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Abstract

Infection with wild-type (WT) measles virus (MeV) is an important cause of childhood mortality 

that leads to lifelong protective immunity in survivors. WT MeV and the live-attenuated MeV used 

in the measles vaccine (LAMV) are antigenically similar, but the determinants of attenuation are 

unknown, and protective immunity induced by LAMV is less robust than that induced by WT 

MeV. To identify factors that contribute to these differences, we compared virologic and 

immunologic responses after respiratory infection of rhesus macaques with WT MeV or LAMV. 

In infected macaques, WT MeV replicated efficiently in B and T lymphocytes with spreading 

throughout lymphoid tissues resulting in prolonged persistence of viral RNA. In contrast, LAMV 

replicated efficiently in the respiratory tract but displayed limited spread to lymphoid tissue or 

peripheral blood mononuclear cells. In vitro, WT MeV and LAMV replicated similarly in 

macaque primary respiratory epithelial cells and human lymphocytes, but LAMV-infected 

lymphocytes produced little virus. Plasma concentrations of interleukin-1β (IL-1β), IL-12, 

interferon-γ (IFN-γ), CCL2, CCL11, CXCL9, and CXCL11 increased in macaques after WT 

MeV but not LAMV infection. WT MeV infection induced more protective neutralizing, 
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hemagglutinin-specific antibodies and bone marrow plasma cells than did LAMV infection, 

although numbers of MeV-specific IFN-γ– and IL-4–producing T cells were comparable. 

Therefore, MeV attenuation may involve altered viral replication in lymphoid tissue that limited 

spread and decreased the host antibody response, suggesting a link between lifelong protective 

immunity and the ability of WT MeV, but not LAMV, to spread in lymphocytes.

INTRODUCTION

Elicitation of long-lived protective immunity is a major goal for the design and development 

of vaccines. It is therefore vital to understand the conditions under which lifelong protective 

immunity is established. Among viruses that cause acute infection in humans, wild-type 

(WT) measles virus (MeV) is remarkable for its ability to induce a sustained immune 

response and prolonged protection from reinfection (1–3). Lifelong protection from measles 

has been repeatedly observed and was first described by Panum (4) during an 1846 epidemic 

in the Faroe Islands.

MeV is a negative-strand enveloped RNA virus that encodes eight proteins: hemagglutinin 

(H) and fusion (F) surface glycoproteins, which mediate attachment and entry; the internal 

proteins nucleocapsid (N), matrix (M), phosphoprotein (P), and large polymerase (L), which 

control replication and virion production; and nonstructural proteins C and V encoded 

within the P reading frame that regulate the cellular response to infection. H protein is 

responsible for attachment to one or more of the multiple cellular receptors and is the 

primary target for neutralizing antibody (5, 6). After respiratory transmission, WT MeV 

spreads to local lymph nodes and then systemically to many sites including other lymphoid 

organs, liver, skin, and lung (7, 8).

In response to WT MeV infection, long-lived immune responses to multiple viral proteins 

are induced. These responses include cytotoxic CD8+ T cells; CD4+ T cells with T helper 1 

(TH1), TH2, and TH17 cytokine profiles; and B cells producing high-avidity neutralizing 

antibodies (9–13). Protective immunity to measles is mediated mainly by neutralizing 

antibodies and, to a lesser extent, by T cell responses ( 14–16). However, the mechanisms by 

which WT MeV efficiently induces lifelong protection from reinfection remain largely 

unknown.

Empirically developed by adaptation of a WT isolate of MeV to growth in tissue culture 

(17), the live-attenuated MeV (LAMV) used in the measles vaccine has been an effective 

tool for prevention of measles (18). After vaccination, LAMV causes very mild disease 

symptoms and little viremia, consistent with a substantial decrease in virulence compared to 

WT MeV (19). Although antigenically similar, sequences of current vaccine strains 

compared to WT MeV strains reveal amino acid differences in most viral proteins (fig. S1) 

(20, 21). Changes common to all vaccine strains exist in P/V/C, M, and H proteins, but no 

one change or combination of changes has been identified as responsible for attenuation of 

the virus (22).

Despite the antigenic similarities and cross-protection between WT MeV and LAMV, the 

duration of protective immunity after measles vaccination is more variable and not as long-
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lived as after WT MeV infection (2, 23–25). Infection with both WT MeV and LAMV 

induces activation of CD4+ and CD8+ T cells and the production of neutralizing antibodies 

(26, 27). Protection after WT MeV infection is maintained for decades even in areas where 

measles is no longer endemic (2, 3). However, vaccine-induced MeV-specific antibodies and 

CD4+ T cells decrease over time (23, 28, 29) and may become undetectable, with secondary 

vaccine failure rates of about 5% 10 to 15 years after immunization (30, 31). Because of, in 

part, the difficulty of studying natural MeV infection in humans and a lack of small animal 

models, the biological basis of LAMV attenuation and the causes of less durable vaccine-

induced immune responses remain unclear.

We hypothesized that the quality and longevity of protective immune responses are 

determined by the acute phase of MeV infection. To identify contributors to a robust and 

sustained protective immune response, we compared the virologic and immunologic 

consequences of primary infection with WT MeV or LAMV in a highly relevant rhesus 

macaque model (32–35). Because aerosol delivery of an LAMV vaccine is currently in 

clinical trials and to avoid differences due to route of infection, we compared macaques that 

were infected through the respiratory route with either the Edmonston-Zagreb (EZ) strain of 

LAMV or the Bilthoven strain of WT MeV. Our results demonstrated that efficient WT MeV 

production by lymphocytes followed by hematogenous spread throughout the lymphoid 

system and viral RNA persistence were associated with better induction of long-term 

protective immune responses compared to LAMV infection.

RESULTS

In vivo replication and tropism of WT MeV and LAMV after infection of macaques

Macaques infected by the respiratory route with WT MeV all developed skin rashes about 

11 days after infection that resolved in 4 to 5 days. No animal infected with LAMV 

developed a rash. As an indicator of the extent of viral infection and spread, we analyzed the 

expression of MeV RNA in the respiratory tract (Fig. 1, A and B), peripheral blood 

mononuclear cells (PBMCs) (Fig. 1C), and draining mediastinal lymph nodes (Fig. 1D) of 

infected macaques using a reverse transcriptase polymerase chain reaction (RT-PCR) assay 

for the MeV N gene. Analysis of respiratory tract samples showed that seven of eight 

monkeys infected with WT MeV had detectable MeV RNA in nasal secretions between 7 

and 14 days after infection (Fig. 1A). MeV RNA was present in lung tissue or 

bronchoalveolar lavage (BAL) fluid of all monkeys 7 days after infection with LAMV (Fig. 

1B).

All WT MeV–infected macaques had cell-associated MeV RNA detectable in PBMCs 7, 14, 

and 21 to 24 days after infection (Fig. 1C) with the highest amount at day 7. Continued 

detection of MeV RNA in PBMCs up to 10 weeks after infection (34) when infectious virus 

was no longer recoverable was consistent with the previously observed slow clearance of 

viral RNA over 3 to 4 months in children with WT MeV infection ( 36, 37). Only 3 of 12 

macaques in the LAMV-infected group had detectable MeV RNA in PBMCs at any time, 

principally at 21 to 24 days after infection (P < 0.001) (Fig. 1C). At 7 days after infection, 

only five LAMV-infected macaques had detectable MeV RNA in the draining lymph nodes 

(Fig. 1D), consistent with the lack of viral RNA in PBMCs.
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After WT MeV infection, lymphocyte counts in the peripheral blood of macaques decreased 

with an increase after resolution of the rash at day 14, whereas infection of macaques with 

LAMV resulted in little change in lymphocyte counts over 28 days (Fig. 1, E and F). 

Respiratory infection of macaques with WT MeV led to efficient hematogenous spread and 

transient lymphopenia, whereas infection with LAMV led primarily to localized infection in 

the respiratory tract. The poor recovery of MeV RNA from the blood and secondary 

lymphoid tissues after LAMV infection suggested that vaccine virus attenuation selectively 

hindered virus replication in immune cells.

Identification of PBMCs infected with WT MeV

To identify the circulating PBMCs infected with WT MeV, we analyzed cells expressing 

MeV N protein by flow cytometry during the peak viremia at 7 and 10 days after infection 

(Fig. 2). Both CD20+ B cells and CD3+ T cells from WT MeV–infected macaques expressed 

the N protein (Fig. 2A), whereas cells from uninfected macaques did not (Fig. 2B). A higher 

percentage of B cells than T cells was infected at both time points (Fig. 2C). To determine 

whether certain subsets of T cells were preferentially infected, we further characterized 

CD3+ T cells for expression of CD4, CD8, the MeV receptor CD150, and T cell memory 

markers CD28 and CD95 (Fig. 3A) (38). A higher proportion of CD4+ than CD8+ T cells 

were positive for MeV N protein, and the majority of both T cell subsets was central 

memory cells consistent with expression of CD150 by this cell population (Fig. 3B).

LAMV replication is restricted in lymphocytes but not respiratory epithelial cells

To further investigate mechanisms that affect in vivo viral spread, we used in vitro cultures 

to compare the ability of LAMV and WT MeV to produce infectious virus after infection of 

macaque primary differentiated respiratory epithelial cells and human PBMCs (Fig. 4). 

Cultures of macaque tracheal epithelial cells were infected with WT MeV or LAMV from 

both the apical and basal surfaces, and apical surface supernatant was analyzed for virus 

production. LAMV grew more rapidly and to a higher titer after both apical and basal 

infection than did WT MeV (Fig. 4A). Because WT MeV and LAMV have been reported to 

infect differentiated respiratory epithelial cells from the basal and not the apical surface (39, 

40), we examined the apical surface supernatant by immunofluorescence microscopy to 

determine the source of infectious virus. Large numbers of viable MeV-infected 

multinucleated giant cells that had been shed from the epithelial surface of LAMV- and WT 

MeV–infected cultures were present in the supernatant (Fig. 4B).

To assess growth in immune cells, we infected PBMCs isolated from healthy human donors 

with WT MeV or LAMV at a high (2 to 5) (Fig. 4C) or low (0.5) (Fig. 4D) multiplicity of 

infection (MOI). Amounts of infectious MeV produced and released into culture 

supernatants at 40 to 48 hours after infection were measured by plaque formation in Vero 

cells expressing human SLAM (Vero/hSLAM) cells in vitro. Virus production was detected 

in the supernatants of all cultures infected with WT MeV but none of the cultures infected 

with LAMV (Fig. 4, C and D). LAMV production of infectious virus was impaired 

compared to WT MeV (MOI = 5) in both CD4+ T cells (Fig. 4E) and CD14+ myeloid cells 

(Fig. 4F).
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To determine whether the decreased production of infectious virus was associated with less 

efficient viral entry of LAMV than WT MeV into lymphocytes, we stained CD4+ T cells for 

intra-cellular expression of MeV N protein to identify by flow cytometry the percentage of 

cells infected at an MOI of 0.5 or 5.0 (Fig. 5A). More cells were positive for MeV N protein 

after LAMV infection (Fig. 5, B and D) than after WT MeV infection (Fig. 5, C and D). 

However, analysis of the amount of MeV N protein expressed by infected cells, as indicated 

by mean fluorescence inten-sity, revealed that more N protein was produced by WT MeV–

infected cells (Fig. 5, A, C, and E) than LAMV-infected cells (Fig. 5, A, B, and E). 

Therefore, LAMV replication in lymphocytes was restricted at a step after viral entry, 

leading to inefficient production of infectious virus.

Cytokine and chemokine responses to LAMV or WT MeV infection of macaques

To compare the temporal development of immune responses induced by LAMV or WT MeV 

infection, we measured plasma concentrations of cytokines and chemokines indicative of 

innate and adaptive immune responses using a multiplex bead array (Fig. 6). There was early 

(day 3) induction of interleukin-12 (IL-12) and chemokines CCL2, CCL11, and CXCL11 

and later (days 7 to 14) increases in CXCL9, IL-1β, and interferon-γ (IFN-γ) for macaques 

infected with WT MeV but not LAMV (Fig. 6). IL-17, β fibroblast growth factor (βFGF), 

CCL22, and macrophage inhibitory factor (MIF) were detectable but not significantly 

different (P > 0.05).

Antibody and long-lived plasma cell responses to macaque infection with LAMV or WT 
MeV

To compare MeV-specific adaptive immune responses to infection, we measured multiple 

aspects of the antibody response (Fig. 7). MeV infection induced amounts of MeV-specific 

binding immunoglobulin G (IgG) (Fig. 7A) and IgA (Fig. 7B) that were higher in the plasma 

of WT MeV–infected animals than LAMV-infected animals. Because antibody to the H 

protein is responsible for most of the neutralizing capacity in plasma (41), both H-specific 

binding antibody (Fig. 7C) and plaque reduction neutralizing activity (Fig. 7D) were 

measured. WT MeV induced more anti-H antibody and plaque reduction neutralizing 

antibody than did LAMV. Because maturation of antibody avidity is essential for 

neutralization of WT MeV and protective immunity (42), the avidity of MeV-specific IgG 

was also measured by enzyme immunoassay (EIA) (Fig. 7E). Avidities of antibody induced 

by WT MeV and LAMV were not different (Fig. 7E).

Circulating antibody is dependent on terminally differentiated long-lived plasma cells that 

reside primarily in bone marrow niches and continue to secrete antibody (43–46). To 

determine whether the numbers of plasma cells in bone marrow differed between groups, we 

assessed MeV-specific antibody-secreting cells about 1 year after infection (Fig. 7, F and G). 

More long-lived plasma cells were established in bone marrow after WT MeV infection than 

after LAMV infection. Furthermore, cells producing H-specific antibody were more 

abundant than those producing N-specific antibody in both groups (Fig. 7G).
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T cell responses to LAMV or WT MeV infection of macaques

To determine whether induction of MeV-specific T cells in response to WT MeV or LAMV 

differed, we assessed PBMCs by enzyme-linked immunospot (ELISpot) assays for 

production of IFN-γ and IL-4 after stimulation with MeV and for H protein– and N protein–

specific IFN-γ responses (Fig. 8). Numbers of N protein– and H protein–specific IFN-γ–

producing spot-forming cells (SFCs) were similar for WT MeV– and LAMV-infected 

macaques both at 14 and 70 days after infection (Fig. 8A). Likewise, the numbers of MeV-

specific IL-4–producing cells were also similar (Fig. 8B). To determine the time course of 

the appearance of MeV-specific IFN-γ–secreting lymphocytes in the circulation of infected 

macaques, we assessed IFN-γ–secreting cells over a 3- to 4-month period after infection 

(Fig. 8C). Similar temporal patterns were observed for WT MeV– and LAMV-infected 

macaques.

DISCUSSION

Respiratory infection of rhesus macaques with WT MeV and LAMV was characterized by 

distinct in vivo and in vitro virus replication profiles and immune responses. WT MeV 

replicated efficiently in B and T lymphocytes resulting in hematogenous virus spread, skin 

rash, and persistence of viral RNA. In contrast, after LAMV infection of macaques, the virus 

replicated well in the respiratory tract, but not in lymphoid cells, and showed limited spread. 

Innate immune responses differed, with induction of detectable amounts of cytokines IL-1β, 

IL-12, and IFN-γ and chemokines CCL2, CCL11, CXCL9, and CXCL11 in plasma after 

WT MeV infection but not after LAMV infection. Comparable numbers of MeV-specific T 

cells were induced by the two viruses, but higher amounts of protective antibody and more 

MeV-specific bone marrow–resident long-lived plasma cells developed after WT MeV 

infection compared to LAMV infection. Therefore, reduced virus replication in lymphoid 

tissue and hematogenous spread not only decreased the virulence of LAMV but also resulted 

in the development of a less robust protective antibody response. Thus, lifelong protective 

immunity after WT MeV infection may be associated with productive virus replication and 

spread in lymphoid tissue and slow clearance of viral RNA from these tissues.

WT MeV targets several types of cells during natural infection, e.g., B and T lymphocytes, 

monocytes and macrophages, dendritic cells, endothelial cells, and epithelial cells (Figs. 2 

and 3) (8, 33, 47–51). However, there has been little analysis of the sites of LAMV 

replication, and the mechanism of attenuation has not been identified. In a recent study of 

intramuscular delivery of LAMV expressing enhanced green fluorescent protein (eGFP) to 

macaques, macrophages and dendritic cells were identified as the target cells in muscle (52).

Tropism of WT MeV compared to LAMV could reflect strain-specific differences in usage 

of the multiple host cellular receptors identified for MeV (53, 54). Membrane cofactor 

protein or CD46, a complement regulatory protein, is present on all nucleated cells but is 

used only by vaccine strains of MeV (55, 56). Poliovirus receptor–related 4 or nectin 4 is 

present on the basolateral surface of epithelial cells and is used by both WT and vaccine 

strains of MeV (57–59). Signaling lymphocytic activation molecule (SLAM) or CD150 is 

present on immature thymocytes, activated immune cells, and mature dendritic cells (60–62) 

Lin et al. Page 6

Sci Transl Med. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and is the most important receptor for infection of lymphoid tissue (63, 64) being used by 

both WT and vaccine MeV strains (65–74).

Therefore, one potentially important biologic difference between LAMV and WT MeV is 

the acquisition of efficient use of the CD46 receptor by vaccine strains (67, 68, 75). Tyrosine 

at position 481 of the H protein of vaccine strains (fig. S1) is a key determinant of the 

affinity of the viral H protein for CD46 (76, 77). WT MeV with asparagine at position 481 

of the H protein interacts with SLAM, but not with CD46, and efficiently activates Toll-like 

receptor 2 (67, 69, 78). However, a mechanism by which gaining use of the CD46 receptor 

might lead to vaccine attenuation is not clear. Furthermore, evaluation in macaques of a 

recombinant chimeric MeV expressing vaccine or WT strain H protein indicated that 

attenuation involves an effect on virus replication rather than on receptor binding (79). This 

is consistent with our observations of equivalent infection of respiratory epithelial cells and 

lymphocytes by WT MeV and LAMV, but with differences in the amount of virus produced 

by immune cells (Figs. 4 and 5). Therefore, sequence differences in the H protein are 

unlikely to be the main determinants of virus attenuation.

Differences also exist in the sequences of the M protein between WT MeV and LAMV (fig. 

S1). The M dimer is crucial for recruitment of the virus nucleocapsid to the plasma 

membrane for virion assembly (80, 81); it promotes virion budding (82) and regulates viral 

RNA synthesis (83). Substitution of lysine for glutamine at position 89 is common to all 

MeV vaccine strains and enhances budding in Vero cells in vitro (84–86) but inhibits 

SLAM-dependent fusion and decreases virus growth in a B95a marmoset B cell line (87). 

Therefore, vaccine virus–associated sequence changes in M alter MeV replication, cell-cell 

fusion, and virion release in a cell type–dependent manner and may be an important 

determinant of attenuation.

Differential replication of WT MeV and vaccine strains of MeV has previously been studied 

in several relevant in vitro systems. Analysis of replication in primary human microvascular 

and umbilical vein endothelial cells demonstrated that vaccine strains of MeV infect 

endothelial cells more efficiently and replicate better than WT MeV (88, 89). LAMV 

replicates as well as WT MeV in monocyte-derived dendritic cells (90). Using eGFP-

expressing recombinant viruses, nonepithelial SLAM-positive cells were identified as the 

main cells infected early in macaques by WT MeV, with later epithelial cell infection 

induced by infected lymphocytes (63, 91, 92). However, we show here that both WT MeV 

and vaccine strains can replicate in differentiated primary respiratory epithelial cells in vitro 

(Fig. 4, A and B). Respiratory infection of macaques by WT MeV leads to increasing 

amounts of virus in BAL fluid (93). We have shown that respiratory delivery of LAMV was 

associated with robust virus replication in the lung with only minimal viremia (Fig. 1) (94). 

These observations together indicate that respiratory epithelial cells are similarly susceptible 

to infection by WT MeV and LAMV in vivo as well as in vitro. Previous reports that 

polarized respiratory epithelial cells are not susceptible to MeV infection from the apical 

surface were based on a failure to detect eGFP-expressing cells in the intact monolayer after 

apical infection (39, 40). However, our results showed that virus was produced after apical 

infection (Fig. 4A). Shedding of infected respiratory epithelial cells (Fig. 4B) in vitro meant 

that they were no longer present in the monolayer, a response to infection observed with 
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respiratory syncytial virus (95). Therefore, virus attenuation may principally reflect the 

inability of LAMV to productively infect lymphoid tissue and cause viremia (Fig. 1) (35, 

93).

Both B and T lymphocytes are infected during the viremia after WT MeV infection. A 

higher percentage of B cells than T cells are MeV positive, but T cells constitute a larger 

proportion of the circulating lymphocytes, so both types of cells are likely to be important 

for virus replication in lymphoid tissue and spread of infection. WT MeV and LAMV 

replication in primary lymphoid cells has been studied in human thymus organ cultures, 

tonsil explants, and isolated CD4+ T cells (96–98). CD4+CD8+ double-positive thymocytes 

are susceptible to infection with LAMV and WT MeV, but vaccine strains replicate less 

efficiently and take longer to produce virus than do WT MeV strains (96). Although 

infection is initiated similarly in myeloid and lymphoid cells and use of CD46 facilitates 

infection of naïve lymphocytes, less infectious virus is produced by vaccine MeV than WT 

MeV (90, 92, 96, 97, 99, 100). Likewise, our data on infection of resting CD4+ T cells, B 

cells, and monocytes from human peripheral blood showed that multiple types of immune 

cells displayed this defect in the production of LAMV (Figs. 4 and 5).

Our study showed that an important biologic consequence of limited LAMV replication in 

lymphoid tissue and systemic spread was a less vigorous induction of the immune response 

to MeV. This was evident in the differential stimulation of the systemic production of innate 

cytokines and chemokines early after infection with WT MeV or LAMV (Fig. 6). The C and 

V virus proteins regulate innate cellular responses to infection, and neither LAMV nor WT 

MeV induces type I IFN production in vitro or in vivo (90, 101). However, infection with 

WT MeV is associated with an increase in circulating concentrations of multiple cytokines 

and chemokines, including IL-1β, IFN-γ, CCL2, CCL11, and CCL22 in humans at the time 

of the skin rash (102, 103) and in macaques as early as 3 days after infection (Fig. 6). This 

has been little studied after LAMV infection in humans where small amounts of IFN-γ have 

been detected in sera (104). In our study, increases in these cytokines or chemokines were 

not detected in macaques after LAMV infection. These data are consistent with substantial 

activation of the inflammasome and nuclear factor κB signaling pathways of innate immune 

responses by WT MeV but not LAMV.

MeV infection induces both antibody and cellular immune responses, and neutralizing 

antibody is the best correlate of protection (16). Our previous studies in macaques have 

shown that neutralizing antibody predicts protection from disease (abrogation of skin rash) 

but not necessarily protection from infection. Our previous macaque studies also showed 

that T cells alone do not protect from either infection or disease but do facilitate clearance of 

viral RNA (15, 105–108). Although immune responses in our current study of WT MeV–

infected and LAMV-infected macaques appeared to be qualitatively similar with respect to 

avidity and quantitatively similar with respect to T cell responses, the amounts of antibody 

in circulation, particularly of H-specific neutralizing antibody, were lower, and fewer H 

protein–specific long-lived plasma cells were established in the bone marrow after LAMV 

infection compared to WT MeV infection (Figs. 7 and 8). A less robust antibody response, 

but similar T cell response, suggests that restricted replication in lymphoid tissue led to more 

limited germinal center formation and production of antibody-secreting cells after LAMV 
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infection compared to WT MeV infection; even with limited replication in lymphoid tissue, 

virus replication in other tissues was sufficient to induce T cell responses. It is possible that 

robust antibody production is dependent on the observed persistence of viral RNA with 

prolonged expression of viral antigens in lymphoid tissue after infection with WT MeV (34). 

Differential induction of MeV-specific antibody and T cell responses was previously 

observed after LAMV delivery to the respiratory tract of macaques (15) where delivery to 

the upper respiratory tract induced MeV-specific IFN-γ–producing T cells but little anti-H 

antibody, whereas delivery to the lower respiratory tract (as in this study) induced 

neutralizing antibody and T cell responses.

The role of immunization route upon induction of protective immunity has not been 

systematically evaluated and is a limitation of this study. Early studies of LAMV using 

different routes of immunization showed poor antibody responses after nasal, conjunctival, 

or oral delivery in comparison to subcutaneous inoculation (109). A recent study of 

microneedle patch intradermal delivery has shown plaque reduction neutralization responses 

similar to subcutaneous delivery (110). Analysis of pulmonary immunization has generally 

shown it to be comparable to the subcutaneous route. Nebulized liquid LAMV induced 

lower antibody responses in young infants but similar responses in older children compared 

to subcutaneous immunization, and the dry powder formulation of LAMV induced antibody 

amounts comparable to those induced by subcutaneous inoculation in adults (111–114). 

However, none of these studies evaluated T cell responses.

Additional limitations to our study include the limited comparative evaluation of PBMCs 

and lymph nodes for T cell responses and antibody-secreting cells between WT MeV and 

LAMV. Previous studies in macaques of inhaled dry powder LAMV [estimated dose, 150 to 

450 plaque-forming units (pfu)] showed better antibody and T cell responses than did 

subcutaneous delivery of 1000 pfu of LAMV (94, 115). WT MeV and LAMV replicated 

well in the respiratory tract (Fig. 1). Previous studies in macaques showed that infection 

proceeds similarly independent of dose (93), so differences observed in immune responses 

are unlikely to be due solely to differences in the infecting dose. However, the roles of both 

route of immunization and dose in determining the nature and specificity of immune 

responses to LAMV merit further study.

We hypothesized that lower amounts of antibody and shorter duration of the antibody 

response to LAMV compared to WT MeV infection in our study were due to limited virus 

replication in lymphoid tissue. This affected induction of follicular helper CD4+ T cells and 

continued induction and germinal center selection of MeV-specific B cells necessary for the 

formation of long-lived affinity-matured plasma cells. The process by which lifelong 

immunity is established likely requires the prolonged presence of viral RNA and production 

of viral proteins in secondary lymphoid tissues after resolution of the acute phase of 

infection.
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MATERIALS AND METHODS

Study design

This study was designed to compare in vitro and in vivo characteristics of infection of rhesus 

macaques (Macaca mulatta) with WT MeV or a vaccine strain of MeV. In vivo studies used 

respiratory infection of nonrandomized 2- to 3-year-old male and female macaques. Eight 

male macaques were infected with WT MeV (34). Seventeen male and 14 female macaques 

were infected by inhalation as part of studies evaluating aerosol delivery of LAMV as a dry 

powder (94, 111). Tissues were harvested at necropsy from 12 animals 7 days after LAMV 

infection; specimen collection from all other animals was by nasal swab, BAL, 

venipuncture, and bone marrow aspiration. These studies were complemented by in vitro 

infection of primary respiratory epithelial cells and lymphocytes from humans and 

macaques. Studies were not blinded, and no animals were excluded from analysis.

Thirty-five 2- to 3-year-old rhesus macaques negative for herpes B virus, tuberculosis, and 

antibody to MeV were obtained from Harlan Sprague Dawley (Indianapolis, IN) or the 

Johns Hopkins Primate Facility. Eight male macaques (15U, 46U, 55U, 67U, 40V, 43V, 55V, 

and 86U) were infected intratracheally with 104 tissue culture infectious dose 50% (TCID50) 

of the Bilthoven strain of WT MeV (34). Seventeen male (264, 265, 270, 271, 273, 297 to 

302, and 309 to 314) and 14 female (266, 275, 303 to 308, and 315 to 320) macaques were 

infected by inhalation of an aerosolized 105 pfu of a dry powder formulation of LAMV as 

part of efficacy and pre–phase 1 toxicology studies (94, 111). For the toxicology study, 

tissues were harvested at necropsy (lung, mediastinal lymph nodes, etc.) from 12 animals 7 

days after infection. Respiratory specimens were collected by BAL; heparinized blood was 

collected from the femoral vein; and heparinized bone marrow was collected from the femur. 

All procedures were performed under ketamine anesthesia supplemented with halothane as 

needed and in accordance with protocols approved by the Avanza Laboratory or the Johns 

Hopkins Institutional Animal Care and Use Committees.

Viruses and cells

The Chicago-1 and EZ (Serum Institute of India) strains of LAMV were grown and assayed 

in Vero cells (American Type Culture Collection). EZ used for immunization was 

formulated as an inhalable dry powder as previously described (94). The Bilthoven strain of 

WT MeV (gift of A. Osterhaus, Erasmus University) was grown in phytohemagglutinin-

stimulated human cord blood mononuclear cells and assayed by syncytium formation in 

B95–8 cells (116) or in Vero/hSLAM [gift of Y. Yanagi, Kyoto University; (74)]. Vero and 

Vero/hSLAM cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% fetal bovine serum (FBS).

Human PBMCs from healthy adults were obtained from the Johns Hopkins Hospital Blood 

Bank and isolated by Percoll gradient centrifugation. CD4+ T cells and CD14+ myeloid cells 

were isolated from PBMCs with CD4 and CD14 microbeads according to the 

manufacturer’s instructions (Miltenyi Biotec).

To establish cultures of primary respiratory epithelial cells, cells harvested with pronase 

from the tracheas of three uninfected rhesus macaques were depleted of fibroblasts by 
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differential adherence, expanded in basic medium (DMEM/F-12, 5% FBS, insulin, 

transferrin, cholera toxin, epidermal growth factor, and bovine pituitary extract) and frozen 

in aliquots as previously described (117). To establish differentiated tracheal epithelial cell 

cultures, cells were plated on collagen-coated Transwell inserts with 0.4-mm pore 0.33-cm2 

Transwell-Clear supported membranes (Corning Costar) at a density of 1 × 105 cells/cm2. 

The cells were grown in liquid culture (basic medium + retinoic acid) until they reached a 

transepithelial resistance of >1000 ohm/cm2. Transepithelial resistance was measured with 

the Millipore Millicell-ERS (Millipore). The cells were then differentiated at an air-liquid 

interface into pseudostratified epithelium that included both mucous-producing and ciliated 

cells.

RT-PCR analysis of MeV RNA

MeV RNA was detected and measured by RT-PCR for the N gene as previously described 

(34). Briefly, RNA was isolated, and the N gene was amplified from cells or tissues (Applied 

Biosystems Prism 7700) using TaqMan primers and probe. For nasal swab cell pellets, RT-

PCR products were run on gels and read as positive or negative. For all other samples, copy 

number was determined by comparison to a standard curve constructed from 1 to 106 copies 

of RNA synthesized by in vitro transcription from a plasmid containing the Edmonston MeV 

N gene. The sensitivity of the assay was 10 copies. Data were normalized to the 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) control and expressed as (copies of 

MeV N RNA/ copies of GAPDH RNA) × 5000.

In vitro MeV infection and virus assay

Differentiated macaque tracheal epithelial cells from three individual macaques were 

infected for 4 hours at 37°C with WT MeV (Bilthoven) or LAMV (EZ) at an MOI of 4.5 

through the apical surface in a total volume of 150 μl or basolateral surface in a total volume 

of 500 μl. The inoculum was removed, and cells were washed three times with phosphate-

buffered saline containing Ca2+ and Mg 2+. Infectious MeV in the apical supernatant fluids 

was analyzed by cocultivation in duplicate of serially diluted supernatant fluids with Vero or 

Vero/ hSLAM cells. Cultures were scored for cytopathic effect after 5 days, and data were 

reported as TCID50 per milliliter.

Immunocytochemistry

Cells shed into the apical supernatant fluids of tracheal epithelial cell cultures were plated on 

96-well flat-bottom plates and centrifuged, and supernatant fluid was removed. The cells 

were then fixed and permeablized using the BD Cytofix/Cytoperm kit. After washing, the 

cells were incubated with fluorescein isothiocyanate (FITC)–conjugated MeV N-specific 

antibody (Chemicon/MilliporeSigma) in cytoperm wash solution for 1 hour at 4°C, washed, 

and incubated with 4′,6-diamidino-2-phenylindole (DAPI) for 15 min. The cells were 

observed using a Nikon inverted TE200 microscope.

Flow cytometry

A total of 106 fresh PBMCs were stained with ViViD LIVE/DEAD discriminator 

(Invitrogen) and antibodies to CD3, CD4, CD8, CD14, CD28, CD95, CD150 (BD 
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Biosciences), and CD20 (eBioscience). Cells were permeabilized using the BD Cytofix/

Cytoperm kit and stained with FITC-conjugated antibody to MeV N. Cells were read on a 

BD LSR II or FACSCanto II flow cytometer. A total of 400,000 events were collected per 

sample. Analysis was performed using FlowJo software (version 8.8.6; FlowJo Inc.).

Cytokine and chemokine assays

Levels of cytokines and chemokines in plasma were determined using a Luminex 28-plex 

monkey cytokine/chemokine panel (Invitrogen) on samples from five WT MeV–infected 

monkeys (46U, 55U, 67U, 40V, and 43V) and five LAMV-infected monkeys (264, 266, 313, 

318, and 319). The panel included IFN-γ, IL-1β, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-10, 

IL-12, IL-15, IL-17, CCL2, CCL3, CCL4, CCL5, CCL11, CCL22, CXCL8, CXCL9, 

CXCL11, MIF, βFGF, HGF (hepatocyte growth factor), GCSF (granulocyte colony-

stimulating factor), and GMCSF (granulocyte-macrophage colony-stimulating factor). 

Levels of rhesus IFNα2 (PBL Assay Science) and IFNβ (LifeSpan Biosciences) were 

determined by EIAs according to the manufacturers’ instructions. Several cytokines were 

not (IFNα2, IL-4, IL-5, IL-6, IL-10, IL-15, GCSF, and GMCSF) or were rarely (IFN, HGF, 

IL-1RA, CCL3, CCL4, and CXCL8) detected. Amounts of CXCL5 were high in all samples 

due to platelet contamination.

Antibody assays

For PRN assays, the Chicago-1 strain of MeV was mixed with serially diluted plasma and 

assayed for plaque formation on Vero cells in triplicate. The dilution of plasma that resulted 

in 50% plaque reduction was calculated. MeV-specific IgG and IgA and H-specific IgG in 

plasma were measured by EIAs using MaxiSorp plates (Nunc) coated with lysates from 

MeV-infected Vero cells (1.16 μg of protein per well; Advanced Biotechnologies) or MeV 

H-expressing L cells (118) as previously described (15). Avidity of MeV-specific IgG was 

determined by adding increasing concentrations of ammonium thiocyanate (NH4SCN; 0.5 to 

3 M) to the EIA assay for 15 min. The avidity index was calculated as the concentration of 

NH4SCN at which 50% of the bound antibody was eluted.

To measure antibody-secreting cells in the bone marrow, cells isolated from bone marrow 

aspirates by density gradient centrifugation using Lympholyte Mammal (Cedarlane 

Laboratories) were incubated for 6 hours with Multiscreen ELISpot plates (MilliporeSigma) 

coated with MeV-infected Vero cell lysate, H-expressing L cell lysate, or baculovirus-

expressed N. Bound immunoglobulin was detected with horseradish peroxidase (HRP)–

conjugated goat anti-monkey IgG (Nordic), developed with stable diaminobenzidine (DAB) 

solution and read on an ImmunoSpot plate reader (Cellular Technology).

T cell assays

ELISpot assays were used to measure IFN-γ– and IL-4–producing lymphocytes as 

previously described (34). Briefly, Multiscreen ELISpot plates were coated with antibody to 

human IFN-γ or IL-4 (BD Biosciences) and blocked with RPMI 1640/10% FBS, and 1 × 

105 to 5 × 105 fresh PBMCs were added along with pooled MeV peptides (1 μg/ml; 20-mers 

overlapping by 11 amino acids) from the MeV H or N proteins, concanavalin A (5 μg/ml), or 

medium alone. After 40 hours of incubation, plates were developed with biotinylated 
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antibody to IFN-γ (Mabtech) or IL-4 (BD Biosciences), followed by HRP-conjugated avidin 

and DAB solution, and scanned. Data were analyzed using ImmunoSpot, version 3.0 

software. Results are presented as the number of SFCs per 106 PBMCs.

Statistical analysis

For statistical analyses, we performed two-tailed Student’s t test (α = 0.05) or nonparametric 

analysis with Mann-Whitney U test to compare two groups, or analysis of variance 

(ANOVA) with Bonferroni post hoc tests for comparing multiple groups. All data were 

analyzed using GraphPad Prism software. Statistical significance was determined as *P < 

0.05, **P < 0.01, and ***P < 0.001.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Lymphocyte counts and MeV N RNA in the blood and respiratory tract of infected 
macaques.
MeV N–specific RT-PCR was used for detection and quantification of MeV N RNA after 

respiratory infection of macaques with either WT MeV or LAMV. (A) Number of macaques 

positive for MeV N RNA in nasal swab cell pellets from eight macaques 7 to 35 days after 

infection with WT MeV. (B) Quantification of MeV N RNA in bronchoalveolar lavage 

(BAL) fluids and lung tissues from 12 macaques 7 days after infection with LAMV. For 

quantification, MeV N RNA was normalized to the GAPDH control. Assays were performed 
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in duplicate, and averaged results are expressed as (number of copies of MeV N RNA)/

(number of copies of GAPDH RNA) × 5000. Numbers on the x axis identify individual 

macaques. (C) Comparison of the amounts of MeV N RNA in RNA extracted from 2 × 106 

PBMCs from 12 LAMV-infected macaques or 8 WT MeV–infected macaques at 7, 14, 21, 

or 24 days after infection. P < 0.001. n.d., not detectable. (D) Quantification of MeV N RNA 

in the draining lymph nodes of 12 macaques 7 days after infection with LAMV. Numbers on 

the x axis identify individual macaques (E) Numbers of lymphocytes × 1000/μl of peripheral 

blood after infection of individual macaques with WT MeV or LAMV. (F) The ratio of day 7 

to day 0 lymphocyte counts for macaques infected with WT MeV (red circles) or LAMV 

(blue triangles). Significance was determined by Student’s t test, *P < 0.05.
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Fig. 2. Macaque PBMC subsets infected by WT MeV during viremia.
Flow cytometry was used to identify PBMCs expressing MeV N protein during viremia after 

intratracheal infection of macaques with 104 TCID50 of WT MeV. Representative flow 

cytometry images are shown for MeV N protein–expressing CD20+ B cells and CD3+ T 

cells from WT MeV–infected macaques 7 days after infection (A) and from uninfected 

control macaques (B). PE, phycoerythrin; APC, allophycocyanin. (C) Per-centages of B 

cells (red circles) and T cells (blue squares) expressing MeV N protein 7 and 10 days after 

infection of macaques. Lines indicate the mean and SEM for each cell type and virus.

Lin et al. Page 23

Sci Transl Med. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Macaque T cell subsets infected by WT MeV during viremia.
(A) Representative flow cytometry images show MeV N protein–positive CD4+ T cells (top) 

and CD8+ T cells (bottom) in the peripheral blood of macaques 7 days after infection with 

104 TCID50 of the Bilthoven strain of WT MeV. Gating (red) is shown for naïve T cells, 

central memory (CM) T cells, and effector memory (EM) T cells (left), and MeV N protein–

positive T cells in each group (right). (B) Quantification of the percentages of MeV N 

protein–positive CD4+ and CD8+ T cells that were central memory T cells, effector memory 

T cells, and naïve T cells for six individual macaques. Results from the same macaque are 

connected with lines. Significance was determined by ANOVA with Bonferroni post hoc 

tests. *P < 0.05, **P < 0.01.
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Fig. 4. In vitro replication of WT MeV and LAMV in primary respiratory epithelial cells and 
PBMCs.
Infectious MeV in apical supernatants and shedding of MeV-infected multinuclear giant 

cells were measured after apical or basal infection of primary differentiated macaque 

tracheal epithelial cells with LAMV or WT MeV (MOI = 4.5). (A) Apical cell culture 

supernatants (cultures from three separate macaques; two replicates in each experiment) 

were assayed for infectious virus by a TCID50 assay. Lines indicate the SEM. (B) Shed cells 

collected from macaque tracheal epithelial cell monolayers 144 hours after infection were 
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stained with antibody to MeV N protein and DAPI nuclear stain after fixation and 

permeabilization. Merged images of phase-contrast, MeV N protein expression (green), and 

DAPI nuclear stain (blue) are shown. Scale bar represents 150 μm. (C to F) Production of 

infectious virus 24 hours after infection of human PBMCs with WT MeV (red circles) and 

LAMV (blue triangles) at high (2 to 5) MOI (C) and low (0.5) MOI (D). Production of 

infectious virus 24 hours after infection of human CD4+ T cells (E) or CD14+ myeloid cells 

(F) with WT MeV (red circles) or LAMV (blue triangles) (MOI = 5). Horizontal line 

indicates the mean. Significance was determined by Mann-Whitney U test. *P < 0.05 and 

**P < 0.01. ns, not significant.

Lin et al. Page 26

Sci Transl Med. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. In vitro replication of WT MeV and LAMV in human primary CD4+ T cells.
Shown is flow cytometry analysis of MeV N protein expression after in vitro infection of 

human PBMCs with WT MeV or LAMV (vaccine strain of MeV). (A) Flow cytometry 

histogram shows amounts of MeV N protein expressed by human CD4+ T cells 20 hours 

after infection with WT MeV or LAMV at an MOI of 0.5 or 5.0. (B and C) Flow cytometry 

plots of CD4+ T cell expression of MeV N protein 20 hours after infection with LAMV (B) 

or WT MeV (C) strains (MOI = 5.0). SSC, side-scattered light. (D and E) Each panel shows 

results of three separate flow cytometry experiments that assessed the percentage of human 

CD4+ T cells expressing MeV N protein (D) and the amount of MeV N protein measured by 

immunofluorescence (E) 48 hours after infection of human PBMCs with WT MeV or 

LAMV (MOI = 5). Lines connect data from the same experiment.
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Fig. 6. Plasma cytokine and chemokine concentrations after WT MeV or LAMV infection of 
macaques.
Plasma concentrations of IL-1β, IFN-γ, IL-12, CCL2, CCL11, CCL22, CXCL9, CXCL11, 

MIF, and βFGF were measured using a Luminex 28-plex monkey cytokine/chemokine assay 

panel. Plasma samples were run in duplicate for five animals infected with WT MeV (blue) 

or with LAMV (orange). Data are plotted as means ± SEM. Significance of differences 

between groups was determined by two-way ANOVA using data from days 0, 7, 14, and 24 

or 28 after infection. For analysis of IFN-γ, the two highest outliers (both in the WT MeV–

infected group) were removed.
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Fig. 7. MeV -specific antibody responses after WT MeV or LAMV infection of macaques.
Plasma concentrations of (A ) MeV-specific IgG, (B) MeV-specific IgA, and (C) H-specific 

IgG were measured by enzyme immunoassay (EIA) using plates coated with a lysate from 

MeV-infected Vero cells or MeV H–expressing L cells. Titers of antibodies were determined 

on the basis of the curve of serially diluted plasma and assay-specific background values. 

(D) Reciprocal titers of neutralizing antibody in macaque plasma samples were determined 

by a plaque reduction neutralization test (PRNT) using the Chicago strain of MeV and Vero 

cells. Results were calculated from assay triplicates. (E) Avidity of MeV-specific IgG was 
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determined in triplicate by an EIA-based assay and expressed as avidity index (AI) for six 

individual macaques at 14 weeks after infection with WT MeV or LAMV. (F) MeV-specific 

IgG-secreting cells in the bone marrow were assessed by ELISpot assay to identify the 

numbers of cells secreting antibody to MeV. Shown are representative wells loaded with 5 × 

105 bone marrow cells from macaques approximately one year after infection with WT MeV 

(35 and 28 spots) or LAMV (2 and 3 spots). Spots represent MeV-specific IgG-secreting 

long-lived plasma cells (LLPCs). (G) Number of MeV-, H-, and N-specific IgG-secreting 

long-lived plasma cells in macaque bone marrow assessed by ELISpot assay about 1 year 

after infection. Averaged number of spots from eight assay replicates in individual animals 

was plotted. *P < 0.05, **P < 0.01, and ***P < 0.001. Data in (A) and (B) were compared 

using two-way ANOVA with Bonferroni post hoc tests; data in (C), (D), (E), and (G) were 

compared using Student’s t test.
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Fig. 8. Cellular immune responses after WT MeV and LAMV infection of macaques.
Numbers of IFN-γ– and IL-4–producing T cells in infected macaques were assessed by 

ELISpot assay. Fresh macaque PBMCs (5 × 105) were added to multiscreen plates coated 

with anti-human IFN-γ or IL-4 antibody in the presence of pooled H or N peptides or 

medium. Data are reported as spot-forming cells (SFCs) after subtracting medium alone 

wells from antigen-stimulated wells. (A) Numbers of H- and N-specific IFN-γ–producing 

cells 14 and 70 days postinfection (dpi). (B) Numbers of N-specific IL-4–producing cells 14 

days after infection. Horizontal line indicates the mean. (C) Changes in numbers of N-

specific IFN-γ–producing cells in the circulation of infected macaques over the course of 

MeV infection. Reactivation of MeV-specific T cells in the circulation was noted around 60 

days after infection for animals infected with WT MeV (red circles) or LAMV (blue 

triangles).
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