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Abstract

Speech is perceived with both the ears and the eyes. Adding congruent visual speech

improves the perception of a faint auditory speech stimulus, whereas adding incongruent

visual speech can alter the perception of the utterance. The latter phenomenon is the case

of the McGurk illusion, where an auditory stimulus such as e.g. “ba” dubbed onto a visual

stimulus such as “ga” produces the illusion of hearing “da”. Bayesian models of multisensory

perception suggest that both the enhancement and the illusion case can be described as a

two-step process of binding (informed by prior knowledge) and fusion (informed by the infor-

mation reliability of each sensory cue). However, there is to date no study which has

accounted for how they each contribute to audiovisual speech perception. In this study, we

expose subjects to both congruent and incongruent audiovisual speech, manipulating the

binding and the fusion stages simultaneously. This is done by varying both temporal offset

(binding) and auditory and visual signal-to-noise ratio (fusion). We fit two Bayesian models

to the behavioural data and show that they can both account for the enhancement effect in

congruent audiovisual speech, as well as the McGurk illusion. This modelling approach

allows us to disentangle the effects of binding and fusion on behavioural responses. More-

over, we find that these models have greater predictive power than a forced fusion model.

This study provides a systematic and quantitative approach to measuring audiovisual inte-

gration in the perception of the McGurk illusion as well as congruent audiovisual speech,

which we hope will inform future work on audiovisual speech perception.

Introduction

When we see the face of a person speaking to us, our brains use both the auditory and visual

input to understand what is being said. Seeing the speaker’s face enhances the perception of

speech, especially in noisy conditions [1], and speeds up the neural processing of the speech

signal [2]. A striking behavioural demonstration of audiovisual speech perception is the

McGurk illusion, in which combining an auditory utterance (eg. “ba”) with incongruent visual
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speech (eg. “ga”) often causes a fused percept different from both the auditory and visual com-

ponents (eg. “da”).

Since its discovery, the McGurk illusion has been studied extensively and several quantita-

tive models have been developed to characterize this phenomenon as an optimal fusion of

either discrete (eg. the Fuzzy Logical Model of Perception, [3]) or continuous (eg. maximum-

likelihood estimation [4–6]) estimates of the auditory and visual cues. These “strong fusion”

models hypothesise that the fused audiovisual percept is determined by the auditory and visual

percepts weighted according to their reliability of information [3–5, 7]. That is, if one knows

how the auditory and visual cues are perceived separately, one can directly predict the percep-

tion of them when combined. However, numerous studies have suggested that the information

reliability principle may not sufficiently account for all the aspects of audiovisual speech per-

ception. In fact, factors such as attention [8–10], audiovisual context [11], top-down expecta-

tions [12, 13], time offset between cues [14] and even spontaneous pre-stimulus brain activity

[15] have all been shown to modulate the McGurk illusion. A strong fusion model cannot

account for any of these effects.

Rather than a strong fusion process, audiovisual speech perception could perhaps then be

better conceptualised as the brain performing Bayesian inference of the phonetical content of

the audiovisual speech signal. When performing Bayesian inference, the brain estimates the

posterior probability of a certain utterance being pronounced by combining a prior with the

likelihood (i.e. the noisy representation of the auditory and visual speech cues). The prior cap-

tures the prior knowledge about the statistics of the world. In the multisensory case, this will

be a prior which informs the brain’s belief about the probability of the cues originating from

the same cause and thus whether they should be integrated. It could be informed by an early,

low-level process of determining the correlation of auditory and visual inputs [16], as well as

context cues and other more general prior knowledge.

A well-known Bayesian model of multisensory perception is Bayesian Causal Inference

(BCI), according to which the brain in the binding stage computes the probability of the cues

being caused by the same or separate events. Subsequently, a strong fusion model and a segre-

gation model are combined by taking a weighted mean of their respective predictions, the

strong fusion prediction weighted by the probability for a single cause and the segregation pre-

diction weighted by the probability for separate causes [17–20]. Joint Prior models represent a

slightly different Bayesian modelling paradigm, which instead of a discrete prior over the

causal structure uses a continuous prior over the joint distribution of the auditory and visual

features, determining to what extent they should be integrated [20–22]. Both of these Bayesian

models reflect a multi-stage view of audiovisual speech perception [23–25], and could possibly

be implemented in the brain as a fast route from visual motion areas to auditory cortex and a

slower route through the STS for (iteratively) transmitting prediction errors [12, 26].

To our knowledge, no quantitative model of audiovisual speech perception has been tested

in an experimental paradigm that manipulates both stages of audiovisual integration proposed

by the Bayesian account, which we will from now on call the “binding” and “fusion” stage.

Within the BCI literature the main experimental focus has for a long time been on the binding

stage [17, 18, 20, 27], manipulating the assumption of common cause while keeping the

strength of the cues constant. A few notable studies have successfully manipulated both the

binding and fusion stages in spatial localization tasks [28–30], but this approach has not yet

been tested in the audiovisual speech domain. In the strong fusion literature, on the other

hand, the binding stage is omitted by assuming that all stimuli are maximally fused [3, 4, 31].

Clearly, the one-sided focus on either the binding or fusion step in previous audiovisual speech

studies limits our understanding of what factors drive the perception of the McGurk illusion.

A binding-focused paradigm would attribute a strong McGurk effect to a strong audiovisual
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binding, although it may also have been caused by difficulties in perceiving the auditory com-

ponent of the signal, or by strong lipreading skills [32]. Conversely, in a strong fusion para-

digm, subjects with low proportions of fusion responses would be assumed to have relatively

high auditory precision, ignoring that the low degree of visual influence could be due to less

audiovisual binding. Given the significant individual variability in susceptibility to the

McGurk illusion [31–33], the respective effects of unisensory perception and multisensory

binding should be clarified.

In this study, we apply the Joint Prior model [22, 34] and BCI to audiovisual speech percep-

tion. Furthermore, we evaluate the models in an experimental paradigm which targets both

the binding and the fusion stage. We will manipulate the binding stage by introducing a tem-

poral offset between the auditory and visual component. The McGurk illusion has been found

to occur the most within a small interval of temporal offsets (30 ms audio lead to 170 ms audio

lag), decreasing gradually with greater offsets [14]. Since the fusion stage depends on the rela-

tive precision of the auditory and visual cues, this stage of audiovisual integration will be

experimentally manipulated by making either modality less reliable, i.e. by adding noise to the

auditory or visual component of the stimulus. In order to correctly estimate the precision,

each cue should be presented in a unimodal (audio-only or visual-only) condition, in addition

to the audiovisual presentations.

Combining the approaches for manipulating the binding and fusion stages, respectively,

our behavioral paradigm systematically manipulates the timing of the audiovisual stimuli as

well as the auditory and visual signal to noise ratio (SNR), using both congruent and incongru-

ent (McGurk) audiovisual stimuli. Our behavioural experiment is, to our knowledge, the first

to vary both the effect of information reliability and differences in binding in audiovisual

speech perception. This is necessary for testing the Bayesian models of audiovisual speech per-

ception in full. Moreover, we will analyse to what extent the parameter values obtained from

computational modelling can quantify the effects of binding and fusion on the behavioural

responses.

Model specification

In the Bayesian view, perception is achieved by combining the brain’s prior beliefs about the

world (prior) with the incoming neural signal prompted by the stimulus (likelihood) to pro-

duce the probability for the neural signal being emitted by a specific stimulus (posterior). In

line with previous early fusion models [4, 6, 18], we use a continuous internal representation

for the auditory and visual cues, i.e. we assume that the brain estimates continuous-valued fea-

tures of the spoken phonemes. These continuous unimodal estimates are combined via an

integration rule to produce an audiovisual estimate, which is used to make the final phonetic

judgment. In reality, phoneme identification is most probably a multidimensional problem

but for computational feasibility we restrict our model to a one-dimensional representation of

each modality (auditory and visual). In our study, since we will work with the consonants B, D

and G, we can conceptualise the auditory and visual dimension as a continuous representation

of the place of articulation, with B being articulated in the front of the mouth and G articulated

furthest back.

The Joint Prior model of audiovisual speech perception builds on earlier work using two-

dimensional priors for the joint distribution over two sensory dimensions [20–22, 34]. In this

study, we use a Gaussian ridge along the A = V diagonal in the space of audiovisual speech fea-

tures (see Fig 1) whose variance along the orthogonal diagonal, σo2, determines the strength of

audiovisual integration [20–22, 34]. The joint prior thus has one free parameter. Since this par-

ticular prior is specificed by its width from the diagonal, which also determines the strength of
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cross-modal binding, we will call it a binding prior. If there is a strong assumption of unity, σo2

is small and posterior estimates will be forced towards the diagonal (i.e. the auditory and visual

judgments will be the same; full integration). On the other hand, if there is a weak assumption

of unity, σo2 is large and posterior estimates will be close to the likelihood (little or no integra-

tion). The likelihood is a two-dimensionsal Gaussian describing the noisy representation of the

incoming stimulus, with auditory and visual means (μA, μV) and precision parameters rA = 1/

σA2 and rV = 1/σV2 (σA2 and σV2 being the variance of the Gaussian in the auditory and visual

dimension, respectively). As in previous models [4, 5, 35] we assume conditional indepen-

dence of the auditory and visual precision, so that, conditioned on the stimulus presented, the

sensory noise will be independent in the two modalities and the likelihood thus has zero

covariance.

By Bayes rule, the posterior is proportional to the product of the prior and the likelihood,

which yields a Gaussian distributed posterior. Because participants are only required to report

what they heard in the audiovisual condition, we marginalise the posterior over all possible

Fig 1. The Joint Prior model of audiovisual speech perception. Upper row: Example plots of prior, likelihood and posterior distributions. The

horizontal axes represent the auditory dimension and the vertical dimension represents the visual dimension. The prior is a Gaussian ridge along the

A = V diagonal, and the likelihood is a Gaussian (here depicted with greater variance in the visual dimension). The posterior distribution is also

Gaussian, pulled in the direction of the A = V diagonal. Lower row: the marginal distribution of the prior, likelihood and posterior in the auditory

dimension. Response boundaries (vertical lines) are applied to the posterior distribution and response probabilities are estimated as the probability

mass (yellow area) delimited by the response boundaries.

https://doi.org/10.1371/journal.pone.0246986.g001
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visual representations to get the distribution of the auditory representations [17]. This is also a

Gaussian distribution with mean

mAV ¼ wAmA þ ð1 � wAÞmV ð1Þ

and variance:

sAV2 ¼ wAsA
2 ð2Þ

where μA, σV2, μV, and σV2 are auditory and visual mean and variance parameters and

wA ¼
2so

2 þ sV
2

2so
2 þ sV

2 þ sA
2

ð3Þ

is the weight of the auditory mean in the combined estimate. Note that wA will range between

0 (when the auditory precision is low) and 1 (when the visual precision is low). Thus, the pos-

terior of the Joint Prior model incorporates the information reliability principle. However, we

also see that the auditory weight is modulated by the prior variance. If the prior variance σo2 is

very large, the auditory weight will be close to 1 regardless of the auditory and visual precision

because the auditory and visual signals are fully segregaged. On the other hand, as the prior

variance approaches zero, the auditory weight will approach that of the strong fusion Maxi-

mum Likelihood Estimation (MLE) model [5].

In the BCI model, the posterior is a combination of two models–a strong fusion model and

a full segregation model–weighted by the probability for common (P(C = 1)) and separate (P

(C = 2)) causes, respectively [17, 18, 20]. Since the auditory and visual inputs must have either

a common or separate causes and P(C = 1) and P(C = 2) hence sum to 1, the causal prior has

one free parameter.

For both models, response probabilities are estimated by first restricting the representation

space to a finite interval and then applying two response boundaries to divide the interval into

three parts, corresponding to the three consonants (illustration in lower right corner of Fig 1).

The response probability for a certain consonant is then calculated as the probability mass of

the posterior that falls within its interval.

In order to assess the importance of the prior on the predictive power of the models, we

compare two different implementations of each model. In the Full implementation, we fit

one prior parameter for each temporal offset condition. This entails fitting one prior vari-

ance parameter σo2 for the synchronous stimuli and one for the asynchronous stimuli in the

case of the Joint Prior model, and one P(C = 2) for each synchrony condition in the BCI. In

the Reduced implementations we let the prior parameters vary freely in the asynchronous

condition, but assume a strong fusion model in the synchronous condition, i.e. fixing the

prior variance and P(C = 2) to zero in the Joint Prior and BCI, respectively. Finally, as a

baseline for comparison we use the MLE model, which corresponds directly to either a Joint

Prior model with a prior variance of zero in all conditions, or a BCI model with P(C = 2) set

to zero in all conditions. See Fig 2 for illustration of the prior structure of the model imple-

mentations. An identical set of parameters pertaining to the model likelihood and response

boundaries was fit in each model implementation: means for the perceptual categories B

and G in the auditory and visual dimensions (4 parameters), auditory and visual variance

parameters for each SNR level (6 parameters), and dividing the marginalised representa-

tional space into three categories (2 parameters). This means that the MLE had 12 free

parameters in total, whereas the Reduced Bayesian models each had 13 free parameters and

the Full Bayesian models had 14 free parameters.
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Methods

Behavioural experiment

Participants. 16 participants (10 female) with mean age 24.9 years (SD = 4.53) partici-

pated in the experiment in exchange for hourly payment. All subjects reported normal hearing

and had normal or corrected-to-normal vision. Written consent was obtained from all partici-

pants and the experiment was approved by the Science-Ethics Committee for the Capital

Region of Denmark (reference H-16036391).

Stimuli. Stimulus material was based on audiovisual recordings of a female native speaker

of Danish uttering the syllables “Ba” and “Ga” (henceforth B and G). Videos were recorded at

25 frames/s and segments of 35 frames (1.45 s) were cut out using Adobe Premiere Pro soft-

ware. In addition to congruent presentations of the recorded stimuli, McGurk fusion stimuli

were created by combining visual G with auditory B, aligning the sound onset of the B with

that of the (muted) G.

To manipulate the auditory and visual SNR, random noise was added to the stimuli. The

noise was designed to match the spatiotemporal frequency content of the stimuli, as this type

of noise is known to be efficient in masking both auditory [36, 37] and visual [38] stimuli. In

the visual domain, noise was created by applying the Fourier transform to the three-dimen-

sional (frame x horizontal position x vertical position) array of grayscale pixel values and

replacing the phase angle values with uniformly distributed random numbers between 0 and

2π, while leaving magnitudes unchanged. Since the mouth area had more movement than the

video on average and thus had a different frequency content, local noise was made for the

mouth area to ensure that it could be sufficiently obscured. The noise was mixed with the sig-

nal by subtracting the mean pixel value and adjusting the contrast by scaling the pixel values of

each video before adding them both to the mean pixel value. Three SNR levels (ranging from

Fig 2. Prior structures. Illustration of the prior structure of each model compared in the study. A full derivation of the Joint Prior model of audiovisual speech perception

is available in the supporting information.

https://doi.org/10.1371/journal.pone.0246986.g002
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relatively clear to noisy) were created by varying the contrast settings for the signal and noise

respectively. These contrast levels were found in pilot trials. An example image of the first

author (AL) with applied visual noise corresponding to the SNR levels used in the experimen-

tal stimuli can be found in Fig 4B. Another speaker was used in the actual experimental

stimuli.

In constructing the auditory noise, a short time Fourier transform was applied to each of

the audio tracks and the magnitude spectrum of the onset of the respective consonants was

computed. Subsequently, the mean of the two magnitude spectra was computed and combined

with randomized phase angles in the same way as the visual case. This resulted in auditory

noise matching the mean spectral profile of the two consonant onsets. The noise was faded in

so that it reached its maximum at the earliest onset of the speech sound among all the stimuli

(about 100 ms after start of video), and faded out at the end of the stimulus. The noise was

then mixed with the speech sounds at relative dB 3, 9, and 15 in order to create stimuli with

high, medium and low signal-to-noise ratio. These relative noise levels were determined in

pilot trials.

Asynchronous versions of the stimuli were made by temporally shifting the audio to create

a 500 ms audio lead. Although this stimulus onset asynchrony (SOA) is substantially larger

than the “temporal window of integration” previously found [14, 25], we found in pilot trials

that it was necessary to extend the window to 500 ms in order to produce a reliable effect of

SOA. We believe that this extended time window of integration may be due to the decreased

temporal resolution of our stimuli due to the added noise on both the auditory and visual stim-

ulus components. Several studies have found that the time window of integration is not fixed,

but depends on stimulus properties [19, 39–42]. Indeed, a study using synthetic audiovisual

speech stimuli–and thus possibly lacking some high-frequency temporal information in both

the auditory and visual domains–found that the SOA had to be extended to 533 ms to produce

a significant decrease in audiovisual integration [43].

Audiovisual stimuli were created by varying the visual SNR by combining clear audio with

clear, mid or noisy video and by varying the acoustic SNR by combining clear video with clear,

mid or blurred audio. Auditory-only stimuli were displayed with a still image of the face, and

in the visual only condition the videos were played without sound.

In order to make sure that subjects did not simply learn to discriminate between stimuli

based on the patterns of the noise, 25 unique visual noise signals and 30 unique auditory noise

signals were generated and combined with the stimuli such that any combination of the stimuli

and noise signals appeared only once during the experiment.

Procedure. Participants were seated in a sound-isolated booth, where videos were pre-

sented on an LCD monitor and the audio was delivered at 65 dBA via an active loudspeaker

placed below the screen. Videos were centred such that the mouth was displayed at the middle

of the screen. The task was to identify the consonant uttered at each trial by choosing between

the options “B”, “D” and “G”. A response screen was shown directly after each stimulus pre-

sentation, and responses were collected from the numeric keypad buttons “1”, “2” and “3” on

the right-hand side of a standard computer keyboard. After the button press and a short delay

of 200 ms, the next stimulus was presented. Subjects were instructed to focus on the mouth

during the entirety of the experiment and to always report what they heard, except on visual-

only trials in which they were instructed to lip read.

Stimuli were delivered in a pseudo-random order in blocks of 42 stimuli (one of each con-

dition), ensuring that no stimulus would be presented more than twice consecutively. Each

stimulus was presented 25 times, yielding 1050 presentations in total. The experiment took

around 50 minutes to complete and contained a break halfway through.
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Model fitting & comparison

Models were fit by minimizing the negative log-likelihood of the data given the parameters,

using the quasi-Newton optimization algorithm implemented in MATLAB’s fminunc func-

tion. Cross-validation over stimuli was applied during model fitting, meaning that all trials

from one of the 42 experimental conditions were left out during model fitting in each cross-

validation fold, and predictions were made on the left-out condition. The optimization was

run 100 times with randomly selected initial points and the parameter set yielding the lowest

negative log-likelihood was selected. Although the negative log-likelihood was used for model

fitting, the cross-validation errors will be reported as root mean squared errors (RMSE). The

reason for this is that the likelihood of left-out stimuli given the predicted response probabili-

ties may sometimes be zero, and log(0) is not defined. This happens in the case where a

response probability of zero or one is predicted and the observed response proportion is differ-

ent from zero or one.

In order to keep model sensitivity in check, regularization was applied in the model fitting.

Regularization penalises regions in the parameter space which yield unstable fits by putting

priors on the parameter values. In the case of this experiment, very large estimates of auditory

or visual precision (inverse variance) will cause such unstable fits by yielding highly peaked

response probability distributions. With overly peaked probability distributions, a slight shift

in category means or response boundaries will cause a big change in the predicted response

probabilities, and consequently in the log-likelihood error. Thus, we penalise solutions with

large auditory or visual precision by adding their sum scaled by a regularization constant λ to

the negative log-likelihood function. This is equivalent to putting a Gaussian prior with zero

mean and standard deviation 1/λ on the precision parameters. The value of λ = 7 was found by

making a parameter sweep in the interval [10−3, 102] (i.e. ranging from a very weak to a very

strong prior) and selecting the value giving the lowest mean cross-validation RMSE on the left

out stimuli over all three models.

Results

Behavioural results

Fig 3 shows the mean behavioural responses (dark bars) to auditory-only, visual-only and

audiovisual stimuli. The behavioural data are available in full in the supporting information.

For the unimodal (auditory-only and visual only) stimuli, we expected that accuracy would

decrease when more noisy stimuli are presented. We tested this hypothesis separately for audi-

tory-only and visual-only stimuli using generalized mixed-effects models (GLMs). The depen-

dent variable was the number of correct responses and because this is a binomial count

(correct vs. incorrect), a binomial GLM with a logit link function was used. The fixed effects

were Stimulus (B or G) and SNR (high, mid or low) and Subject was a random effect. For audi-

tory-only stimuli, an Analysis of Deviance (Type II Wald chi-squared tests) revealed main

effects of Stimulus (p< 0.001) and SNR (p< 10−14), as well as a Stimulus x SNR interaction

(p< 10−15). Follow-up non-parametric pairwise tests revealed that the main effect of SNR and

the Stimulus x SNR interaction reflected a decrease in correct responses with lower SNR for G

(p< 0.001 for low vs. mid and mid vs. high SNR, one-sided Wilcoxon signed-rank tests),

whereas for B the only significant difference was between low and high SNR (p.< 0.0003).

For the visual-only stimuli we used the same GLM approach as the auditory-only stimuli,

revealing main effects of Stimulus (p< 10−15) and SNR (p< 10−15) and a SNR x Stimulus

interaction (p< 10−15). Follow-up one-sided tests of high vs. mid SNR and mid vs. low SNR

showed that lower SNR led to fewer correct responses for both B and G (p< 0.01 in all
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pairwise Wilcoxon signed-rank tests). This confirms our hypothesis that accuracy decreased

when more noise was added. The additional main effect of Stimulus and the SNR x Stimulus

interaction possibly reflect that the responses to visually more salient B were more correct and

more affected by SNR than the responses to G.

To summarise, responses to both auditory-only and visual-only stimuli support the hypoth-

esis that SNR modulates behavioural responses. We additionally found a main effect of Stimu-

lus and Stimulus x SNR interaction effects in opposing directions for the two modalities:

whereas responses to auditory G were in general more correct and more affected by SNR than

those to auditory B, the converse was true for the visual stimuli where responses were more

correct and more strongly modulated by SNR for B than G.

Fig 3. Behavioural responses and model predictions. Mean behavioural responses (dark bars) and model predictions (light bars) to visual-only (top row), auditory-only

(left column) and audiovisual stimuli (central panels) for 16 participants. Error bars represent the standard error of the mean. Visual stimuli are divided into G (left

compartment) and B (right compartment) and are presented with descending SNR (left: high SNR to right: low SNR within each compartment. Auditory stimuli are

divided into B (top compartment) and G (bottom compartment) and are presented with descending SNR (top: high SNR to bottom: low SNR within each compartment).

Each audiovisual stimulus is a combination of the auditory and aisual stimulus on the corresponding row and column, presented either in synchrony (blue bars) or out of

sync (red bars). The model predictions displayed are cross-validation predictions from the Reduced Joint Prior model.

https://doi.org/10.1371/journal.pone.0246986.g003
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For McGurk stimuli, we have two hypotheses regarding the behavioural responses:

1. The responses corresponding to the auditory component of the stimuli (i.e. B; henceforth

“auditory responses”) will decrease compared to the auditory-only condition due to the

addition of an incongruent visual stimulus.

2. That responses will be modulated by SOA and SNR in the following manner: The auditory

responses should be larger for asynchronous stimuli compared to synchronous because the

SOA will disrupt the illusion, and low auditory SNR should lead to fewer auditory responses

wheras low visual SNR should lead to more auditory responses.

In testing Hypothesis 1, we compared responses to the clear auditory B to the same stimulus

presented in synchrony with a clear visual G, revealing a significant decrease in correct

responses in the audiovisual condition (p< 0.0003, one-sided Wilcoxon signed-rank test).

This effect was also found when the visual stimulus was weaker (p< 0.01 for mid and low

Visual SNR, one-sided Wilcoxon signed-rank tests). In testing Hypothesis 2, we fit a GLM

with fixed effects of SOA (synchronous or asynchronous), Auditory SNR and Visual SNR

(high, mid and low, respectively). An Analysis of Deviance (Type II Wald chi-squared tests)

revealed significant main effects of SOA, Auditory SNR and Visual SNR (all p < 10−6) and an

interaction effect of SOA x Visual SNR (p< 10−7). In order to test whether the direction of

these effects was in line with Hypothesis 2, we used one-sided pairwise Wilcoxon signed-rank

tests. The effect of SOA reflected that asynchronous stimuli yielded more auditory responses

than synchronous stimuli (p< 0.02 in all pairwise tests of the five fusion stimuli). Consistent

with our hypothesis on how responses are modulated by the relative precision of the auditory

cues, the main effect of Auditory SNR was due to the fact that auditory responses decreased for

the lower auditory SNR levels (p< 0.05 in all pairwise one-sided tests of low SNR vs. mid SNR

and mid SNR vs. high SNR). Conversely, the main effect of Visual SNR reflected an increase in

auditory responses for the lower visual SNR levels (p< 0.005 in all pairwise tests of high

SNR< mid SNR and mid SNR < low SNR). Thus, our data support both of our hypotheses

regarding the McGurk stimuli. Additionally, we found a SOA x Visual SNR interaction reflect-

ing that synchronous and asynchronous stimuli were differently affected by manipulation of

the visual SNR.

For Audiovisual congruent stimuli, we hypothesise that 1) subjects will be more correct in

perceiving the stimuli compared to the audio-only condition and 2) that this enhancement

effect will be modulated by Auditory and Visual SNR as well as SOA, as adding noise to either

component or adding asynchrony should decrease the number of correct responses. Testing

Hypothesis 1, we found a significant increase in correct responses when adding a synchronous

presentation of a clear visual B to a clear auditory B (p< 0.0003, Wilcoxon signed-rank test),

as well as with less clear visual B (p< 0.0002 and p = 0.0245 for mid and low visual SNR,

respectively). For Audiovisual G compared to auditory-only G, there was no improvement in

the high and mid SNR conditions, possibly because identification was at ceiling level in the

auditory-only condition. In the low Auditory SNR condition, however, there was an improve-

ment in identifying G when a synchronous visual stimulus was added (p< 0.0005, Wilcoxon

signed-rank test). Testing Hypothesis 2, we again fit a mixed-effects GLM to the binomial

count of correct vs. incorrect responses, using a logit link function. The fixed effects were Stim-

ulus (B or G), SOA (synchronous or asynchronous), Auditory SNR (high, mid, low) and Visual

SNR (high, mid, low); and Subject was a random effect. An Analysis of Deviance (Type II

Wald chi-square tests) revealed significant main effects of Stimulus, SOA, Auditory SNR and

Visual SNR (all p< 10−6) and interaction effects of Stimulus x Auditory SNR (p< 10−6) and

Stimulus x Visual SNR (p = 0.0012). In order to uncover whether the main effects of SNR and
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SOA were in the hypothesised direction, we again conducted one-sided pairwise Wilcoxon

signed-rank tests. When testing whether the SOA effect was in the hypothesised direction, we

found a decrease in correct responses for asynchronous presentations for auditorily mid and

noisy presentations of G as well as all auditorily clear presentations of B (p< 0.03). However,

for auditorily clear G and auditorily mid and noisy B there was no effect of SOA, possibly due

to ceiling effects. The main effect of Auditory SNR reflected a significant decrease in correct

responses to G as the auditory SNR decreased (p< 0.001 for high vs. mid and mid vs. low in

both SOA conditions), whereas there was no such effect for B. Conversely, the main effect of

Visual SNR was accompanied by a significant decrease in correct reseponses to B as the visual

SNR decreased (p < 0.001 for high vs. mid and mid vs. low in synchronous and asynchronous

conditions), whereas no significant effect was found for G. These main effects are in line with

Hypothesis 2. The additional main effect of Stimulus possibly reflects differences in unisensory

perception. Our data thus support both of our hypotheses regarding the congruent Audiovi-

sual stimuli. Additionally, we found interaction effects which were not part of our hypotheses,

which will be interpreted in the Discussion.

Modelling

Fig 4D shows the test error (RMSE) improvement of the Bayesian model implementations

compared to the MLE model, here used as a baseline for comparison. The Reduced BCI and

Reduced Joint Prior both had lower cross-validation error than the MLE model (p< 0.04 in

both pairwise Wilcoxon signed-rank tests). The Reduced Joint Prior model had lower cross-

validation error than the full implementation (p = 0.0340), but for BCI there was no significant

difference between the full and reduced implementations. Moreover, pairwise tests revealed a

significant difference between Reduced BCI and MLE (p = 0.0386), but no significant differ-

ences between the Reduced BCI and the Full BCI. Finally, there was no significant difference

between MLE and Full Joint Prior or Full BCI, nor between the Joint Prior and BCI in either

the Full or Reduced implementation. Thus, model comparison clearly favours the Reduced

Bayesian implementations.

Model predictions. Fig 3 shows the cross-validation predictions of the Reduced Joint

Prior model (i.e. the prediction for each condition in the cross-validation fold where it was left

out) together with the behavioural data. The figure indicates that the model predictions gener-

ally follow the patterns in the data for McGurk Fusion stimuli as well as for congruent G and

B. There are two notable exceptions to the good prediction performance. First, in the noisy

auditory-only condition the model substantially underestimates accuracy for B and overesti-

mates accuracy for G. Second, in the noisy visual-only condition the model over-estimates the

accuracy for G and under-estimates the accuracy for B.

Model parameters. Reviewing the estimated prior parameters, we use the Full implemen-

tations of the Bayesian models for illustration in Fig 4A (the Reduced implementations had

their prior parameters fixed to zero in the synchronous condition). We see that for synchro-

nous stimulus presentations, the prior parameters indicate close to maximal binding: neither

the prior variance in the Joint Prior model nor the probability of separate causes in the BCI is

significantly different from zero. This provides further support for the Reduced model imple-

mentations. In the asynchronous condition, however, binding was not maximal, as reflected in

both the prior variance of the Joint Prior model and the probability of separate causes in the

BCI being significantly greater than zero (one-sided t-tests yielding p< 0.0001 and p = 0.0012

respectively).

Reviewing the likelihood parameters, Fig 4B and 4C shows the estimated auditory and

visual precision parameters for the Reduced Joint Prior model, for each SNR level. We tested

PLOS ONE Bayesian binding and fusion models explain illusion and enhancement effects in audiovisual speech perception

PLOS ONE | https://doi.org/10.1371/journal.pone.0246986 February 19, 2021 11 / 18

https://doi.org/10.1371/journal.pone.0246986


our hypothesis that the value of the precision parameters decrease with decreasing SNR in the

Joint Prior and BCI models separately. One-sided Wilcoxon signed-rank tests revealed that

this was indeed the case. The precision in the clear auditory condition was significantly higher

than that of the middle condition (p< 0.001 for each model), which in turn was higher than

Fig 4. Modelling results. A) Prior parameters for synchronous and asynchronous stimuli: binding parameter (0 = full binding, infinite = no binding) for the Full Joint

Prior model, and probability of separate causes (0 = full binding, 1 = no binding) for the Full BCI model. B) Auditory and C) visual precision parameters of the Reduced

Joint Prior and BCI for clear to noisy stimuli (left to right). The images depict the first author. Error bars represent SEM. D) Improvement in test error over baseline (the

Maximum likelihood model) for the Reduced and Full Bayesian model implementations. Error bars represent SEM. E) Auditory weight in the Reduced Joint Prior model,

plotted by SNR and SOA.

https://doi.org/10.1371/journal.pone.0246986.g004
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the noisy condition (p< 0.001 for each model). The visual parameters followed the same pat-

tern, where clear visual had higher precision than the middle condition (p< 0.001 for each

model), which had higher precision than the noisy condition (p< 0.001 for each model).

Moreover, we see that the highest sensory reliability is that of the clear visual condition,

whereas for the other SNR levels the auditory and visual reliabilities are more similar to one

another.

Weighting of cues depend on relative precision and binding. A feature of the Joint Prior

model is that the posterior distribution is a Gaussian with a mean that is a weighted combina-

tion of the means for the unisensory response distributions (see Eq 3). Thus, having fit the

model to our behavioural data, we can explicitly estimate the relative influence of the auditory

and visual modalities. Fig 4E shows the auditory weights as a function of audiovisual stimulus

and SOA. The weight given to the auditory modality varies with the relative auditory precision

of the stimulus, growing incrementally from the lowest relative auditory precision (low audi-

tory SNR, high visual SNR) to the highest relative auditory precision condition (high auditory

SNR, low visual SNR). We conducted one-sided Wilcoxon signed-rank tests of each pair of

adjacent conditions (i.e., low auditory SNR should have a smaller auditory weight than mid

auditory SNR, etc), revealing a significant difference for all pairs of both synchronous and

asynchronous stimuli (all p< 0.01).

Moreover, the auditory weight is consistently higher for synchronous compared to asyn-

chronous presentations, reflecting the decreased binding in the asynchronous condition.

Indeed, a mixed-effects ANOVA (fixed effects: Auditory SNR, Visual SNR, SOA, random

effect: Subject) on the auditory weights revealed a significant effect of Auditory SNR

(p< 10−10), Visual SNR (p< 10−10) and SOA (p< 10−9), as well as a Visual SNR x SOA inter-

action (p = 0.001), because the difference between synchronous and asynchronous weights

were smaller for noisy visual stimuli.

Discussion

Bayesian models can predict audiovisual enhancement and illusion effects

Overall, the behavioural responses to audiovisual stimuli was in line with the information reli-

ability principle: responses were modulated by both auditory and visual SNR. Higher visual

SNR led to more visual influence, whereas higher auditory SNR led to less visual influence.

Thus, our data clearly illustrate that auditory and visual speech cues are weighted according to

their relative reliabilities. Moreover, the weaker visual influence in the asynchronous condi-

tions shows that the temporal offset affects the extent to which the brain integrates the cues.

Additionally, there was a significant SOA x Visual SNR interaction, which although not part of

our initial hypothesis is in line with a binding and fusion model: since a low SNR visual stimu-

lus will have a negligible influence on perception, we would not expect an effect of temporally

offsetting these stimuli. Thus, our experimental paradigm successfully taps in to both the prior

and likelihood stages of the Bayesian models, corresponding to the binding and fusion stages

of the two-stage models of audiovisual integration [12, 18, 23, 26].

The responses to congruent audiovisual stimuli follow the same pattern as the McGurk

responses: information reliability as well as SOA modulate these responses in a manner consis-

tent with the predictions of the Bayesian models. However, some differences between B and G

are worth noticing. Whereas the subjects were near-perfect in perceiving the G stimuli regard-

less of visual noise (probably due to a ceiling effect), the B responses were clearly affected by

visual SNR. On the other hand, the number of correct responses to G decreased when auditory

noise was added, whereas the B responses were unaffected by auditory SNR. Considering the

physical properties of the stimuli, this pattern does not come as a surprise. The hard G in “ga”
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contains a velar burst which is relatively easy to perceive even when masked with noise [44],

whereas the visual “ga” is harder to distinguish from “da”. Conversely, the visual “ba” starts

with a complete closing of the lips and is hence very salient, whereas the auditory “ba” is harder

to perceive. Thus, the observed pattern could be explained by differences in information reli-

ability between congruent B and G. The difference between B and G is also reflected in the

unimodal responses: visual-only B was better perceived and responses were more strongly

modulated by SNR than for visual G, whereas auditory-only G was better perceived and

showed a stronger SNR modulation than auditory B. Auditory-only B does not seem to be

modulated by SNR at all, which calls into question whether our noise masking was in fact effi-

cient for this consonant. However, there was a clear auditory SNR modulation when the same

B consonant was presented in the McGurk condition, and thus it seems that the precision of

the auditory cue was in fact different in the different SNR levels. Hence, we believe that the

apparent absence of SNR effect in the auditory-only B condition may possibly be due to sub-

jects learning to discriminate the small number of distinct auditory-only stimuli presented

during the experiment.

Regardless of the differences in information reliability between B and G, we have presented

a model that uses the same set of auditory and visual precision parameters for both conso-

nants. This model design may be the cause behind the consistent prediction errors for the

noisy auditory-only (where the model overestimates the precision of B and underestimates

that of G) and visual-only (where B has too low precision and G has too high precision) condi-

tions. This raises the question of why a separate set of precision parameters for B and G was

not used. We did in fact implement such a model but it proved to be overly flexible, as reflected

in a substantially higher generalization error than the models presented in this study.

The fact that the Reduced Joint Prior and Reduced BCI models had significantly lower test

error than the MLE model shows that the unisensory signals alone are not sufficient for pre-

dicting behaviour in the asynchronous condition. Here, audiovisual integration is not maximal

as assumed by the MLE model. Rather, the strength of integration varies with the prior binding

parameter, which statistically differed from zero (maximal binding) in our data.

On the other hand, releasing the maximal fusion assumption for the synchronous condition

did not increase prediction accuracy. The Full Joint Prior and Full BCI implementations did

not yield a lower cross-validation error than their reduced counterparts; on the contrary, they

were significantly less accurate. This may seem counter-intuitive, as the reduced models span a

subspace of the solutions of their full counterparts. However, the higher cross-validation error

of the Full Joint Prior and Full BCI models means that they are overly flexible to the data and

hence do not generalise as well to unseen data as their reduced counterparts. Thus, our results

suggest that a strong fusion model may be sufficient for predicting responses to temporally

aligned audiovisual speech, whereas a free binding parameter is needed to predict the percep-

tion of out-of-sync speech.

Relationship between the Joint Prior and BCI models

The Bayesian Causal Inference (BCI) model is the most commonly used Bayesian model of

perception in recent literature on multisensory perception [17–20], whereas the Joint Prior

was more widely used in earlier work [20–22]. As we have described, the Joint Prior defines a

continuous prior parametrised by its variance across the A = V diagonal, whereas the BCI

models the prior as the probability for the auditory and visual cues to have a common cause.

The posterior distribution of the BCI is then a combination of a full integration (common

cause, corresponding to a Joint Prior model with zero prior variance) and full segregation (sep-

arate causes, corresponding to Joint Prior with infinite prior variance) estimate, weighted by
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their respective probabilities. This causes the posterior distribution to be bimodal, as we now

have a sum of two Gaussian distributions. Since the perception of our stimuli fall into three

categories–corresponding to three intervals in the representational space delimited by

response boundaries–we cannot judge whether the posterior distribution is unimodal or

bimodal. Indeed, our model comparison revealed no significant differences between the Joint

Prior and BCI models. Which of these models more accurately describes the brain’s processing

of audiovisual speech stimuli remains an open question. However, they each allow us to take a

certain viewpoint on real-world data. Whereas BCI estimates the probability of a common

cause (as illustrated in Fig 4A), the Joint Prior model instead estimates the relative contribu-

tion of the auditory and visual modalities. This gives us a measure of how much the prior and

likelihood contribute to the final estimate (as illustrated in Fig 4E).

Quantifying audiovisual integration of speech

In the audiovisual speech perception literature there is a long-standing issue of how to quantify

audiovisual integration [45]. Although the McGurk illusion rate has often been used as a beha-

vioural marker for audiovisual integration, the absence of unisensory conditions have often

made it unclear how much of the illusion rates can be attributed to unisensory performance

and how much is due to actual binding or integration. Moreover, the fact that it relies on an

incongruent, non-naturalistic stimulus has made the validity of the McGurk illusion as a mea-

sure of audiovisual integration disputed [46]. Our study suggests a remedy to these problems

by combining a more complete behavioural paradigm with computational modelling. The

inclusion of unisensory conditions allows for estimation of the separate contributions of multi-

sensory binding and reliability weighting to the final response. Additionally, our experimental

paradigm generalizes from the McGurk illusion to the enhancement effect for congruent

audiovisual stimuli, using the same parameters for predicting both of these behavioural effects.

This suggests a paradigm for future electrophysiology and imaging studies aiming to measure

audiovisual integration of speech in a systematic manner.

Conclusion

We have evaluated two Bayesian models of audiovisual speech perception–the Joint Prior

model and BCI–in a behavioural paradigm which systematically manipulates both the binding

prior and the relative weighting of cues. Although there are multiple studies using Bayesian

modelling for multisensory behavioural paradigms, ours is (to our knowledge) the first audio-

visual speech experiment which manipulates stimulus properties attributed to both the prior

and the likelihood. Fitting a full-scale and a reduced version of our models and comparing it

to a maximum-likelihood model with a fixed prior we found that the reduced model, which

assumes maximum integration for synchronous stimuli and allows the binding prior to vary

for asynchronous stimuli, performed best in predicting unseen data. Thus, in standard experi-

mental paradigms with synchronous presentations it may well be that a maximum-likelihood

model is sufficient to predict behavioural responses, if the likelihood parameters are allowed to

vary between subjects. This is in line with findings that maximum-likelihood models, in stan-

dard experimental paradigms with synchronous presentations, predicts behavioural responses

well if the likelihood parameters are allowed to vary between subjects [4, 6].
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