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Abstract

Purpose

This study evaluated the performance of a commercially available deep-learning algorithm

(DLA) (Insight CXR, Lunit, Seoul, South Korea) for referable thoracic abnormalities on chest

X-ray (CXR) using a consecutively collected multicenter health screening cohort.

Methods and materials

A consecutive health screening cohort of participants who underwent both CXR and chest

computed tomography (CT) within 1 month was retrospectively collected from three institu-

tions’ health care clinics (n = 5,887). Referable thoracic abnormalities were defined as any

radiologic findings requiring further diagnostic evaluation or management, including DLA-

target lesions of nodule/mass, consolidation, or pneumothorax. We evaluated the diagnostic

performance of the DLA for referable thoracic abnormalities using the area under the

receiver operating characteristic (ROC) curve (AUC), sensitivity, and specificity using

ground truth based on chest CT (CT-GT). In addition, for CT-GT-positive cases, three inde-

pendent radiologist readings were performed on CXR and clear visible (when more than two

radiologists called) and visible (at least one radiologist called) abnormalities were defined as

CXR-GTs (clear visible CXR-GT and visible CXR-GT, respectively) to evaluate the perfor-

mance of the DLA.

Results

Among 5,887 subjects (4,329 males; mean age 54±11 years), referable thoracic abnormali-

ties were found in 618 (10.5%) based on CT-GT. DLA-target lesions were observed in 223
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(4.0%), nodule/mass in 202 (3.4%), consolidation in 31 (0.5%), pneumothorax in one 1

(<0.1%), and DLA-non-target lesions in 409 (6.9%). For referable thoracic abnormalities

based on CT-GT, the DLA showed an AUC of 0.771 (95% confidence interval [CI], 0.751–

0.791), a sensitivity of 69.6%, and a specificity of 74.0%. Based on CXR-GT, the prevalence

of referable thoracic abnormalities decreased, with visible and clear visible abnormalities

found in 405 (6.9%) and 227 (3.9%) cases, respectively. The performance of the DLA

increased significantly when using CXR-GTs, with an AUC of 0.839 (95% CI, 0.829–0.848),

a sensitivity of 82.7%, and s specificity of 73.2% based on visible CXR-GT and an AUC

of 0.872 (95% CI, 0.863–0.880, P <0.001 for the AUC comparison of GT-CT vs. clear

visible CXR-GT), a sensitivity of 83.3%, and a specificity of 78.8% based on clear visible

CXR-GT.

Conclusion

The DLA provided fair-to-good stand-alone performance for the detection of referable tho-

racic abnormalities in a multicenter consecutive health screening cohort. The DLA showed

varied performance according to the different methods of ground truth.

Introduction

Chest X-ray (CXR) can assist in the diagnosis and management of cardiothoracic disorders;

however, in asymptomatic outpatients or the general population, CXR has limited benefit,

leading to additional unnecessary examinations with risks of additional harm and costs. In a

cohort study of primary care outpatients who received a CXR despite the absence of respira-

tory symptoms, only 1.2% of CXR detected a major abnormality and 93% of these findings

proved to be false positives and none required treatment on further inspection [1].

Nonetheless, CXR is widely used as a component of periodic health examinations for

asymptomatic outpatients or the general population because the examination has many advan-

tages in terms of easy accessibility, low cost, and negligible radiation exposure. In Korea, the

National Health Service has offered a free CXR screening biennially to all residents aged 40

years or older [2]. Furthermore, CXR has been widely performed for pre-employment and

pre-military service medical screening.

However, the interpretation of CXRs is subject to human error and depends on reader

expertise. Approximately 20% of errors in diagnostic radiology occurred during the interpreta-

tion of radiography, half of which were related to CXR [3]. The low diagnostic yield and sub-

stantial inter- and intra-reader variability remain persistent weaknesses of CXR as a screening

tool. However, for CXR to become an effective screening tool for an asymptomatic general

population with a low pre-test probability for chest disease, the method needs to show high

sensitivity and low false-positive results. The limitations of human expert-based diagnosis have

provided a strong motivation for the use of computer technology to improve the speed and

accuracy of the diagnostic process. Recent advances in deep-learning algorithms (DLA) are

expected to improve the diagnostic performance for the screening of lung cancer, pneumonia,

and pulmonary tuberculosis on CXR [4–10].

The purpose of the present study was to evaluate the standalone performance of a commer-

cially available DLA for thoracic abnormalities on CXR in a consecutively collected multicen-

ter health screening cohort.
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Materials and methods

This retrospective cohort study was approved by the institutional review boards of three partic-

ipating institutions (approval number: GFIRB2019-175 for Gil Medical Center, 10-2019-48 for

Boramae Medical Center, 2019-05-022 for Konyang University Hospital). All data were de-

identified and the requirement for written informed consent was waived. Lunit in Seoul,

Korea, provided corporate support to build an image annotation tool. None of the authors

have any financial interests or conflicts of interest with the industry or the product used in this

study. The authors maintained full control of the data. We present the following article in

accordance with the Strengthening the Reporting of Observational Studies in Epidemiology

(STROBE) reporting checklist (S1 Appendix).

Study population for the diagnostic cohort study

Data from a total of 5,887 consecutive subjects who visited the health screening center of the

three institutions and underwent CXR and chest CT in 2018 were retrospectively investigated

from the radiology database and medical records system. Subjects who underwent chest CT

from CXR with intervals of 1 month or more were excluded. Data on age, sex, smoking history

(pack-years), exam date of CXR, and chest CT were retrospectively collected. Based on age and

smoking history, the cohort was classified as have a high risk of lung cancer (aged 55–74 years

with�30 pack-years of smoking history) or an average risk (general population). Fig 1 shows

the flow chart of the study population.

DLA for chest radiographs

We used a commercially available DLA (Lunit INSIGHT for Chest Radiography Version

2.5.7.4; Lunit, Seoul, South Korea) approved by the Korean Ministry of Food and Drug Safety.

This version of DLA was developed for the detection of three major radiologic findings (the

target lesion types are nodule/mass, consolidation, and pneumothorax) using a deep convolu-

tional neural network [7]. Further detailed information about its development and validation

is presented in S1 Fig. DLA-detected thoracic lesions are marked as a color map with abnor-

mality score (%). The abnormality score indicates the probability value (0–100%) that the CXR

contains malignant nodule/mass, consolidation, or pneumothorax. We used a predefined cut-

off value of 15%, as it showed high sensitivity (95%) in the internal validation dataset [11].

Reference standards for referable thoracic abnormalities

After the de-identification of all CXR, the images were uploaded and annotated for ground

truth (GT) using a customized web-based labeling tool provided by Lunit. With labeled GT,

the system automatically classified the DLA results as true-positive when there was overlap of

at least one pixel with the GT; otherwise, the lesion was classified as false-positive or false-

negative.

The reference standard for referable thoracic abnormalities on CXR was determined by

three adjudicators (C.Y.J., J.K.N. K.E.Y., with 19, 13, and 12 years of experience in thoracic

imaging, respectively), primarily based on the findings of the nearest chest CT. They also

reviewed follow-up CXR images and medical records to determine the clinical diagnosis.

Referable thoracic abnormalities, defined as any CXR findings requiring further diagnostic

evaluation or management, were classified into 10 lesion types and the lesions were annotated

as a box region of interest (ROI). They included three DLA-target lesion types (nodule/mass,

consolidation, and pneumothorax) and seven DLA-non-target lesion types (atelectasis or

fibrosis, bronchiectasis, cardiomegaly, diffuse interstitial lung opacities, mediastinal lesion,
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pleural effusion, and others). These imaging findings were adapted and partially modified

from the labeling standards of the ChestX-ray14 or MIMIC-CXR databases [8, 12] and the

Fleischner Society glossary of terms for thoracic imaging [13]. Furthermore, final clinical diag-

noses were categorized based on the 10th edition of the International Classification of Diseases

(ICD)-10 [14] or radiologic descriptions for thoracic lesions [13].

The original GT was made based on chest CT, which is considered the most precise method

as a reference standard for CXR. However, CT-based GT (CT-GT) is not practical and does

not reflect real-world clinical situations. CXR examinations infrequently accompany chest CT

examinations; CT examination is performed for suspicious or ambiguous CXR findings for

which further evaluation is needed under clinical suspicion. Furthermore, when the adjudica-

tors annotated referable thoracic abnormalities on CXR based on retrospective inspection of

chest CT findings, very subtle lesions were labeled on CXR, which were difficult to identify on

Fig 1. Flow chart of the study population.

https://doi.org/10.1371/journal.pone.0246472.g001
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CXR without CT guidance. To overcome this limitation, we established additional GTs based

on consensus CXR readings. For cases with any referable thoracic abnormalities on the origi-

nal CT-GT, we asked three radiologists (K.R.H, S.Y.S, and H.S.H with 7, 10, and 13 years of

experience in thoracic radiology, respectively) to evaluate the existence of referable thoracic

abnormalities on the CXR. Finally, we made subsequent GTs based on consensus CXR read-

ings (CXR-GTs); namely, clear visible CXR-GT (for more than two calls) and visible CXR-GT

(for at least one call).

Statistical analysis

The results are presented as percentages for categorical variables and as means (± standard

deviation) for continuous variables. Primarily, we evaluated the diagnostic performance of the

DLA for referable thoracic abnormalities based on CT-GT, in terms of the area under the

receiver operating characteristic (ROC) curve (AUC), sensitivity, specificity, positive predic-

tive value (precision), negative predictive value, and F1 score (the harmonic mean of precision

and recall). To evaluate lesion-wise localization performance, area under the alternative free-

response ROC curves (AUAFROCs) were used as performance measures of jackknife alterna-

tive free-response ROC (JAFROC), the curve was plotted with the lesion localization fraction

(LLF) against the probability of at least one false-positive (FP) per normal CXR. The total num-

ber of false-positive markings divided by the total number of CXRs was defined as the number

of false-positive markings per image (FPPI). In addition, true detection rate (number of cor-

rectly localized lesions/the total number of lesions) was also evaluated. Finally, we evaluated

the performance of the DLA using CXR-GTs (clear visible and visible CXR-GTs). To assess

AUC differences when evaluating the DLA using different reference standard methods, we

used either the paired or unpaired versions of DeLong’s test for ROC curves, as appropriate.

Statistical analyses were performed using MedCalc version 19.5.1 or R version 3.5.3.

In the case of multiple testing, pairwise comparison and post-hoc analysis were performed,

and P-values and 95% confidence intervals (CIs) were corrected using Bonferroni’s method. P-
values less than 0.05 were considered to indicate significant differences.

Results

Baseline characteristics and lesion types of the referable thoracic

abnormalities

Table 1 shows the demographic features of the study subjects (4,329 males and 1,558 females;

mean age, 54±11 years). A total of 618 (10.5%) subjects had referable thoracic abnormalities,

including: nodule/mass (n = 202, 3.4%), consolidation (n = 31, 0.5%), pneumothorax (n = 1,

<0.1%), and DLA-non-target abnormalities (n = 409, 6.9%), respectively (Table 2).

The normal cases differed significantly among the three institutions (Bonferroni-corrected

Ps<0.001); the prevalence of normal cases was lowest at institution G (85.8%), and followed

by institution K (90.1%), and institution B (92.7%). Furthermore, the proportions of target

and non-target lesions also differed significantly, in which institution B had fewer target-

lesions compared to those in institution K (B vs. K; 3% vs. 4.9% Bonferroni-corrected P =
0.002) and institution G had more non-target lesions compared to those in the other two insti-

tutions (G vs. K: 11% vs. 4.4% and G vs. B: 11% vs. 5.4%, Bonferroni-corrected Ps< 0.001)
(Fig 2).

Regarding categorized clinical diagnoses, benign pulmonary nodules were the most com-

mon (n = 183, 3.1%), while infection and malignant neoplasm occurred in 61 (1.0%) and 24

(0.4%) patients, respectively (S1 Table).
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Standalone performance of DLA based on CT-GT

To classify the presence of any referable thoracic abnormalities (yes/no) based on the CT-GT,

the overall diagnostic performance of the DLA was as follows: AUC of 0.77 (95% CI, 0. 76–

0.78), sensitivity of 69.6% (95% CI, 65.8–73.2%), and specificity of 74.0% (95% CI, 72.8–

75.1%) (Table 3). For lesion-wise localization, the AUAFROC was 0.65 (95% CI, 0.64, 0.67)

and FPPI and true detection rate was 0.384 and 0.481, respectively (S2 Table).

Table 1. Demographic description of the dataset.

Institutions Total P-value

B G K

(n = 1,694) (n = 1,858) (n = 2,335) (n = 5,887)

Sex, men 996 (58.8) 1,458 (78.5) 1,875 (80.3) 4,329 (73.5) <0.001

Age (years) 56±11 53±11 54±13 54±11 <0.001

Non-smoker 876 (51.7) 621 (33.4) 742 (31.9) 2239 (38.1) <0.001

Ex-smoker 415 (24.5) 431 (23.2) 576 (24.8) 1422 (24.2)

Current smoker 403 (23.8) 805 (43.3) 1007 (43.3) 2215 (37.7)

High risk of lung cancer† 129 (8.0) 350 (19.4) 314 (13.5) 793 (13.8) <0.001

Average risk of lung cancer 1,485 (92.0) 1,450 (80.6) 2,009 (86.5) 4,944 (86.2)

Note: Except where indicated, data are mean (± SD) or number (%). SD = standard deviation missing data for pack-year information (n = 150, 2.5%). Comparisons of

means and proportions between institutions for demographic information were performed using analysis of variance (ANOVA) and chi-squared tests.
†High-risk lung cancer indicates age 55–74 years with a smoking history of 30 pack-years or more

https://doi.org/10.1371/journal.pone.0246472.t001

Table 2. Lesion types of referable thoracic abnormalities on chest radiographs (determined based on computed tomography [CT]).

Lesion type Institutions P-value�

B G K Total

(n = 1,694) (n = 1,858) (n = 2,335) (n = 5,887)

Normal (no referable thoracic abnormality) 1,571 1,594 2,105 5,270 <0.001

(92.7) (85.8) (90.1) (89.5)

Target lesions† 50 (3.0) 68 (3.7) 115 (4.9) 233 (4.0) 0.003

Nodule/mass 44(2.6) 65 (3.5) 94 (4.0) 203 (3.4)

Consolidation 6 (0.4) 3 (0.2) 23 (1.0) 32 (0.5)

Pneumothorax 0 (0.0) 0 (0.0) 1 (<0.1) 1 (<0.1)

Non-target lesions 74 (4.4) 205 (11.0) 127 (5.4) 406 (6.9) <0.001

Atelectasis or fibrosis 18 (1.1) 21 (1.1) 22 (0.9) 61 (1.0)

Bronchiectasis 35 (2.1) 70 (3.8) 21 (0.9) 126 (2.1)

Cardiomegaly 5 (0.2) 10 (0.5) 28 (1.2) 43 (0.7)

Diffuse interstitial lung opacities 4 (0.2) 6 (0.3) 10 (0.4) 20 (0.3)

Mediastinal lesion 1 (0.1) 0 (0.0) 3 (0.1) 4 (0.1)

Pleural effusion 1 (0.1) 1 (0.1) 1 (0.1) 2 (0.1)

Other 13 (0.8) 101 (5.4) 46 (2.0) 160 (2.7)

Sum of target or non-target lesions 127 277 250 654 <0.001

No. of lesion type per subject‡ 0.07 (0–2) 0.15 (0–2) 0.11 (0–2) 0.11 (0–2)

Note: Except where indicated, data are numbers of patients, with percentages in parentheses.

�Comparison of proportions between institutions for each lesion type by chi-squared tests.
†Target lesions were dedicated lesion types for the deep-learning algorithm used in this study.
‡No. of lesion types per subject was calculated in subjects with target or non-target lesions.

The numbers in parentheses are ranges.

https://doi.org/10.1371/journal.pone.0246472.t002
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Fig 2. The prevalence of normal cases, and target and non-target lesions of a deep-learning algorithm (DLA) showing significant differences between the three

institutions. Institution G has fewer normal cases and more DLA-non-target lesions compared to those of the other two institutions.

https://doi.org/10.1371/journal.pone.0246472.g002

Table 3. Standalone performance of the deep-learning algorithm (DLA) for visible referable thoracic abnormalities on chest radiographs in the multicenter health

screening cohort based on chest computed tomography (CT) findings.

Performance of DLA

Institution Reference standard AUC Sensitivity Specificity PPV NPV F1 score (%)

(%) (%) (%) (%)

B (n = 1,694) CT-GT 0.74 63.93 74.55 16.32 96.38 26.00

(0.72, 0.76)

Visible CXR-GT 0.88 88.71 74.08 11.51 99.42 20.37

(0.86, 0.89)

Clear visible CXR-GT 0.91 94.59 73.26 7.32 99.84 13.59

(0.89–0.92)

G (n = 1,858) CT-GT 0.71 75.00 56.52 22.22 93.17 34.29

(0.69, 0.74)

Visible CXR-GT 0.74 79.12 55.43 16.16 96.07 26.84

(0.72, 0.76)

Clear visible CXR-GT 0.75 83.16 53.94 8.87 98.35 16.02

(0.73–0.77

K (n = 2,335) CT-GT 0.84 66.81 85.88 34.29 95.91 45.32

(0.82, 0.85)

Visible CXR-GT 0.91 84.47 85.46 30.09 98.67 30.09

(0.90, 0.92)

Clear visible CXR-GT 0.95 94.74 83.84 19.91 99.73 32.91

(0.94–0.96)

Total (n = 5,887) CT-GT 0.77 69.74 73.62 23.67 95.40 35.34

(0.76, 0.78)

Visible CXR-GT 0.84 82.72 72.89 18.40 98.28 30.10

(0.83, 0.85)

Clear visible CXR-GT 0.87 89.87 71.43 11.20 99.43 19.92

(0.86–0.88)

Note: Numbers in parentheses are 95% CI. AUC = Area under the receiver operator characteristic curve, CI = confidence interval, CT-GT = ground truth based on

chest computed tomography (CT), CXR-GT = ground truth based on chest X-ray; PPV, positive predictive value; NPV, negative predictive value

https://doi.org/10.1371/journal.pone.0246472.t003
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Performance evaluation using different reference standards

Among cases with referable thoracic abnormalities (n = 618) primarily based on CT-GT, three

radiologists independently performed subsequent evaluations for the presence of visible refer-

able thoracic abnormalities on CXR. On consensus CXR reading (CXR-GTs), the prevalence

of referable thoracic abnormalities decreased, compared to 618 (10.5%) CT-GT-positive cases,

visible (visible CXR-GT), and clear visible (clear visible CXR-GT) abnormalities were found in

405 (6.9%) and 227 (3.9%) cases, respectively.

Based on the CXR-GTs, the performance of the DLA increased, with an AUC of 0.84 (95%

CI, 0.83–0.85), sensitivity of 82.7% (95% CI, 78.7–86.3%), and specificity of 73.2% (95% CI,

72.0–74.4%) based on visible CXR-GT and an AUC of 0.87 (95% CI, 0.86–0.88), sensitivity of

83.3% (95% CI, 77.8–87.9%), and specificity of 78.8% (95% CI, 77.7–79.9%) based on clear visi-

ble CXR-GT. Comparison of AUCs showed that the overall performance of the DLA was sig-

nificantly better when using clear visible CXR-GT than CT-GT as a reference standard (AUC:

0.87 vs. 0.77, P<0.001) (Fig 1).

Two institutions (B and K) showed significantly better performance when using CXR-GTs

compared to CT-GT. However, institution G did not show significantly better performance

when using clear visible GT (Fig 3).

Discussion

This study evaluated the standalone performance of a commercial DLA for CXR using a con-

secutively collected multicenter health screening cohort. In the health screening cohort, we

can expect a low prevalence of chest disorder compared to an inpatient or outpatient cohort

with symptoms and risk factors for respiratory disorder. In the low pre-test probability setting,

CXR needs to show high sensitivity and low false-positive results to become an effective

screening tool for the asymptomatic general population. Therefore, we selected a threshold of

0.16 because the primary purpose of screening lies in sensitively detecting thoracic abnormali-

ties, including early lung cancer and tuberculosis.

Our study results showed fair to good diagnostic performance of the DLA for CXR and

revealed significantly different performance results for different reference standard methods.

Based on CT-GT, the performance of the DLA for referable thoracic abnormalities was fair.

However, the performance increased significantly when CXR-GTs were used, with the DLA

showing the best performance based on clear visible CXR-GT. On CT-GT, subtle lesions were

included as abnormalities as compared to CXR-GTs. Among cases with referable thoracic

abnormalities (n = 618, 10.5%) primarily based on chest CT, visible and clear visible abnormal-

ities decreased the number of patients with referable thoracic abnormalities to 405 (6.9%) and

227 (3.9%) on consensus CXR reading, respectively. When the adjudicators annotated abnor-

malities originally based on CT, they inevitably tended to call very subtle lesions that are diffi-

cult to detect on prospective inspection on CXR.

Interestingly, the performance did not increase significantly in one institution that had a

higher number of non-target lesions compared to those in the other institutions. The preva-

lence of lesion types is dependent on the clinical setting (inpatient, outpatient, emergency

room, and health care clinic) and hospital level (tertiary academic hospitals: institution G and

K; secondary general hospital: institution B) and location (institution G and K were located in

Incheon and Daejeon in Korea, respectively, while institution B is located in the capital city of

Korea, Seoul). The institution G showed the lowest AUC when evaluated using CT-GT and

the performance improvement was not observed after using subsequent CXR-GTs. In deep-

learning modeling, the DLA is trained to detect and classify using a training dataset. Although

some overlap was present between the imaging findings of DLA-target and DLA-non-target
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lesions as increased opacity, the lesion types that were not included in the initial training pro-

cess (DLA-non-target lesions) did not show good performance. Therefore, the interpretation

of DLA results requires care as the performance of the DLA could depend on the disease prev-

alence and lesion characteristics (target and non-target lesion distribution) as well as the stan-

dard reference methods.

Fig 3. Receiver operating characteristic curve (ROC) curve of a deep-learning algorithm (DLA) for referable thoracic abnormalities on chest radiography based

on different standard reference methods. The area under the ROC curve (AUC) shows better performance when using visible and clear visible CXR compared to using

CT as ground truth methods, except for institution G (C).

https://doi.org/10.1371/journal.pone.0246472.g003
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In previous studies, DLA for CXR showed excellent performance, similar to the expert radi-

ologist reading for the diagnosis of lung cancer, tuberculosis, and multiple abnormal findings

[7, 11, 15]. These studies used previous version of DLA of slight different DLA architectures,

and the evaluation were conducted on experimentally designed datasets with prepared cases of

lung cancer, tuberculosis, and normal, which have either one abnormal finding or pure normal

cases. While these studies confirmed the technical validity of DLAs, in the real-world setting,

the incidence of the disease differs between clinical settings and mixed abnormal findings of

DLA-target and non-target lesions are common. Furthermore, image quality and comorbidi-

ties are the obstacles to DLA-based diagnosis from CXR. Therefore, the performance evalua-

tion of DLA in a consecutively collected cohort in a real clinical situation is important to prove

the clinical validity of this approach. Distinct from previous version, the DLA used in the pres-

ent study does not use the lung segmentation module and the baseline architecture has been

changed to ResNet34 [16]. Attend-and-Compare Module was used in the intermediate layers

to improve detection performance [17] and AutoAugment algorithm [18] combined with

conventional image processing techniques such as brightness, contrast adjustment, blurring,

and random cropping were applied to augment the training dataset. Furthermore, the final

layer output four different abnormality-specific channels (mass/nodule, pneumothorax, con-

solidation, and abnormalities), each representing the probability map for the corresponding

abnormality (S1 Fig). To verify differences in diagnostic capabilities according to DLA archi-

tecture differences, further investigation with different DLAs using the diagnostic cohort is

needed.

Our study has several limitations. First, subjects who underwent only CXR without chest

CT in health clinics were excluded which may lead to selection bias. Most of the subjects who

visited the health clinics did not undergo chest CT. Second, the performance of the DLA was

evaluated using a specific version of a commercial product with a predefined cut-off value set

for high sensitivity. Therefore, the results were obtained under certain circumstances and care

is required in interpreting the results of the DLA for other products or other clinical settings.

Third, the results of our study are limited to one country, so the generalizability to racial differ-

ences in other countries is uncertain.

In conclusion, the results of the present study demonstrated the overall fair to good

stand-alone performance to determine the presence of referable thoracic abnormalities in a

multicenter consecutive health screening cohort. The DLA showed varying performance

depending on the type of reference standard method and the frequency of specific lesion

types.
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