELS. Using an auxiliary variable z, we rewrite (8) as

argmin
ρ, z

∥ A(ρ) − y ∥2
2 + β ∥ ρ − z ∥F

2 + λ ∥ T(z) ∥∗ . (9)

We observe that (9) is equivalent to (8) as β → ∞. An alternating minimization algorithm to 

solve the above problem yields the following steps:

Aggarwal et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ρn + 1 = argmin
ρ

∥ A(ρ) − y ∥2
2 + β ρ − zn F

2
(10)

zn + 1 = argmin ∥
z

ρn + 1 − z ∥ F
2 + λ

β ∥ T(z) ∥∗ . (11)

We now borrow from the literature [24], [25] and majorize the nuclear norm term in (11) as

∥ T(z) ∥∗ ≤ ∥ T(z)Q ∥F
2 , (12)

where the weight matrix is specified by

Q = TH(z)T(z) + ϵI −1/4
(13)

Here, I is the identity matrix. Similar majorization strategies were used in the work [8]. With 

the majorization in (12), the z-subproblem in (11) would involve the alternation between

zn + 1 = argmin
z

∥ ρn + 1 − z ∥ F
2 + λ

β ∥ T(z)Q ∥F
2

(14)

and the update of the Q using (13). Thus the IRLS reformulation of the MUSSELS scheme 

would alternate between (10), (14), and (13) as summarized in Algorithm 1. The matrix Q 
may be viewed as a surrogate for the nullspace of T(z) as shown in the work [8]. The Q 
matrix at each iteration is estimated based on the previous iterate of z. The update step (14) 

can be interpreted as finding an approximation of ρn + 1 from the signal subspace.

Algorithm 1

Summary of the IRLS-MUSSELS algorithm

Require: ρ0, z0

Ensure: ρn+1

1: for n = 1 to max_Iterations do

2: ρn+1 = solve (10) using conjugate gradient

3: zn+1 = solve (14) using conjugate gradient.

4: Qn+1 = [TH (zn+1)T(zn+1) + ϵI]−1/4

5: end for

6: return ρn+1

B. Interpretation of IRLS- MUSSELS as an iterative denoiser

We now focus on the term ∥T(z)Q∥2 = ∑i ∥T(z)qi∥2 in (14); qi are the columns of Q 
representing nullspace vectors of T(z) similar vector s in Eq. (6). We note that the matrix-
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vector product T(z)qi corresponds to the multichannel convolution of z with the columns of 

Q, specified by qi. We split each column qi into sub-filters qij to obtain

Q =

q11
⋮

q1N
q1

q21
⋮

q2N
q2

q11
⋮

q1N
qN

(15)

where each qij is of length |Λ|. Note that z = [z1| … |zN] is the multishot data. This allows us 

to rewrite the multichannel convolution

T(z)qi = HΛ
Γ z1 qi1 + ..HΛ

Γ zN qiN.... (16)

as the sum of convolutions of zj with qi,j. Due to the commutativity of convolution h ∗ g = g 
∗ h, each term in (16) can be re-expressed as

HΛ
Γ(g)h = S(h)g, (17)

where S(h) is an appropriately2 sized block Hankel matrix constructed from the zero-filled 

entries of h. We use this relation to rewrite

T(z)Q =
S q11 S q12 … S q1N

⋮ … ⋮
S qN1 S q12 … S qNN

G(Q)

z1
⋮

zN
z

.

We note that G(Q)z corresponds to the multichannel convolution of z1, ..., zN with the 

filterbank having filters qi,j. With this reformulation, (14) is simplified as

zn + 1 = argmin
z

∥ ρn − z ∥ F
2 + λ

β ∥ G(Q)z ∥F
2 . (18)

Differentiating the above expression and setting it equal to zero, we get

zn + 1 = I+ λ
β G(Q)HG(Q)

−1
ρn + 1 .

One may use a numerical solver to determine zn+1. An alternative is to solve this step 

approximately using the matrix inversion lemma, assuming λ << β:

2 The size of the matrix is |Γ| − |Γ ⊖ Λ| × |Γ| such that (17) holds. Here, Γ is the size of the image, and Λ is the size of the filter. ⊖ 
refers to the set erosion operator as defined in the work [8].
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zn + 1 ≈ I − λ
β G(Q)HG(Q) ρn + 1

= ρn + 1 − λ
β G(Q)HG(Q)ρn + 1 .

(19)

We note that G(Q) can be viewed as a single layer convolutional filter bank, while 

multiplication by G(Q)H can be viewed as flipped convolutions (deconvolutions in deep 

learning context) with matching boundary conditions. Note that neither of the above layers 

have any non-linearities. Thus, (19) can be thought of as a residual block, which involves the 

convolution of the multishot signals ρn with the columns of Q, followed by deconvolution as 

shown in Fig. 2(a). As discussed before, the filters specified by the columns of Q are 

surrogates for the nullspace of T(ρ). Thus, the update (19) can be thought of as removing the 

components of ρn in the nullspace and projecting the data to the signal subspace, which may 

be viewed as a sophisticated denoiser, as shown in Fig. 2(a).

The IRLS-MUSSELS scheme [7], as summarized in Fig. 2, provides state-of-the-art results. 

However, note that the filters specified by the columns of Q are estimated for each diffusion 

direction by using Algorithm 1, which has high computational complexity, especially in the 

context of diffusion-weighted imaging, where several directions need to be estimated for 

each slice.

C. MoDL-MUSSELS Formulation

To minimize the computational complexity of the IRLS-MUSSELS, we propose learning a 

non-linear denoiser from exemplar data rather than learning a custom denoising block 

specified by I− λ
β G(Q)HG(Q)  for each direction and slice. We hypothesize that the non-

linearities in the network, as well as the larger number of filter layers, can facilitate the 

learning of a generalizable model from the exemplar data. This framework may be viewed as 

a multishot extension of the MoDL [9] approach. The cost function associated with the 

network is

argmin
ρ

∥ A(ρ) − y ∥2
2 + λ1 ∥ Nk(ρ) ∥ 2

2 . (20)

Here, Nk(ρ) is a non-linear residual convolutional filterbank working in the Fourier domain, 

with

Nk(ρ) = ρ − Dk(ρ) . (21)

Dk(ρ) can be thought of as a multichannel CNN in the Fourier domain. The image domain 

input ρ is first transformed to k-space as ρ, then passes through the k-space model, and, then 

transformed back to the image domain. Figure 3(a) shows the proposed M-layer CNN 

architecture. The overall k-space MoDL-MUSSELS network architecture is shown in Fig. 
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3(b), which solves Eq. (20). Unlike IRLS-MUSSELS in Fig. 2, the parameters of this 

network are not updated within the iterations and are learned from the exemplar data.

D. Hybrid MoDL-MUSSELS Regularization

A key benefit of the MoDL framework over direct inversion methods is the ability to exploit 

different kinds of priors, as shown in our prior work [13]. The IRLS-MUSSELS and the 

MoDL-MUSSELS schemes exploit the multichannel convolution relations between the k-

space data. By contrast, we relied on an image domain convolutional neural network in 

earlier work [9] to exploit the structure of patches in the image domain. Note that this 

structure is completely complementary to the multichannel convolution relations. We now 

propose to jointly exploit both the priors as follows:

argmin
ρ

∥ A(ρ) − y ∥2
2 + λ1 ∥ Nk(ρ) ∥ 2

2 + λ2 ∥ NI(ρ) ∥ 2
2, (22)

where Nk is the same prior as in (20), while NI is an image space residual network of the 

form NI(ρ) = ρ − DI(ρ). Here, DI is an image domain CNN as in earlier work [9]. The 

problem (22) can be rewritten as

argmin
ρ

∥ A(ρ) − y ∥2
2 + λ1 ∥ ρ − Dk(ρ) ∥ 2

2 + λ2 ∥ ρ − DI(ρ) ∥ 2
2 .

By substituting η = Dk(ρ), and ζ = DI(ρ), an alternating minimization-based solution to the 

above problem iterates between the following steps:

ρn + 1 = AHA + λ1ℐ + λ2ℐ −1 AHy + λ1η + λ2ζ (23)

ηn + 1 = Dk ρn + 1 (24)

ζn + 1 = DI ρn + 1 . (25)

The above solution results in the hybrid MoDL-MUSSELS architecture shown in Fig. 4. 

Note that this alternating minimization scheme is similar to the plug-and-play priors [26] 

widely used in inverse problems. The main exception is that we train the resulting network 

in an end-to-end fashion. Note that, unlike the plug-and-plug denoisers that learn the image 

manifold, the network Dk is designed to exploit the redundancies between the multiple shots 

resulting from the annihilation relations. This non-linear network is expected to project the 

multichannel k-space data orthogonal to the nullspaces of the multichannel Hankel matrices. 

The regularization parameters λ1 and λ2 control the contribution of the k-space network and 

the image-domain network, respectively. During experiments we kept the values of λ1 = 

0,01, λ2 = 0.05 fixed. However, it can be noted that these values can be made trainable as in 

the MoDL [9].
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IV. EXPERIMENTS

We perform several experiments to validate different aspects of the proposed model, such as, 

the benefits of the recursive network, the impact of regularization, robustness to outliers, 

comparison with existing deep learning models such as U-NET [27], and comparison with a 

model-based technique P-MUSE [22].

A. Dataset Description

In vivo data were collected from healthy volunteers at the University of Iowa in accordance 

with the Institutional Review Board recommendations. The imaging was performed on a GE 

MR750W 3T scanner using a 32-channel head coil. A Stejskal-Tanner spin-echo diffusion 

imaging sequence was used with a 4-shot EPI readout. A total of 60 diffusion gradient 

direction measurements were taken with a b-value of 700 s/mm2. The relevant imaging 

parameters were FOV = 210 × 210 mm, matrix size = 256 × 152 with partial Fourier 

oversampling of 24 lines, slice thickness = 4 mm and TE = 84 ms. Data were collected from 

7 subjects.

The training dataset constituted a total of 68 slices, each having 60 directions and 4 shots, 

from 5 subjects. The validation was performed on 6 slices of the 6th subject, whereas testing 

was carried out on 5 slices of the 7th subject. Thus, a total of 4080, 360, and 300 complex 

images each having size 256×256×4 (rows×columns×shots) were used for training, 

validation, and testing, respectively.

To perform quantitative comparisons, we also made use of simulated data with high SNR. 

For this purpose, we utilized a subset of pre-processed, relatively high-SNR diffusion dataset 

from the human connectome project [28]. We extracted 15 volumes and 20 slices from 100 

subjects, which resulted in 30,000 magnitude images of size 145 × 174. We prepared a 

dataset of 23,000 training images, 3,000 validation images, and 3,000 test images. We 

simulated the sensitivity maps using Walsh algorithm [29]. To simulate the multishot data 

with phase errors, we multiplied each magnitude image with synthetically generated random 

bandlimited phase errors using the image formation model in Eq. (3). Gaussian noise of 

varying amounts of standard deviation σ was added to the phase-corrupted k-space data. The 

k-space data was under-sampled to generate the multishot data.

B. Multi-coil forward model

All of the model-based schemes used in this study (MUSE, MUSSELS, MoDL-MUSSELS) 

rely on a forward model that mimics the image formation. We implement this forward model 

as described in (1) and (3). The raw dataset consists of 32 channels. We reduce the data to 

four virtual channels using singular value decomposition (SVD) of the non-diffusion 

weighted (b0) image. The coil sensitivity maps of these four virtual channels were estimated 

using ESPIRIT [30]. The same channel combination weights were used to reduce the 

diffusion-weighted MRI data to four coils.
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C. Quantitative metrics used in experiments

The reconstruction quality is measured using the structure similarity index (SSIM) [31] and 

peak signal-to-noise ratio (PSNR). The PSNR is defined as

PSNR(x, y) = 10 ∗ log10
max(x)2

MSE(x, y)

where MSE is the mean-square-error between x and y. The final PSNR/SSIM value is 

estimated by the average of the PSNR/SSIM of individual shots.

D. Algorithms used for comparison

We compare the proposed scheme against IRLS-MUSSELS [7],P-MUSE [22], and a 

solution based on U-NET [27]. The IRLS-MUSSELS is a modification of the MUSSELS 

algorithm [6]. Specifically, the modification involve an IRLS based implementation instead 

of iterative shirnkage algorithm in [6], which results in a faster implementation. Moreover, it 

also includes an additional conjugate symmetry constraint in addition to the annihilation 

relations between the shots that is exploited in the MUSSELS method [6]. We refer the 

readers to [7], which shows that the addition of the conjugate symmetry constraint reduces 

blurring and results in sharper images compared to the original MUSSELS method [6] for 

partial Fourier acquisitions. In the results section, the IRLS-MUSSELS is referred to as 

simply IRLS-M.

P-MUSE [22] is a two-step algorithm that first estimates the motion-induced phase using the 

SENSE [15] reconstruction and the total-variation denoising. With the knowledge of the 

phase errors, it recovers the images using a regularized optimization with (3) as the forward 

model. The P-MUSE algorithm [22] has three parameters λ1 = 0.01, λ2 = 0.01, and the 

number of iterations = 40. The parameters λ1 and λ2 control the total variation 

regularization during phase estimation and reconstruction, respectively. We searched over 

the parameters to yield the best possible reconstruction.

We extended the U-NET [27] model for the multishot diffusion MR image reconstruction. 

The number of convolution layers, the feature maps in each layer, and the filter size were 

kept the same as in [27]. The input to the extended U-NET model was the concatenation of 

the real and imaginary parts of phase-corrupted coil-combined complex 4 shots images. The 

IRLS-MUSSELS [7] reconstructions were used as the ground truth for the training of the 

deep learning models on experimental data. We trained the network in the image domain 

with 1,000 epochs for 13 hours using the Adam [32] optimizer.

We also performed a comparison between the k-space MoDL-MUSSELS formulation in 

section III-C and the hybrid MoDL-MUSSELS formulation in section III-D. We refer to the 

former as the k-space network and the latter as the hybrid network. To perform a fair 

comparison between hybrid and k-space networks, the number of parameters in the k-space 

network was kept the same as that of the hybrid model by increasing the number of feature 

maps in the convolution layers.
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E. Network architecture and training

In this work, we trained an 8-layer CNN having convolution filters of size 3 × 3 in each 

layer. Each layer comprises a convolution, followed by ReLU, except the last layer, which 

consists of a 1 × 1 convolution as shown in Fig. 5. The real and imaginary components of the 

complex 4 shots data were considered as channels in the residual learning CNN architecure, 

whereas the data-consistency block worked explicitly with complex data.

The proposed network architecture, as shown in Fig. 4, was unfolded for three iterations, and 

the end-to-end training was performed for 100 epochs. The input to the unfolded network is 

the zero-filled complex data from the four shots, which corresponds to AH y, while the 

network outputs the fully sampled complex data for the four shots. The proposed MoDL-

MUSSELS architecture combines the data from the four shots using the sum-of-squares 

approach. The network weights were randomly initialized using Xavier initialization and 

shared between iterations. The network was implemented using the TensorFlow library in 

Python 3.6 and trained using the NVIDIA P100 GPU. The conjugate-gradient optimization 

in the DC step was implemented as a layer operation in the TensorFlow library as described 

in the work [9]. We utilized the mean-square-error as the loss function during training. The 

total network training time of the network was around 37 hours.

The plot in Fig. 6 shows training loss decays smoothly with epochs. It can be noted that the 

loss on the validation dataset also has overall decaying behavior, which implies that the 

trained model did not over-fit the dataset. The model-based framework has considerably 

fewer parameters than direct inverse methods and hence requires far fewer training data to 

achieve good performance, as seen from the experiments in the previous work [9].

V. RESULTS

A. Comparisons using simulated data

Table I summarizes the quantitative results (PSNR and SSIM values) obtained from the 

simulated data in Section IV-A. Specifically, we quantitatively compare the reconstructions 

provided by the five algorithms, while varying the noise levels. We did not perform the 

training of the deep learning methods (k-space, U-NET, and hybrid) for different noise levels 

but instead utilized the same model trained for a single noise level (σ = 0.001). We adjusted 

the parameters of the P-MUSE and IRLS-MUSSELS algorithms for different noise levels to 

get the best average results. The average performance of the U-NET is lower than all other 

methods since the U-NET does not have an explicit data-consistency term like the other 

methods. It is evident from the graphs in Fig. 7 that proposed hybrid method performs better 

than other methods on all individual slices and directions of a test subject.

Figure 8 shows an example set of images reconstructed using the five methods for this 

simulated data. For comparison, the uncorrected image and the error maps for all the 

reconstructions, compared to the ground truth image are also provided. It is evident from the 

error maps that the proposed hybrid model has the least error among the methods compared. 

Figure 8(e) shows that the k-space network is able to compensate for phase errors of 

multishot data. The addition of image-domain regularization in the hybrid model further 

improves the reconstructions in Fig. 8(f). We note that the image domain network exploits 
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the manifold structure of patches, which serves as a strong prior that the k-space network has 

difficulty capturing.

B. Robustness to outliers

We further performed an experiment to determine the robustness of the proposed MoDL-

MUSSELS approach against outliers. In particular, we simulated a lesion image by 

increasing the intensity at a few pixels as indicated by an arrow in Fig. 9(a). This image was 

passed through the existing trained model. It is observed from Fig. 9(b) that simulated lesion 

was preserved by the proposed method. Note that the training dataset did not have any lesion 

images and we did not simulate the lesion images during training. The robustness of the 

algorithm to such outliers can be attributed to the fact that the algorithm relies on k-space 

and q-space deep-learning networks with small receptive fields, unlike direct inversions 

methods that rely on large receptive fields. Hence, the proposed scheme learns only to 

exploit local redundancies in k-space and q-space and does not memorize whole images.

C. Comparison of reconstruction time

Table II compares the time taken to reconstruct the entire testing dataset for various 

methods. It is noted that the computational complexity of the MoDL-MUSSELS is around 

28-fold lower than the IRLS-MUSSELS. Note that IRLS-MUSSELS estimates the optimal 

linear filter bank from the measurements itself, which requires significantly many iterations. 

By contrast, MoDL-MUSSELS pre-learns non-linear network weights. The quite significant 

speed increase directly follows from the significantly fewer number of iterations. Note that 

we rely on a conjugate-gradient algorithm to enforce data consistency specified by (23). 

Also note that solving (23) exactly as opposed to the use of steepest gradient steps at each 

iteration would require more unrolling steps, thus diminishing the gain in speedup. The 

greatly reduced runtime is expected to facilitate the deployment of the proposed algorithm 

on clinical scanners.

D. Impact of iterations on image quality

Figure 10 shows the impact of the number of iterations in the iterative algorithm described in 

(23)–(25). Specifically, we unrolled the iterative algorithm for the different numbers of 

iterations and compared the performance of the resulting networks. We used the hybrid 

model due to its improved performance. The parameters of both the k-space and image-

space networks were shared across iterations. Specifically, MoDL-MUSSELS uses three 

iterations of alternating-minimization, with five iterations of CG within each alternating 

step. The IRLS-MUSSELS uses five iterations of both outer loop as well as CG step. The 

images in Fig. 10 each correspond to a specific direction and slice in the testing dataset. We 

note that the contrast and details in the image improved with iterations, as did the 

visualization of some features, as shown in the zoomed portions.

E. Comparisons on experimental data

Next we compare the performance of the proposed method to reconstruct experimental data. 

Figure 11 shows the reconstructions offered by the different algorithms. A separate network 

was trained with the experimental data utilizing the IRLS-MUSSELS as the ground truth. 
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While this comparison may not be fair to P-MUSE, we used this approach since the main 

goal is to validate the MoDL-MUSSELS and U-NET which relied on IRLS-MUSSELS 

results for training. As evident from the error maps, the U-NET reconstructions appear less 

blurred, but it seems to miss some key features highlighted by yellow boxes. The hybrid 

method provides good results comparable to that of IRLS-MUSSELS.

To further validate the reconstruction accuracy of all the DWIs corresponding to the test 

slice, we performed a tensor fitting using all the DWIs and compared the resulting fractional 

anisotropy (FA) maps and the fiber orientation maps. For this purpose, the DWIs 

reconstructed using various methods were fed to a tensor fitting routine (FDT Toolbox, 

FSL). The FA maps were computed from the fitted tensors, and the direction of the primary 

eigenvectors of the tensors was used to estimate the fiber orientation. The FA maps 

generated using the various reconstruction methods are shown in Fig. 12, which has been 

color-coded based on the fiber direction. It is noted that these fiber directions reconstructed 

by the IRLS-MUSSELS method and the MoDL-MUSSELS match the true anatomy known 

for this brain region from a diffusion tensor imaging (DTI) white matter atlas (http://

www.dtiatlas.org).

VI. DISCUSSION

We observe that the IRLS-MUSSELS reconstructions on experimental data are noisy. This 

noisy ground truth training data causes fuzziness in the training loss, which translates to the 

slight blurring in MoDL-MUSSELS reconstructions in Fig. 11. Note that the MoDL-

MUSSELS reconstructions in the simulated data experiments in Fig. 8 are less blurred. The 

dependence of the final image quality on the training data is a limitation of the current work, 

especially in the multishot diffusion setting where noise-free training data is difficult to 

acquire. We plan to experiment with denoising strategies as well as the acquisition of 

training data with multiple averages to mitigate these problems. Further, we note from Fig. 

11 that the reconstructions provided by the MoDL-MUSSELS appear less noisy and are 

visually more appealing than the noisy ground truth obtained using the IRLS-MUSSELS. 

This behavior may be attributed to the convolutional structure of the network, which is 

known to offer implicit regularization [33].

In this work, we utilized an eight-layer neural network, as shown in Fig. 5. However, the 

proposed MoDL-MUSSELS architecture in Fig. 4 is not constrained by choice of network. 

Any network architecture (e.g., U-NET) may be used instead. It is possible that the results 

can improve by utilizing more sophisticated network architecture. Further, it can be noted 

that the proposed model architecture is flexible to allow different network architectures for 

image-space and k-space models. However, for the proof of concept, we used the same 

network architecture for both k-space and image space.

To avoid overfitting the model and reduce the training time, the proposed network in Fig. 4 

was unfolded for three iterations before performing the joint training. The sharing of 

network parameters allows the network to be unfolded for any number of iterations without 

increasing the number of trainable parameters. In this work, we restricted our 

implementation to a three iteration setting. We note that the results may improve with more 
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outer iterations. However, increasing the outer iterations require more GPU memory during 

network training.

The deep learning blocks used in the proposed scheme map the noisy/artefact-prone N-shot 

data to the noise-free N-shot data. The size of the filters in the first and last layers of the 

deep learning blocks depend on the number of shots. Hence, the network needs to be 

retrained if the number of shots changes. Since the filters capture the annihilation relations 

between the shots, we do not anticipate the need to retrain the network if other parameters 

(e.g., image size, TR, TE, etc.) change. Finally, we note that the current method depends on 

the estimation of the coil sensitivities to recover the multishot data.

VII. CONCLUSIONS

We introduced a model-based deep learning framework termed MoDL-MUSSELS for the 

compensation of phase errors in multishot diffusion-weighted MRI data. The proposed 

algorithm alternates between a conjugate gradient optimization algorithm to enforce data 

consistency and multichannel convolutional neural networks (CNN) to project the data to 

appropriate subspaces. We rely on a hybrid approach involving a multichannel CNN in the 

k-space and another one in the image space. The k-space CNN exploits the annihilation 

relations between the shot images, while the image domain network is used to project the 

data to an image manifold. The weights of the deep network, obtained by unrolling the 

iterations in the iterative optimization scheme, are learned from exemplary data in an end-to-

end fashion. The experiments show that the proposed scheme can yield reconstructions that 

are comparable to state-of-the-art methods while offering several orders of magnitude 

reduction in run-time.
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Fig. 1. 
Demonstration of multishot EPI acquisition employing multiple excitations and readouts. 

The first radio-frequency (RF) excitation and diffusion sensitization are followed by a k-

space readout by shot 1 that samples k-space lines 1, 3, and 5. The second RF excitation and 

diffusion sensitization are followed by a k-space readout by shot 2 capturing lines 2, 4, and 

6. The combined data corresponds to the fully sampled k-space.
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Fig. 2. 
(a). The interpretation of Eq. (19) as a convolution-deconvolution network. (b) The IRLS-

MUSSELS iterates between (19) and (10). The data consistency (DC) step represents the 

solution of Eq. (10).
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Fig. 3. 
The block diagram of the proposed k-space network architecture to solve Eq. (20). (a) The 

Nw block represents the deep learned noise predictor, and Dw is a residual learning block. 

(b) Here, the denoiser Dk is the M-layer network Dw that performs the k-space denoising.
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Fig. 4. 
The proposed hybrid MoDL-MUSSELS architecture resulting from the alternating scheme 

shown in (23)–(25). Here the Dk and DI blocks represent the k-space and the image-space 

denoising networks, respectively. The Dk and DI networks have identical structures as shown 

in Fig 3(a). The learnable convolution weights are differnt for networks Dk and DI but 

remain constant across iterations.
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Fig. 5. 
The specific M=8 layer residual learning CNN architecture used as Dk and DI blocks in the 

experiments. The 4 shot complex data are the input and output of the network. The first layer 

concatenates the real and imaginary parts as 8 input features. The numbers on top of each 

layer represent the number of feature maps learned at that layer. We learn 3 × 3 filters at 

each layer except the last, where we learn 1 × 1 filter.
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Fig. 6. 
The decay of training and validation errors with epochs. Each epoch represents one sweep 

through the entire dataset. We note that both the losses decay with iterations. This suggests 

that the amount of training data is sufficient to train the parameters of the model.
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Fig. 7. 
This plot compares the variation of the SSIM on all the slices and directions of one test 

subject from simulation dataset. The vertical lines seperate the different slices, i.e., first 

fifteen images are the directions corresponding to the first slice, and so on. There is a total of 

20 slices, each having 15 different directions, resulting in a total of 300 images.
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Fig. 8. 
Simulation results using the high-SNR data obtained from HCP. The reconstructed images 

and the corresponding error maps from five different algorithms are shown. Here, the ground 

truth is an image from the test dataset that was corrupted with phase errors of bandwidth 3×3 

and noise standard deviation σ = 0.001 to simulate 4 shot acquisition. (g) shows the 

uncorrected image if we do not correct the phase errors during reconstruction. The numbers 

in the sub-captions represent the SSIM values.
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Fig. 9. 
Lesion experiment. Arrow points to the location of Lesion. The proposed MoDL-MUSSELS 

method preserves the lesion.
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Fig. 10. 
Effect of iterations on image quality. We observe that the quality of the reconstructions with 

the proposed MoDL-MUSSELS scheme improve with iterations. Specifically, the sharpness 

of the image and the contrast seem to improve with more iterations.
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Fig. 11. 
Reconstructions obtained using different algorithms on experimental partial-Fourier data. 

Row 1 and Row 3 shows reconstruction results from two different slices. We generated the 

error maps in rows 2 and 4 by considering MUSSELS reconstructions as ground truth. The 

yellow boxes highlight the differences.
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Fig. 12. 
The fractional-anisotropy maps on a test dataset slice. These images are computed from the 

sixty directions of the slices, recovered using the respective algorithms. We note the 

proposed scheme provides less blurred reconstructions than P-MUSE, which are comparable 

with IRLS-MUSSELS.
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TABLE I

THE PSNR (DB) AND SSIM VALUES OBTAINED BY FIVE METHODS ON THE TESTING DATASET WITH SIMULATED PHASES AND 

ADDED GAUSSIAN NOISE OF VARYING STANDARD DEVIATION σ. THE VALUES ARE REPORTED AS MEAN ± STANDARD DEVIATION.

Peak signal to noise ratio (dB)

Noise (std) σ = 0.001 σ = 0.002 σ = 0.003

U-NET 32.15 ± 2.12 29.98 ± 1.19 27.63 ± 0.82

P-MUSE 34.08 ± 2.31 31.68 ± 2.21 29.19 ± 1.84

IRLS-M 38.81 ± 1.98 36.21 ± 1.32 32.43 ± 1.33

K-space 40.02 ± 1.18 36.92 ± 0.96 34.69 ± 1.38

Hybrid 40.59 ± 1.87 37.37 ± 1.56 35.40 ± 1.36

Structural similarity index

U-NET 0.89 ± 0.01 0.82 ± 0.02 0.73 ± 0.03

P-MUSE 0.79 ± 0.03 0.69 ± 0.04 0.63 ± 0.05

IRLS-M 0.88 ± 0.01 0.83 ± 0.01 0.72 ± 0.03

K-space 0.94 ± 0.01 0.89 ± 0.02 0.84 ± 0.03

Hybrid 0.96 ± 0.00 0.94 ± 0.01 0.92 ± 0.01
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TABLE II

TIME TO RECONSTRUCT ALL FIVE SLICES OF THE TEST SUBJECT. EACH SLICE HAD 60 DIRECTIONS, 4 SHOTS, AND 32 COILS. 

IRLS-MUSSELS AND P-MUSE WERE RUNS ON CPU WITH PARALLEL PROCESSING.

Algorithm: U-NET P-MUSE IRLS-M MoDL-MUSSELS

Time (sec) : 7 632 1386 49
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