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Abstract

Background: Endoscopic ultrasound-guided fine-needle aspiration is associated with the 

accurate determination of tumor grade. However, because it is an invasive procedure there is a 

need to explore alternative noninvasive procedures.

Purpose: To develop and validate a noncontrast radiomics model for the preoperative prediction 

of nonfunctional pancreatic neuroendocrine tumor (NF-pNET) grade (G).

Study Type: Retrospective, single-center study.

Subjects: Patients with pathologically confirmed PNETs (139) were included.

Field Strength/Sequence: 3T/breath-hold single-shot fast-spin echo T2-weighted sequence 

and unenhanced and dynamic contrast-enhanced T1-weighted fat-suppressed sequences.

Assessment: Tumor features on contrast MR images were evaluated by three board-certified 

abdominal radiologists.

Statistical Tests: Multivariable logistic regression analysis was used to develop the clinical 

model. The least absolute shrinkage and selection operator method and linear discriminative 

analysis (LDA) were used to select the features and to construct a radiomics model. The 

performance of the models was assessed using the training cohort (97 patients) and the validation 

cohort (42 patients), and decision curve analysis (DCA) was applied for clinical use.
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Results: The clinical model included 14 imaging features, and the corresponding area under the 

curve (AUC) was 0.769 (95% confidence interval [CI], 0.675–0.863) in the training cohort and 

0.729 (95% CI, 0.568–0.890) in the validation cohort. The LDA included 14 selected radiomics 

features that showed good discrimination—in the training cohort (AUC, 0.851; 95% CI, 0.758–

0.916) and the validation cohort (AUC, 0.736; 95% CI, 0.518–0.874). In the decision curves, if the 

threshold probability was 0.17–0.84, using the radiomics score to distinguish NF-pNET G1 and 

G2/3, offered more benefit than did the use of a treat-all-patients or treat-none scheme.

Data Conclusion: The developed radiomics model using noncontrast MRI could help 

differentiate G1 and G2/3 tumors, to make the clinical decision, and screen pNETs grade.

Level of Evidence: 4

Technical Efficacy Stage: 2

PANCREATIC NEUROENDOCRINE TUMORS (pNETs) are rare and account for only 3% 

of pancreatic tumors.1–3 However, the number of incidentally discovered pNETs has 

increased because of advances in diagnostic imaging.1,2 A classification system developed 

by the World Health Organization (WHO) in 2010 categorized pNETs as low-grade (G1), 

intermediate-grade (G2), or high-grade (G3) tumors on the basis of the mitotic rate and 

Ki-67 index.4

However, over the past several years there have been reports that G3 pNET is more 

heterogeneous than expected and that there are differences in survival outcomes according to 

the tumor morphology and Ki-67 index among patients with pNET G3.5–7 The WHO 

classification was revised recently based on these studies. Revised 2017 WHO classification 

divides previous G3 neuroendocrine carcinomas into well-differentiated NET (NET G3) and 

poorly-differentiated NET (neuroendocrine carcinoma G3); the latter was subdivided into 

small cell type and large cell type according to the cell size.8

Studies have shown that the risk of tumor progression increases by 2% for each 1% increase 

in Ki-67 index.9 G2 and G3 tumors need a more aggressive surgical treatment than G1 

tumors. Therefore, it is important to differentiate G1 tumors from G2 and G3 tumors.

Accurate prediction of pNET grade before surgery is of great significance for clinical 

treatment selection and prognosis evaluation. To date, endoscopic ultrasound-guided fine-

needle aspiration (EUS-FNA) has been associated with high accuracy of tumor grading 

before surgery.10 However, the main drawbacks of EUS-FNA, in this regard, are 

invasiveness and potential puncture failure, collection of limited tissue volume, and 

difficulty in reflecting tumor heterogeneity.11,12 Multislice spiral computed tomography 

(MSCT) and magnetic resonance imaging (MRI) have become the most commonly used 

tools for pNET diagnosis. These techniques are noninvasive, highly efficient, and can 

provide a comprehensive assessment regarding the tumor location, size, shape, margin, 

calcification, invasion to the adjacent vessels and organs, and metastasis. Many studies 

explored the correlation between the findings of, and tumor grades determined by, MSCT 

and MRI. These studies were based on the quantification of imaging findings, but the overall 

value with respect to tumor grade was limited.13–17
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Radiomics is an emerging field that converts imaging data into a high-dimensional feature 

space using a large number of automatically extracted data-characterization algorithms.18,19 

Machine learning is the scientific discipline that focuses on how computers learn from data,
20 and provides a noninvasive method for the prediction of tumor grade. So far, most of the 

prior studies have used CT radiomics features,21–24 and development of a radiomics model 

based on noncontrast MRI has been rarely reported.25 Therefore, in this study we used 

noncontrast MRI radiomics features of pNETs to establish a linear discriminant analysis 

(LDA) classifier that employed the sigmoid function to generate the output and to achieve 

accurate preoperative prediction of pNET grade.

Materials and Methods

Patients

This retrospective single-center study design was reviewed and approved by the Biomedical 

Research Ethics Committee of our institution. The requirement for patient consent was 

waived. We screened the institutional database for medical records of patients with 

histologically confirmed pNETs who underwent surgical resection with curative intent from 

November 2012 to August 2019. Patients were excluded if they met one of the following 

criteria: 1) had not undergone preoperative standard contrast-enhanced MRI during the 

month before surgery; 2) had received any treatment (radiotherapy, chemotherapy, or 

chemoradiotherapy) before undergoing imaging studies; 3) had not undergone surgery; 4) 

had pancreatic lesions that could not be visualized using MRI; 5) had other tumors in the 

pancreas; 6) had confirmed functional pNETs; and patients with 7) pathologically 

unconfirmed NF-pNETs; and 8) metastasis. The complete patient selection process is shown 

in Fig. 1. Consequently, a total of 139 consecutive patients with NF-pNETs were included in 

this cross-sectional study. Patients with G1, G2, and G3 tumors accounted for 43.3% (42), 

48.5% (47), and 8.2% (8) of the training cohort, respectively, and 42.85% (18), 42.85% (18), 

and 14.1% (6) of the validation cohort, respectively.

MRI

All patients included in this study underwent dynamic contrast-enhanced MRI of the 

pancreas performed with 3.0T systems (Signa HDxt MR750 3.0T, GE Healthcare, 

Milwaukee, WI; Skyra 3.0T, Siemens, Erlangen, Germany). All patients were positioned 

supine with a phased array receiver coil covering the upper abdomen, and breath-hold 

single-shot fast-spin echo-coronal T2-weighted sequence (repetition time [TR] / echo time 

[TE] = 6316/87 msec; field of view [FOV] = 360 × 420 mm2; matrix = 224 × 270; slice 

thickness = 5 mm; flip angle = 90; slice gap = 1 mm) and unenhanced and dynamic contrast-

enhanced T1-weighted fat-suppressed sequences (TR/TE = 2.58/1.18 msec; FOV = 440 × 

440 mm2; matrix = 224 × 270; slice thickness = 5 mm; flip angle = 12; no slice gap) were 

used. Dynamic contrast-enhanced images, including arterial phase (15 sec), pancreatic 

parenchymal phase (20 sec), and portal venous phase (40 sec) images were obtained with 

gadopentetate dimeglumine (Magnevist and Gadovist, Bayer Schering Pharma, Berlin, 

Germany). The contrast agent was administered intravenously at a rate of 2 mL/s and a dose 

of 0.2 mL/kg, followed by 20 mL of normal saline (to flush the tube).
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MRI Analysis

All MR images were analyzed by three board-certified abdominal radiologists (Y.B., K.C., 

and J.L., with experience of 20, 20, and 18 years, respectively), who were aware that the 

study population had pNET but were blinded to the tumor grade and stage. If there was any 

inconsistency, we chose the two consistent results.

All tumors were evaluated for the following features: 1) tumor location—head (uncinate and 

nonuncinate), body, or tail of the pancreas or multiple locations in the pancreas; 2) size—the 

maximum diameter of the tumor in cross-section26; 3) shape—regular or irregular; 4) margin

—well-delineated (tumor margin smooth and clearly visible) or ill-delineated (with 

spiculation or infiltration on >90° of tumor perimeter); 5) parenchymal atrophy; 6) cystic 

changes within the tumor—nonenhancing areas of circular or ovoidal shape or well-defined 

margin and high T2-weighted image (T2WI) signal intensity; 7) dilation—pancreatic duct 

dilation (>3 mm) and common bile duct dilation (>10 mm); 8) tumor intensity in T1-

weighted imaging (T1WI) and T2WI—low-, iso-, and high-intensity tumors; 9) the phase of 

peak enhanced value; 10) enhanced mode—homogeneity and heterogeneity; and 11) organ 

invasion—invasion of the liver, spleen, intestine, or stomach. The criterion for cases 

involving tumors that could not be separated from organs was: l) vascular invasion—

invasion of the common hepatic artery, splenic artery and vein, gastroduodenal artery, 

superior mesenteric artery and vein, and portal venous vein. The criteria were vessel 

occlusion, stenosis, or more than half of the perimeter being in contact with the tumor.

Radiomics Workflow

The radiomics workflow included 1) image segmentation and preprocessing; 2) feature 

extraction; and 3) machine learning (Fig. 2).

IMAGE SEGMENTATION AND PREPROCESSING.—The draw tool available in the 

Editor module of the 3D Slicer v. 4.8.1 (open source software; https://www.slicer.org/) was 

used to delineate the tumors in multiple slices. In this study the volume of interest (VOI) was 

extracted by stacking the corresponding regions of interest (ROIs) delineated slice-by-slice 

for each patient. Areas showing calcification and cystic changes in the tumor were excluded 

when drawing. To eliminate the differences resulting from the use of different scanners and 

to normalize the images, all data were processed in the three steps described below.

Step 1: Bias field correction: A B1 bias field is a low-frequency smooth undesirable signal 

that corrupts MR images because of the inhomogeneities in the magnetic field of the MRI 

machine.27 This was corrected to compensate for inhomogeneity artifacts across the MRI 

volume using low-pass bias filtering.28

Step 2: Resampling: All sets were resampled in all three dimensions via linear interpolation 

to ensure consistent voxel sizes and resolutions across all the machines and patients; MatLab 

(v. R2018b; MathWorks, Natick, MA; https://www.mathworks.com/ ). As a result, the voxel 

dimensions of each case were 0.66 × 0.66 × 0.66 mm3. This step of processing was 

performed on all annotation masks, as well to ensure that the masks remained in 

correspondence with the volumes.
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Step 3: Intensity standardization: Landmark-based histogram transformation was used to 

align MRI signal intensity distributions across all patient sets.29 Two patients were selected 

at random to generate a template distribution on T1 and T2, respectively. Distributions for all 

patient volumes scanned from all machines were nonlinearly mapped to the template 

distribution, using deciles as landmarks on both target and template distributions; MatLab (v. 

R2018b; MathWorks). As a result, distributions for all patient sets were brought into 

alignment, thus ensuring that the signal intensities were in tissue-specific correspondence.

FEATURE EXTRACTION.—Gray level co-occurrence matrix (GLCM), gray level run 

length matrix (GLRLM), gray level size zone matrix (GLSZM), gray level dependence 

matrix (GLDM), and neighboring gray tone difference matrix (NGTDM) were applied to all 

imaging data, which consisted of raw images and images processed using square, square 

root, logarithm, gradient, Laplacian of Gaussian, and wavelet filters. Details of the 

procedures for the radiomics feature extraction are described in the Supplementary 1 data.

To assess interobserver reliability, ROI segmentation was performed in a blinded fashion by 

two radiologists. To evaluate intraobserver reliability, reader 1 extracted the features three 

times, with an interval of 7 days between extractions. Reader 1 completed the remaining 

image segmentation; readout sessions were conducted over a period of 1 month. Reliability 

was calculated using the intraclass correlation coefficient (ICC). Radiomics features with 

both intraobserver and interobserver ICC values greater than 0.75 (indicating excellent 

stability) were selected for subsequent investigation.

Multivariate coefficient of variation (CV) was used to evaluate the overall spread of 

radiomics features. Details of CV are described in the Supplementary 2 data. The CV values 

less than the mean CV values were picked in all data. Finally, 2126 of 3328 radiomics 

features were picked (Fig. 3).

MACHINE LEARNING.—To normalize different scales of different features, the mean 

value of each feature was subtracted from individual features in the training cohort, and 

subsequently the differences of these values were divided by their respective standard 

deviation values. The same normalization method was then applied to the testing cohort 

using the mean values and standard deviation values derived from the training cohort.

Feature selection comprised three steps: variance analysis, Wilcoxon rank-sum test, 

minimum redundancy and maximum relevance (mRMR), and the least absolute shrinkage 

and selection operator (LASSO) binary logistic regression. mRMR was used to select 

candidate feature sets, where the features with P < 0.01 were selected, and then the top 50% 

features were selected using mRMR. LASSO regression was used for further feature 

reduction. Among these 2126 features, 1916 were excluded because of low intragroup 

variance (P > 0.01). Among the remaining 105 features, the top 50% were picked according 

to the mRMR algorithm. Lastly, 14 features with nonzero coefficients were selected from the 

105 features through the LASSO regression method (Figs. 4 and 5). Details of mRMR and 

LASSO are presented in the Supplementary 3 data.
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The prediction model was developed for a primary cohort that consisted of 97 patients 

treated from October 2012 to April 2018. Forty-two consecutive patients treated from May 

2018 to August 2019 constituted an independent validation cohort. First, we developed a 

clinical model using 14 imaging features including tumor location, size, shape, margin, 

cystic changes, pancreatic and bile duct dilation, parenchymal atrophy, tumor intensity in 

T1WI and T2WI, the phase of peak enhanced value, enhanced mode, organ invasion, and 

vascular invasion. Subsequently, we applied the LDA classifier to obtain a pNET grade-

predictor radiomics model. Finally, the mixed model combining the radiomics signature and 

14 imaging features was developed.

Pathological Image Analysis

All specimens were analyzed by two pathologists (J.M.Z. and H.J.) with 30 and 20 years of 

experience in pancreatic pathology, respectively. The formalin-fixed specimens were 

processed into paraffin according to routine methods30; 5-μm thick sections were obtained 

and stained with hematoxylin and eosin (H&E) for conventional histological examination 

and were assessed according to the WHO 2017 guidelines.8 Immunohistochemistry was 

performed according to standard routine methods. We used monoclonal mouse antihuman 

antibodies against Ki-67 (Dako, Glostrup, Denmark). Grades were recorded.

Statistical Analysis

All analyses were performed using R (v. 3.3.3; R Foundation for Statistical Computing; 

http://www.r-project.org) and EmpowerStats (X&Y Solutions, Boston, MA). Normal 

distribution and variance homogeneity of all continuous variables were evaluated. 

Continuous variables that were normally distributed were expressed as mean values ± SD; 

the remaining continuous variables were expressed as medians with ranges. G1 and G2/3 

pNETs were compared using the rank sum test (continuous variables) and the chi-squared 

test (categorical variables). The clinical model was constructed using the multivariable 

logistic regression analysis, which included all 14 imaging characteristics. The 

discrimination of the models was evaluated using the receiver operating characteristic (ROC) 

curve, and the area under the curve (AUC) was also calculated. ROC curves were compared 

using the DeLong test. The calibration of the models was assessed using the calibration 

curves and Hosmer–Lemeshow test, whereas the clinical usefulness of the models was 

assessed using decision curve analysis (DCA). Details of DCA method are described in the 

Supplementary 4 data. A two-tailed P < 0.05 was considered statistically significant.

Results

Clinical, Pathologic, and MRI Characteristics

Significant differences were observed in MRI-reported tumor size and phase of peak 

enhancement values of the training and validation cohorts and in the vascular invasion of the 

validation cohort between patients with G1 and G2/3 tumors (P < 0.05). However, no 

significant differences in other characteristics (P > 0.05) were observed between the groups. 

The characteristics of all patients are summarized in Tables 1 and 2.
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Clinical Model

The clinical model yielded AUCs of 0.769 (95% confidence interval [CI], 0.675–0.863) and 

0.729 (95% CI, 0.568–0.890) in the training and validation cohorts, respectively (Fig. 6). 

The sensitivity, specificity, and accuracy of the model for the training cohort were 71.4%, 

72.7%, and 0.722, respectively, whereas those of the validation cohort were 77.8%, 66.7%, 

and 0.714, respectively.

Development, Performance, and Validation of the Prediction Model

The interobserver and intraobserver ICCs were 0.776–0.923 and 0.815–0.971, respectively 

(Table 3). Subsequently, the LDA model was built using the 14 radiomics features selected. 

The visualization of the radiomics model is shown in Fig. 7. The AUC values were 0.851 

(95% CI: 0.758–0.916) and 0.736 (95% CI: 0.548–0.874) for the training cohort and 

validation cohort, respectively (Fig. 8a). The sensitivity, specificity, and accuracy for the 

training cohort were 87.3%, 80.0%, and 0.804, respectively, whereas those for the validation 

cohort were 83.3%, 74.1%, and 0.738, respectively. The calibration curve (Fig. 8b) showed 

good calibration in the training (P = 0.93) and validation cohorts (P = 0.82).

The mixed model, which combined the radiomics signature and 14 imaging features, yielded 

AUC values of 0.870 (95% CI: 0.783–0.930) and 0.701 (95% CI: 0.517–0.852). There was 

no significant deference between the radiomics model and the mixed model (P = 0.521).

Clinical Utility

The DCA showed that if the threshold probability is 0.17–0.84, using LDA in the current 

study to distinguish NF-pNET grade is more beneficial than the treat-all-patients scheme or 

the treat-none scheme (Fig. 9).

Discussion

We successfully predicted the tumor grade using the LDA classifier established by the 

analysis of pNETs radiomics features obtained from noncontrast T1WI and T2WI. The 

individualized prediction model showed good discrimination in the training cohort and 

validation cohort in addition to showing good calibration. DCA indicated the clinical 

usefulness of LDA.

Many researchers have studied the correlation between the imaging features and tumor 

grade. A study by Yamada et al,17 which included 37 patients with pNETs, showed that the 

CT enhancement in the pancreatic phase, irregularity, vessel involvement, and cystic 

degeneration/necrosis were strong predictors of G2 pNETs. However, Yamada et al’s study 

was a small-scale study and aimed to diagnose G1 and G2 tumors but not G3 tumors. Kim et 

al16,31 performed a multivariate analysis of the MSCT features of 161 patients with pNETs; 

they reported that the largest diameter (>3 cm), portal venous enhancement rate (≤1.1), and 

liver metastasis were more suggestive of poor prognosis and that the portal enhancement 

ratio showed high sensitivity and specificity (92.3% and 80.5%, respectively) in 

differentiating G3 from G1/2 pNETs. Toshima et al32 performed a study regarding the 

correlation between CT and MRI features and tumor grade; using univariate analysis, the 
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study showed that the maximum diameter of the tumor, tumor shape, enhancement pattern, 

cystic degeneration, and apparent diffusion coefficient (ADC) were helpful in the 

determination of G1/2 and G3 tumors, and using a multivariate regression analysis they 

showed that a lower ADC ratio (ADC value of the lesion/ADC value of the parenchyma < 

0.94), nonuniform enhancement, lobulated mass, and high signal intensity on T2WI suggest 

a diagnosis of G3 tumor. Kim et al’s and Toshima et al’s studies focused on differentiating 

of G1/2 and G3 tumors, but they reported that G2 and G3 pNETs showed a poorer prognosis 

than G1 pNETs. A study by Kulali et al,33 which included 30 patients with pNETs, showed 

that 1) all high- and intermediate-grade pNETs tended to show low to intermediate signal 

intensity on T2WI; 2) low-grade pNETs showed statistically higher arterial enhancement 

than intermediate- and high-grade pNETs; and 3) ADC values in high-grade pNETs were 

significantly lower than those of low- and intermediate-grade pNETs. Kim et al34 found that 

ill-defined borders and hypointense signals on venous and delayed-phase imaging were 

common findings of higher-grade pNETs and that the ADC value was helpful for 

differentiating G1 pNETs from G2 pNETs. However, Kulali et al’s and Kim et al’s studies 

were small-scale studies that included 30 and 39 patients, respectively.

Our current study showed that the tumor size, phase of peak enhancement value, and 

vascular invasion were significantly different between G1 and G1/2 pNETs, and these results 

are consistent with the above results. However, there was no significant difference in T2 

signal intensity and margin between G1 and G1/2 pNETs. Furthermore, our study developed 

a multivariable logistic regression model, which included all 14 MRI characteristics and 

yielded an AUC of 0.769 in the training cohort and 0.729 in the validation cohort. Compared 

with previous studies, we hypothesized that the distribution of grades, the numbers of the 

patients, research purpose, and different WHO guidelines may have been responsible for the 

differences between the current study and the published studies.

Few previous studies have used radiomics for pNET grading. Canellas et al21 established a 

logistic regression model to predict tumor grade by combining the imaging features of pNET 

with the texture features of cross-sectional CT images in the portal venous phase. The 

features included in the model were tumor diameter, vascular invasion, pancreatic duct 

dilation, lymphatic metastasis, and entropy. The accuracy of the model in predicting G1 and 

G2/3 tumors was 79.3%. Choi et al22 summarized the imaging features of 66 patients with 

pNET (45 patients with G1 tumors and 21 patients with G2/3 tumors) and extracted the 

texture features of the cross-sectional images of the arterial and portal venous phases to 

establish logistic regression models. The model suggested that ill-defined tumor borders, 

lower values of 2D-sphericity, 3D-skewness, 3D-sphericity in the arterial phase, a lower 2D-

kurtosis value, a larger 2D-sphericity value, and lower values of 3D-surface area and 3D-

sphericity in the portal venous phase were more likely to be suggestive of G2/3 tumors. Choi 

et al’s model is better at determining tumor grade (AUC = 0.77) than is the method using 

simple imaging features (AUC = 0.68). Gu et al23 developed nomograms incorporating 

tumor margin and the fusion CT radiomics signature to discriminate G1 and G2/G3 tumors; 

this model yielded AUCs of 0.974 and 0.902 in the training and validation cohorts, 

respectively. Another similar study included 137 patients from two hospitals and developed 

a combined nomogram including clinical characteristics and CT radiomics signatures to 

differentiate G1 and G2/3 tumors; it showed the best performance (training set: AUC = 
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0.907; validation set: AUC = 0.891).24 However, radiomics features were extracted from 

MSCT in the above studies, and the studies on MRI-based radiomics features are very rare. 

Gao and Wang25 used MR-T1WI radiomics features of 96 patients with pNETs to develop 

the convolutional neural network (CNN) model and to predict pNET grade; the average 

accuracy and AUC were 85.13% and 0.9117, respectively, in the cross-validation. The 

current study constructed the LDA classifier, which consisted of 14 selected radiomics 

approaches of noncontrast T1WI and T2WI and showed good discrimination in the training 

cohort (AUC = 0.851) and in the validation cohort (AUC = 0.736). The LDA classifier was 

superior to the clinical model. This LDA-based radiomics of noncontrast T1WI and T2WI 

could provide a convenient way for the rapid preoperative pNET grade screening.

To assess the models beyond the purely mathematical perspective provided by performance 

measures such as the AUC, DCA was used to estimate the predicted net benefit of the model 

across all possible risk thresholds and to thereby evaluate the effects of various risk 

thresholds.35,36 DCA showed that if the threshold probability was 0.17–0.84, the use of the 

radiomics score for grading NF-pNETs provided more benefit than the treat-all-patients or 

the treat-none schemes.

Limitations

The current study has some limitations. First, the current study was a retrospective study. In 

future studies, we need to increase the number of patients to verify the stability of the model. 

Second, the number of patients with G3 pNET was relatively small (only eight patients). 

However, considering that pNET is a relatively rare type of pancreatic tumor, according to 

published data in the literature, the number of patients in the current study was acceptable. 

Lastly, our study included only surgically proven patients with pNET; those with pNET 

confirmed by EUS-FNA were excluded, because postoperative pathology is more accurate 

than EUS-FNA.

Conclusion

We have developed a machine-learning prediction model to improve diagnostic accuracy and 

help in clinical decisions. The noncontrast MRI can provide more convenient grade 

screening.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1: 
Flow chart depicting the patient selection process.

Bian et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2: 
Radiomics workflow.

Bian et al. Page 14

J Magn Reson Imaging. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3: 
Measurement of robustness and reproducibility. Among G1 MR images, 29 were acquired 

using GE scanners and 13 using Siemens scanners, and among G2/3 MR images, 31 were 

acquired using GE scanners and 24 using Siemens scanners.
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FIGURE 4: 
Radiomic feature selection by using a parametric method, the least absolute shrinkage and 

selection operator (LASSO). (a) Selection of the tuning parameter (λ) in the LASSO model 

via 10-fold cross-validation based on minimum criteria. Binomial deviances from the 

LASSO regression cross-validation procedure are plotted as a function of log (λ). y-axis 

indicates binomial deviances. Lower x-axis indicates the log (λ). Numbers along the upper 

x-axis represent the average number of predictors. Red dots indicate average deviance values 

for each model with a given λ, and vertical bars through the red dots show the upper and 

lower values of the deviances. The vertical black lines define the optimal values of λ, where 

the model provides its best fit to the data. The optimal λ value of 1.1147 with log (λ) 

=0.0471 was selected. (b) LASSO coefficient profiles of the 105 radiomics features. The 

dotted vertical line was plotted at the value selected using 10-fold cross-validation in a. The 

14 resulting features with nonzero coefficients are indicated in the plot.
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FIGURE 5: 
Feature map showing comparison of G1 and G2/3 using T1 and T2. The value of radiomics 

feature is transferred color bar. The value gradually increases from blue to red. (a) is the 2D 

transverse plane of the raw T1WI in G1; (b) is the 3D version of a; while (c) and (d) are 

zoomed tumors in a and b, respectively; (e) is the 2D transverse plane of the raw T2WI in 

G1; (f) is the 3D version of e; while (g) and (h) are zoomed tumors in e and f, respectively; 

(i) is the 2D transverse plane of the raw T1WI in G2; (j) is the 3D version of I; while (k) and 

(l) are zoomed tumors in i and j, respectively; (m) is the 2D transverse plane of the raw 

T2WI in G2; (n) is the 3D version of m; while (o) and (p) are zoomed tumors in m and n, 

respectively. (a–d) and (i–l) represent Log_sigma-0.5mm_GLCM_MaximumProbability 

feature in T1WI. Obviously, the feature of G1 is more violent than G2/3, while the (e–h), 

(m–p) represents Wavelet_LLH_GLCM_Lmc2 feature in T2WI; conversely, the feature of 

G2/3 is stronger than that of G1.
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FIGURE 6: 
ROC curves of the clinical model. ROC, receiver operating characteristic; AUC, area under 

the curve.
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FIGURE 7: 
Visualization of the radiomics model.
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FIGURE 8: 
ROC curves and calibration curve of the radiomics score. (a) ROC curves; (b) Calibration 

curves. ROC, receiver operating characteristic; AUC, area under the curve.
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FIGURE 9: 
DCA for the radiomics score. y-axis represents the net benefit. The red line represents the 

radiomics score. The blue line represents the hypothesis that all patients had G2/3 NF-

pNETs. The black line represents the hypothesis that all patients had G1 NF-pNETs. The x-

axis represents the threshold probability, which is where the expected benefit of treatment is 

equal to the expected benefit of avoiding treatment. The decision curves in the validation 

cohort show that if the threshold probability is 0.17–0.84, the radiomics score developed in 

the current study to predict the grade of NF-pNETs adds more benefit than the treat-all or 

treat-none scheme. DCA, decision curve analysis; NF-pNETs, nonfunctioning pancreatic 

neuroendocrine tumors.
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