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Abstract

Purpose: To introduce a novel framework to combine deep-learned priors along with 

complementary image regularization penalties to reconstruct free breathing & ungated cardiac 

MRI data from highly undersampled multi-channel measurements.

Methods: Image recovery is formulated as an optimization problem, where the cost function is 

the sum of data consistency term, convolutional neural network (CNN) denoising prior, and 

SmooThness regularization on manifolds (SToRM) prior that exploits the manifold structure of 

images in the dataset. An iterative algorithm, which alternates between denoizing of the image 

data using CNN and SToRM, and conjugate gradients (CG) step that minimizes the data 

consistency cost is introduced. Unrolling the iterative algorithm yields a deep network, which is 

trained using exemplar data.

Results: The experimental results demonstrate that the proposed framework can offer fast 

recovery of free breathing and ungated cardiac MRI data from less than 8.2s of acquisition time 

per slice. The reconstructions are comparable in image quality to SToRM reconstructions from 42s 

of acquisition time, offering a fivefold reduction in scan time.

Conclusions: The results show the benefit in combining deep learned CNN priors with 

complementary image regularization penalties. Specifically, this work demonstrates the benefit in 

combining the CNN prior that exploits local and population generalizable redundancies together 

with SToRM, which capitalizes on patient-specific information including cardiac and respiratory 

patterns. The synergistic combination is facilitated by the proposed framework.
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1 | INTRODUCTION

Breath-held cardiac cine MRI is a key component in cardiac MRI exams, which is used for 

the anatomical and functional assessment of the heart. Unfortunately, several subject groups 

(e.g. children and chronic obstructive pulmonary disease (COPD) patients1) cannot hold 

their breath and hence are excluded from breath-held MRI studies. In addition, breath-held 
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protocols are also associated with long scan times. Several methods were introduced to 

reduce the breath-holding requirements or enable free breathing cardiac MRI protocols, 

including parallel MRI,2,3 approaches that exploit the structure of x-f space,4–6 compressed 

sensing schemes,7,8 low-rank methods,9,10 blind compressed sensing,11,12 motion 

compensated methods,13,14 and kernel low-rank methods.15 Motivated by recent deep 

learning frameworks for static imaging applications,16–18 deep-learning based breath-held 

cardiac cine acceleration methods were also introduced.19,20 Recently, several researchers 

have proposed to estimate cardiac and respiratory phases from the central k-space regions 

using band-pass filtering; the data are then binned to the respective phases, followed by 

reconstruction using compressed sensing21,22 or low-rank tensor methods.23,24 These 

methods depend on the accurate estimation of phases using prior information about the 

cardiac and respiratory rates, which may degrade with irregular respiration or arrhythmia. 

We have recently introduced the SToRM25–28 framework as an alternative to explicit motion 

resolved strategies.21–23 SToRM assumes that the images in the free-breathing dataset lie on 

a smooth and low-dimensional manifold parameterized by cardiac & respiratory phases. 

SToRM acquisition relies on navigator radial spokes, which are used to compute the 

manifold Laplacian matrix, to capture the structure of the manifold. Once the Laplacian 

matrix is available, the estimation of the dataset simplifies to a quadratic regularization 

scheme. SToRM can provide reliable free breathing reconstructions from around 40 seconds/

slice of scan time, which ensures that the image manifold is well-sampled.

The main focus of this work is to further reduce the scan time of SToRM by combining the 

patient-specific SToRM prior with deep-learned priors, which are population generalizable. 

While the direct deep learning approaches17,18 that estimate the images directly from the 

measured k-space data are computationally efficient, it is not straight forward for them to 

ensure data consistency or incorporate patient-specific priors. We hence rely on our recent 

model-based deep learning (MoDL) framework, which formulates the image recovery as an 

optimization scheme,29,30 where the cost function is the combination of a data consistency 

term with a deep learned prior; the unrolling of an iterative algorithm to solve the above cost 

function translates to a deep network. This main difference of this scheme with other model 

based methods16,19,31 is the use of embedded conjugate gradient (CG) blocks and the 

sharing of network parameters between iterations; our results in29,30 show that sharing of 

trainable parameters across iterations reduces the training data requirement significantly, 

while the use of CG blocks within the deep network translates to improved results for a 

specified number of iterations. Note that the use of CG blocks results in a slightly longer run 

time compared to direct learning approaches.17,18 However, the proposed framework still 

provides significantly shorter run times than classical compressed sensing strategies, thanks 

to the reduced number of iterations and reduced number of CG steps per iterations. In this 

work, we use this optimization-based framework for the seamless integration of the forward 

model (coil sensitivity information, sampling pattern) with SToRM priors and deep learning 

priors.

The proposed MoDL-SToRM cost consists of a data consistency term, a deep learned prior 

that learns population generalizable information, and the SToRM prior; the framework may 

also be used with other regularizers such as.32–34 The CNN-based prior exploits local image 

redundancies of the 2D+time dataset.
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By contrast, the SToRM prior exploits non-local redundancies between images in the 

dataset, which are specific to the cardiac and respiratory patterns of the subject. The 

regularization parameters that weigh the individual contributions of each term are also 

optimized during the training phase, eliminating the need for image-specific tuning of 

parameters. The combination of deep learning with other complementary priors in the 

context of free-breathing image reconstruction is not reported in the literature, to the best of 

our knowledge. These complementary priors enable the recovery from highly undersampled 

measurements, thus reducing the acquisition time by 5-10-fold over SToRM. While our 

focus is on free-breathing applications in this work, the algorithm may also provide good 

reconstructions of relatively less challenging breath-held applications.

2 | METHODS

2.1 | Acquisition scheme

Four healthy volunteers instructed to breathe normally were scanned at the Siemens Aera 

scanner in the University of Iowa hospitals to generate prospectively undersampled free-

breathing ungated radial dataset. The data were acquired using a FLASH sequence with a 32 

channel cardiac array. The scan parameters were TR/TE = 4.2/2.2 ms, number of slices = 5, 

slice thickness = 5 mm, FOV = 300 mm, spatial resolution = 1.17 mm. A temporal 

resolution of 42 ms was obtained by binning 10 consecutive lines of k-space per frame, 

including 4 uniform navigator lines. Each slice comprised of 10 000 radial lines of the k-

space binned to 1000 frames, resulting in an acquisition time of 42s.

The raw k-space data were interpolated to a Cartesian grid and 7 virtual coils were 

approximated out of the initial 32 using a SVD-based coil-compression technique. The coil 

sensitivity maps were estimated from the compressed data using ESPIRiT.35 The SToRM25 

reconstructed images were used as the reference to train the deep networks. We use subsets 

of the above data to demonstrate the utility of the proposed scheme.

2.2 | MoDL-SToRM: formulation

We generalize the model-based deep learning framework (MoDL) by adding a SToRM prior:

C X = A X − B 2
2

data consistency
+ λ1

2 Nw X 2

CNN prior
+ λ2

2 tr XTLX
SToRM prior

. (1)

Here, A is the multi-channel Fourier sampling operator, which includes coil sensitivity 

weighting. Nw is a 3-D CNN-based estimator that estimates the noise and alias patterns in 

the dataset from local neighborhoods of the 2D+time dataset; Nw x 2 is a measure of the 

alias/noise contribution in the dataset X.29 The denoised signal can thus be estimated from 

the data X as

Dw X = ℐ − Nw X = X − Nw X . (2)
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Note that we can also express Nw X = X − Dw X , where Dw X  is the denoised version of 

X, when it is corrupted with noise and/or artifacts. However, we expect Dw X = X when X 

is an image free from noise and artifacts; i.e, Nw X = 0 in this case. The above relation 

allows us to rewrite the second term in Equation (1) as the norm of the differences between 

the original and denoised images. The SToRM prior tr (XTLX), exploits the similarities 

beyond the local neighborhood. The manifold Laplacian, L = D–W is estimated from the k-

space navigators.25 The diagonal matrix D is specified as D(i,i) = Σj W(i,j), where W is a 

weight matrix, such that, the weight W(i,j) is high when xi and xj have similar cardiac and/or 

respiratory phase. tr is the trace operator.

2.3 | Alternating minimization algorithm

We expand the SToRM penalty as

2tr XTLX = 2tr XT D − W X

= 2tr XTDX − 2tr XTWX
Q

We consider temporary variables Y = Dw X  and Q = WX and rewrite Equation (1) as:

C X = A X − B 2
2 + λ1

2 X − Y 2

Nw X
+ λ2 tr XTDX − tr XTQ , (3)

We note that Equation (3) is equivalent to Equation (1) when Y = Dw X  and Q = WX. 

Minimizing the objective with respect to X, assuming variables Y and Q to be fixed and 

determined from the previous iterations yields:

∇xC = A∗ A X − B + λ1 X − Y + λ2 DX − Q = 0 (4)

where A∗ is the adjoint of A. This can be solved as

X = A∗A + λ1I + λ2D −1 A∗ B + λ1 Y + λ2Q
R

(5)

As D is diagonal, A∗A + λ1I + λ2D −1
 can be implemented on a frame-by-frame basis. We 

solve for Equation (5) for each frame of X using conjugate gradients algorithm. This 

provides us with an alternating algorithm:

Yn = Dw Xn (6)

Qn = WXn (7)
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Rn = A∗ B + λ1Yn + λ2Qn (8)

Xn + 1 = A∗A + λ1I + λ2D −1Rn . (9)

Once the number of iterations is fixed, the network can be unrolled to yield a deep network 

as in Figure 1A. The parameters of Dw and the optimization parameters λ1 and λ2 are 

trainable and shared throughout the iterations.

We initialize the iterations with the SToRM solution:

X0 = arg min
x

A X − B 2
2 + η

2tr XTLX , (10)

where η is fixed and chosen manually to produce the best SToRM results.

2.4 | Network and training details

We note that the unrolled network described by Equations (6)–(9) is dependent on the 

weight matrix W, which captures the non-local similarities between image frames. For each 

training/testing dataset, we estimate W from navigators; the dataset and the corresponding 

W are used for training/testing. The rest of the variables including the regularization 

parameters λ1, λ2, and the weights of Nw are learned during training. Specifically, we train 

the unrolled network in an end-to-end fashion using different sets of {X0, Xg, W} . Here Xg 

is the ground-truth, while W is fixed during training and is different for each training and 

test dataset. The CNN captures the local redundancies, which is independent from the non-

local information in W. Since the end-to-end network sees different sets of training data, 

each with different W matrices, it learns the network parameters that are invariant/

independent of the specific W.

2.4.1 | Lagged update of Qn—The training scheme requires the storage of Yn, Qn, and 

Xn. The straightforward training of the unrolled architecture in Figure 1A requires all these 

intermediate variables to be available on the GPU memory, which is often not feasible. We 

propose a lagged approach shown in Figure 1E, where Qn is updated less frequently during 

training. We update Qn iby making a forward pass through the network, assuming known 

network parameters. The Qn, each corresponding to 200 frames, are then stored in the 

computer memory and assumed to be fixed during the inner iterations. The trainable network 

parameters specified by w, λ1 and λ2 are optimized in the inner loop on the GPU. We form 

batches of seven frames and the corresponding frames of the pre-computed Qn for training. 

Following convergence of Equation (3) (inner-loop) for a fixed Qn, we update Qn and re-

train the network, assuming the network parameters from the previous outer iteration as the 

initialization. We need multiple outer iterations for the training procedure to converge.
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2.4.2 | Training dataset—The data were acquired on four healthy volunteers, each but 

one with two different views–short axis and four chamber view–resulting in a total of seven 

datasets. We used the data from four datasets for training and remaining three for testing. We 

extracted three non-overlapping groups of 200 frames each from the above datasets, which 

were used for training. The SToRM reconstruction of the datasets from 1000 frames are 

considered as reference data, whereas, the input to the network was X0, the solution to 

Equation (10) computed with reduced number of frames (200).

2.4.3 | Trainable parameters of the network—The CNN block specified by Dw
consists of a 6 layer CNN with 64 filters of dimensions 3 × 3 × 3 in the first five layers, 

followed by two 3 × 3 filters in last layer. To deal with complex data, the real and imaginary 

part of the frames were passed as two channels of the input tensor. The total number of 

trainable parameters in the network is 151666 real variables. The sharing of the parameters 

across iterations provides good performance, while significantly reducing training data 

demand as shown in.29

2.4.4 | Training strategy—The network was trained with the Adam optimizer on mean 

squared error loss, implemented on TensorFlow and trained on a NVIDIA P100 GPU. We 

pre-trained the Dw to denoise various versions of SToRM-1000 reconstructions corrupted 

with different levels of noise, which took 18 hours (1200 epochs). Next, we trained a MoDL-

SToRM with N = 1. Following a single iteration training, we considered a multiiteration 

model (N > 1), with the parameters initialized by the ones learned with N = 1.

We observed that a network with two iterations was sufficient to provide good 

reconstructions; the performance saturated beyond two repetitions. The total training time 

was 35 hours. The final inference for 8.4 s of data was from a single forward pass containing 

N = 2 repetitions, which takes around 28 second for all 200 frames. This is significantly 

faster than most compressed sensing reconstructions.

We also compare the proposed MoDL-SToRM reconstruction scheme against (a) SToRM 

alone and (b) Tikhonov-SToRM shown in Equation (11).

C X = A X − B 2
2

data consistency
+ λTikh

2 ∇ X 2

Tikhonov
+ λ2

2 tr XTLX
SToRM prior

. (11)

We consider reconstructions from 200 frames, corresponding to 8.4 seconds of acquisition 

time. All comparisons are made with SToRM reconstructions from 1000 frames (42 

seconds) using the signal to error ratio metric (in addition to the standard PSNR and SSIM) 

defined as

SER = 20log10
X1000

X1000 − X , (12)

where X1000 denotes the SToRM-reconstruction from 1000 frames and X is the specific 

reconstruction. The visual comparisons of the reconstructed images, their time profiles, and 
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error images with SToRM reconstructions from 1000 frames as ground truth, are shown in 

Figures 2–4.

2.5 | Simulated data

We generated simulated free breathing datasets by extracting three cardiac cycles of a 

SToRM-1000 reconstruction and deforming (using Bspline interpolation) them in space and 

time to generate six synthetic datasets. These simulated datasets (four training & two 

testing) were retrospectively undersampled using six golden angle radial lines & four 

uniform radial navigators. The results on a test dataset is shown in Figure 2, while 

quantitative comparisons are in Table 1.

3 | RESULTS

3.1 | Selection of parameters

We first discuss how the parameters of the algorithm was selected.

3.1.1 | Number of iterations N—We observe that the performance of MoDL-SToRM 

saturates with N. For example, for test dataset 1, we obtained PSNR of 37.13 dB, 40.68 dB, 

and 41.36 dB, with N=0, 1, and 2, respectively. The change in performance from N=2 to 

N=3 was negligible; we choose N=2 in the rest of the experiments.

3.1.2 | Number of outer iterations in training Nout—We observe that few outer 

iterations were sufficient for the training to converge. We obtained PSNR of 40.62 dB 41.36 

dB and 41.37 dB, when the number of outer iterations is 1, 2, and 3, respectively. We choose 

this setting for the rest of the experiments since the performance saturates at Nout = 2.

3.2 | Comparisons with other methods

The comparisons on the simulated datasets in Figure 1 show that the proposed method 

provides the best reconstructions, which is also confirmed by the quantitative results shown 

in Table 1. The comparisons of the reconstructions from 200 frames in Figure 3 show that 

the proposed algorithm provides the most accurate reconstructions, revealed by the reduced 

errors and improved SER. We observe that the performance of SToRM suffers when the 

number of frames are reduced, evidenced by the high amount of noise like alias artifacts. 

Comparison of the proposed method with MoDL29 (explained in Supporting Information 

Figure S1), is provided in the Supporting Information (Figure S3–S5, Table S1). MoDL only 

uses local information and is hence not able to provide high quality reconstructions for such 

high accelerations; however, we expect the MoDL to work well in breath-held applications 

such as.19 This signifies the need of the additional SToRM prior, which can exploit the non-

local redundancy a simple CNN model cannot capture. The comparisons on prospective data 

shows that the proposed reconstruction from 8.4 seconds scan time is most comparable with 

SToRM from 42s of scan time, while the SToRM-alone reconstructions from 8.4 seconds 

scan time results in noise amplification.
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4 | DISCUSSION & CONCLUSION

We introduced a model-based framework, which can accommodate learnable CNN priors 

along with conventional SToRM regularizers, for the recovery of free breathing and ungated 

cardiac MRI data from radial acquisitions. The CNN exploits local population-generalizable 

redundancies, while the SToRM prior enables the use of patient specific nonlocal 

redundancies that depend on the cardiac and respiratory patterns. Our experiments show that 

very few iterations of Equations (6)–(9) is sufficient to provide good reconstructions. The 

fast saturation of performance with iterations is mainly due to the use of CG algorithm 

within the network. The improved performance in the context of limited training data can be 

attributed to the trainable parameters in the network, shared across iterations. The proposed 

scheme also provides a fast reconstruction time of around 30 seconds on a P100 GPU for the 

reconstruction of 200 frames.

We observe that from the error images in Figures 2 and 3 that the proposed approach results 

in reduced overall errors compared to competing methods, there are relatively higher 

residual errors around the image edges. Nevertheless, we note that the residual error is 

comparable or lower in magnitude than the ones obtained by other methods at all spatial 

locations, including at edges. The results also show that the MoDL-SToRM approach 

outperforms Tikhonov-SToRM, demonstrating the use of learnable priors. We observe from 

the figures in the supplementary information (S.3 & S.4) that the use of MoDL alone 

provides poor quality reconstructions, while its combination with SToRM provides 

improved results. We note that the undersampling factor needed to enable free breathing and 

ungated cardiac MRI is quite high (≈50 fold undersampling), compared to most deep 

learning-based acceleration schemes. MoDL uses local redundancies to recover these 

images, which results in poor reconstructions in this highly undersampled setting. The 

SToRM scheme facilitates the combination of information from different image frames. The 

reduced effective sampling resulting from reduced acquisition time causes increased errors, 

which the added MoDL regularization reduces. Although the CNN network architecture is 

same for MoDL and MoDL-SToRM, the two networks are trained to minimize different cost 

functions and hence the learned weights are expected to be different. We note that the size of 

the CNN in the proposed scheme is significantly smaller than those available in the 

literature; as shown in,29,30 the sharing of weights between iterations allows us to 

significantly reduce the data demand required to avoid overfitting. The decay of validation 

error with training iterations as shown in the supplementary material also confirms that the 

model is not overfitting the data. This is also confirmed by the validation curves shown in 

the Supporting Information (Figure S2).

We rely on the alternating minimization strategy specified by Equations (6)–(9) to solve 

Equation (3). We have not rigorously studied the convergence of this algorithm to the 

objective in Equation (3), which is beyond the scope. Similarly, we have not studied the 

impact of the sampling pattern (e.g numbers of spokes) on the quality of the reconstructions 

in this note. The data were acquired using a sequence with four uniform radial navigators 

and six golden angle radial lines. This will be the focus of our future work. Each image is 

only sampled with 10 radial lines, which translates to 50 fold undersampling. MoDL-

SToRM simultaneously exploits local and global redundancies to yield improved results. 
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The SToRM scheme facilitates the combination of information from different image frames. 

With low number of frames, the SToRM-alone regularization results in increased errors, 

which the added MoDL regularization reduces significantly. MoDL and MoDL-SToRM 

share the network architecture (except for λ2) but the learned weights differ significantly. In 

this work, we restricted our attention to L2 loss metric to train the network. Several 

researchers have recently proposed alternate metrics for network training with improved 

results. We had experimented with L2–L1 losses with little improvement in quality. The 

performance of the algorithm may be improved using sophisticated training strategies 

including GAN, but is beyond the scope of this work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Illustration of the proposed MoDL-SToRM framework. The proposed scheme is obtained by 

unrolling the iterations specified by Equations (6)–(9) as shown in (A). Each iteration 

consists of CNN denoiser Dw, specified by Equation (6), SToRM update Qi = WXn specified 

by Equation (7), and data-consistency enforcement specified by Equation (9), as shown in 

(B). The CNN denoiser Dw is implemented as a residual network as shown in (C), where the 

architecture of Nw = ℐ − Dw is shown in (D). Here, Nw, the noise extractor operator. The 

main differences between this scheme and other model-based deep-learned schemes is the 

sharing of the weights across iterations as shown in (A) and the use of CG blocks to enforce 
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the data-consistency in (B), when complex forward models such as multi-channel sampling 

is used. Note that unlike DC and Dw that involves local operations, the update of Qn is 

global in nature; the direct implementation of the unrolled network in (A) is associated with 

high memory demand and is not feasible on current GPU devices. We use the training 

strategy in (E), where we use the lagged update of Qn. Specifically, we perform a forward 

pass through the network to determine Qn for all the frames in each training dataset. These 

Qn parameters are stored. Batches of seven frames of X0 and Qn are fed into the network to 

update the network weights, which can be performed on the GPU. We propose to 

precompute Qn in an outer-loop and update it less frequently than the network parameters
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FIGURE 2. 
Comparisons on the simulated dataset: A, Full view of a single frame from the simulated 

ground truth time series of 500 frames. Only (red) cropped myocardium region is shown in 

(B). B, Top row: Simulated ground truth time series of 500 frames. Following six rows are 

three sets of competing reconstructions and corresponding error (w.r.t to top row) images: (i) 

SToRM reconstruction with 100 frames, (ii) Tikhonov-SToRM reconstruction with 100 

frames and (iii) proposed with 100 frames. First column is the time profile along a vertical 

cut across the myocardium shown in green in (A). Following three columns show three 
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cardiac states at one respiratory stage. The position of the respiratory stage is marked blue 

on the time profile, in the first column. Three cardiac states are neighboring frames near the 

marked time point. The SER (dB) reported in the figure corresponds to the myocardium area
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FIGURE 3. 
Comparisons on Dataset 1: A, Full view of a single frame from the SToRM reconstruction 

using 1000 frames. Only (red) cropped myocardium region is shown. B, Top row: SToRM 

reconstruction using 1000 frames. Following six rows are three sets of competing 

reconstructions and corresponding error (w.r.t to top row) images: (i) SToRM reconstruction 

with 200 frames, (ii) Tikhonov-SToRM reconstruction with 200 frames and (iii) proposed 

with 200 frames. First column is the time profile along a vertical cut across the myocardium 

shown in green in (A). Following three columns show three cardiac states at one respiratory 
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stage. The positions of the respiratory stage is marked blue on the time profile, in the first 

column. Three cardiac states are neighboring frames near the marked time point. The SER 

(dB) reported in the figure corresponds to the myocardium area
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FIGURE 4. 
Dataset 2: A, Full view of a single frame from the SToRM reconstruction using 1000 frames. 

Only (red) cropped myocardium region is shown. B, Top row: SToRM reconstruction using 

1000 frames. Following six rows are three sets of competing reconstructions and 

corresponding error (w.r.t to top row) images: (i) SToRM reconstruction with 200 frames, 

(ii) Tikhonov-SToRM reconstruction with 200 frames and (iii) proposed with 200 frames. 

First column is the time profile along a vertical cut across the myocardium shown in green in 

(A). Following three columns show three cardiac states at one different respiratory stage. 
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The position of the respiratory stage is marked blue on the time profile, in the first column. 

Three cardiac states are neighboring frames near the marked time point. The SER (dB) 

reported in the figure corresponds to the myocardium area
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