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INTRODUCTION

Images play a critical role in science and medicine. Until recently, analysis of scientific 

images, specifically medical images, was an exclusively human task. With the evolution 

from analog to digital image data and the development of sophisticated computer 

algorithms, machines (computers) as well as humans can now analyze these images. Though 

different in many ways, these alternative means of analysis share much in common: we can 

model the newer computational methods on the older human-observer approaches. In fact, 

our Perspective holds that radiologists and computers interpret medical images in a similar 

fashion.

Critical to understanding image analysis, whether by human or machine, is an appreciation 

of what an image is. The universe, including all and any part therein, can be defined as:

U = m, E x, y, z t

Or, more qualitatively: the universe is mass and energy distributed within a three-

dimensional space, varying with time (1). Scientific observations, whether encoded as 

numerical measurements or categorical descriptors, reflect information about one or more of 

these three intrinsic domains of nature. Measurements of mass and energy (m, E) are often 

called signals. In medical imaging, essentially all our signals reflect measurements of 

energy. An image can be defined as a rendering of spatially and temporally defined signal 

measurements, or:
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I = f m, E x, y, z t

Note the parallelism between what the universe is and how it is reflected by an image. In the 

context of scientific observations, an image is the most complete depiction of observations 

of nature— or in the case of medicine, the patient and his/her disease. Images and images 

alone include explicit spatial information, information that is intrinsic and critical to the 

understanding of most objects of medical interest.

HUMAN IMAGE ANALYSIS

Pattern recognition is involved in many, if not most, human decisions. Human image 

analysis is based upon pattern recognition (2). In medicine, radiologists use pattern 

recognition when making a diagnosis. It is the heart of the matter. Pattern recognition has 

two components: pattern learning and pattern matching. Learning is a training or educational 

process; radiology trainees are taught the criteria of a normal chest X-ray examination and 

observe hundreds of normal examinations, eventually establishing a mental pattern of 

“normal.” Matching involves decision-making; when an unknown chest film is presented for 

interpretation, the radiologist compares this unknown pattern to their “normal” pattern and 

makes a decision as to whether or not the case is normal, or by exclusion, abnormal.

One of the most striking aspects of human image analysis is how our visual system 

deconstructs image data in the central nervous system. The only place in the human head 

where there is anything resembling a coherent pattern of what we perceive as an image is on 

the surface of the retina. Even at this early point in the human visual process, the image data 

are separated into color versus light intensity pathways, and other aspects of the incoming 

image are emphasized and/or suppressed. The deconstruction of image data proceeds 

through the primary visual cortex into secondary, and higher, visual cortices where different 

components of image data, particularly those related to signal (brightness), space (shape), 

and time (change), are processed in distinct and widely separated anatomic regions of the 

brain (3, 4). The anatomic substrate of these cortical patches that process image data is the 

six layered, cerebral cortex columnar stacks of neurons that make up local neural networks 

(5).

The deconstruction of image data in the human brain— “what happens where”—is relatively 

well understood. However, the structures and processes involved in the reintegration of these 

now disparate data into a coherent pattern of what we perceive remains a mystery. 

Regardless of how the brain creates a perceived image, the knowledge that it does so by 

initially deconstructing image data and processing these different data elements by separate 

anatomic and physiological pathways provides important clues as to how images are 

analyzed by humans.

FINDINGS = OBSERVED KEY FEATURES

In the process of deconstructing image data, the human brain extracts key, or salient, features 

by separate mechanisms and pathways. These key features (KFs) reveal the most important 
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information. While their number and nature are not fully understood, it is clear that KFs 

include signal, spatial, and temporal information. They are separately extracted and analyzed 

with the goal of defining dominant patterns in the image that can be compared to previously 

learned KF patterns in the process of diagnostic decision-making.

Given that analyzing the patterns of KFs of an image is fundamental to human image 

interpretation, an obvious step in the interpretive process is to define the KFs to be extracted 

and the patterns thereof learned. This is the learning part of pattern recognition and is a 

function of image data itself, empirical experience, and task definition. KFs must be 

contained in the image data, extractable by an observer, and relevant to the decision-making 

process. Since image data consist of signal, spatial, and temporal information, KFs will 

likewise reflect one or more of these elements. To extract a KF, a human observer has to be 

able to see the feature on an image. In a black and white image, a KF cannot be color. 

Ideally, KFs are easy to see and report, i.e., extract.

A KF must make a significant contribution to some decision based on the image data. Since 

the ultimate performance metric of medical image interpretation is diagnostic accuracy, KFs 

of medical images must individually contribute to correct diagnoses. The empirical 

correlation of image features with specific diagnosis by trial and error observations has been 

the traditional way to identify KFs on the basis of their contribution to diagnosis. Observed 

KFs provide the content for the “Findings” section of a radiology report. For brevity and 

convenience, we will focus on signal and spatial KFs.

Medical diagnosis in general and radiological diagnosis in particular is organ based. The 

brain is analyzed as a separate organ from the “head and neck,” which must be separately 

analyzed and reported. Every organ has its unique set of KFs and disease patterns. The first 

step in the determination of “normal” requires the learning of a pattern, which in this case 

consists of the signal and spatial KFs of a normal brain.

For medical images, the signal measured by the imaging device is usually invisible to 

humans, and therefore the detected signal must be encoded as visible light, most commonly 

as the relative brightness of pixels or voxels. In general, the greater the magnitude of the 

signal detected by the imaging device, the brighter the depiction of the corresponding voxel 

in the image. Once again, the first step in image analysis is to extract a KF from the image, 

in this case relative voxel brightness. An individual image’s signal pattern is compared to a 

learned normal pattern. If the signal pattern of an unknown case does not match the normal 

pattern, one or more parts of the diagnostic image must be brighter or darker than the 

anatomically corresponding normal tissue.

The specific nature of an abnormal KF is summarized in the Findings section of the 

radiology report, preferably using very simple descriptors, such as “Increased” or 

“Decreased” signal intensity (SI). To reach a specific diagnosis, signal KFs for normal and 

abnormal tissues must be evaluated, though usually only abnormal KFs are reported. Signal 

KFs are modality specific. The SIs of different tissues are unique to that modality. For each 

different signal measured, there is usually a modality specific name (with X-ray images, for 
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example, radiodensity is a name commonly applied to SI, with relative intensities described 

as increased or decreased).

Specific objects within images are initially identified and subsequently characterized on the 

basis of their signal characteristics. The more unique the signal related to an object, the 

simpler this task. For example, ventricles and subarachnoid spaces consist of cerebrospinal 

fluid, which has relatively distinctive SI on computed tomography (CT) and magnetic 

resonance imaging (MRI). Other than being consistent with the signal of the object of 

interest (i.e., cerebrospinal fluid), SI is irrelevant to the evaluation of the spatial features of 

that object. With minimal training, most physicians can easily “extract”, i.e., see and 

distinguish signal KFs on the basis of relative visual brightness.

The second component of the Findings section of a radiology report relates specifically to 

spatial components of image data. Spatial analysis is geometric in nature and commonly 

uses geometric descriptors for spatial KFs. The most important spatial KFs are number, size, 

shape and anatomic location. A prerequisite for the evaluation of these spatial attributes is 

identification of the object to which these descriptors will be applied, beginning with the 

organ of interest.

In the case of the brain, we uniquely use surrogate structures, the ventricles and 

subarachnoid spaces, to evaluate this particular organ’s spatial properties. Due to the fixed 

nature of the adult skull, ventricles and subarachnoid spaces provide an individually 

normalized metric of an individual’s brain size, shape, and position. Fortunately, the 

ventricles and subarachnoid spaces can easily be observed on CT, MRI, or ultrasound and 

their spatial attributes easily learned by instruction and repetitive observations of normal 

examinations.

The second step of pattern recognition—pattern matching—is completely dependent on the 

first step of pattern recognition—pattern learning. Matching is the operative decision-

making step of pattern recognition. In terms of ventricles and subarachnoid spaces, the most 

fundamental spatial pattern discriminator is size, whether or not the ventricles are 

abnormally large or small. If the ventricles and/or subarachnoid spaces are enlarged, the 

differential diagnoses might include hydrocephalus or cerebral atrophy. If they are 

abnormally small, mass effect is suggested, and the differential diagnosis might include 

cerebral edema, tumor, or other space occupying lesion. In any case, a KF extracted from 

any brain scan is the spatial pattern of the ventricles and subarachnoid spaces, this specific 

pattern is matched against a learned, experience-based, normal pattern, and a decision of 

normal or abnormal is made.

When reporting image features, humans tend to use categorical classification systems rather 

than numeric systems. Humans will readily, though not always reliably, classify a light 

source as relatively bright or dark, but only reluctantly attempt to estimate the brightness in 

lumens or candelas. Humans are not good at generating numbers from a chest film, but they 

are very good at classifying it as normal or abnormal. If quantitative image measurements 

are required, radiologists bring additional measurement tools to bear, like a ruler to measure 

the diameter of a tumor, or a computer to calculate its volume. If pushed for a broader, more 
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dynamic reporting range, a radiologist may incorporate a qualitative modifier, such as 

“marked,” to an abnormal KF description to indicate the degree of abnormality.

Interestingly, and of practical importance, human observers tend to report 

psychophysiological observations using a scale of no more than seven. This phenomenon is 

well documented in George Miller’s paper, The Magical Number 7 (6). A comparative scale 

of seven is reflected in the daily use of such adjective groupings as “mild, moderate, severe”; 

“possible, probable, definite”; “minimal, moderate, marked.” If an image feature has the 

possibility of being normal, increased, or decreased, with three degrees of abnormality in 

each direction, the feature can be described with a scale of seven. While there are other 

human observer scales, feature rating scales of from two to seven generally suffice and 

reflect well documented behavior of radiologists (7).

Based on the concept of extracting a limited number of KFs and reporting them with a 

descriptive scale of limited dynamic range, it is relatively straightforward to develop a highly 

structured report-generating tool applicable to diagnostic imaging studies. The relative 

intensity of each imaging modality’s detected signal is a KF, potentially reflecting normal or 

pathological tissue. An accompanying spatial KF of any abnormal signal is its anatomic 

location. A spatial KF of brain images is the size of the ventricles and subarachnoid spaces, 

which reflect the presence or absence of mass effect and/or atrophy.

IMPRESSION = INFERRED DIFFERENTIAL DIAGNOSIS

Medical diagnosis is based upon the concept of differential diagnoses, which consist of a list 

of diseases with similar image findings. A radiographic differential diagnoses is the result of 

the logically consistent matching of KFs extracted from a medical image to specific 

diagnosis. KFs are extracted from medical images, summarized by structured descriptive 

findings as previously described, and a differential diagnostic list consistent with the pattern 

of extracted features is inferred. This inferential form of pattern matching for differential 

diagnosis is reflected in such publications as Gamuts of Differential Diagnosis and StatDx 
(8, 9). These diagnostic tools consist of a list of diseases and a set of matching image KFs.

Differential diagnosis, therefore, is another pattern recognition process based upon the 

matching of extracted KF patterns to specific diseases. A complete radiographic report 

incorporates a list of observed KFs summarized in the FINDINGSFINDINGS and a 

differential diagnosis in the IMPRESSION, which was inferred from the KFs. A normal x-

ray CT report might be:

Findings

• There are no areas of abnormal radiodensity. (Signal features encoded as relative 

light intensity)

• The ventricles and subarachnoid spaces are normal as to size, shape, and 

position. (Spatial features of the organ of interest, the brain)

• There are no craniofacial abnormalities. (Signal/spatial features of another organ)

• There is no change from the previous exam. (Temporal feature)
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Impression

• Normal examination of the head. (Logical inference)

For an abnormal report, one or more of the KF statements must be modified and the 

Impression must include one or more inferred diseases.

Findings

• There is increased radiodensity in the right basal ganglia.

• The frontal horn of the right lateral ventricle is abnormally small (compressed).

• There are no craniofacial abnormalities.

• The lesion was not evident on the previous exam.

Impression

• Acute intracerebral hemorrhage.

The list of useful KFs is limited by the nature of signal and spatial data and is, we believe, 

relatively short. While human inference mechanisms are not fully understood, the final 

diagnostic impression probably reflects rule-based or Bayesian processes, the latter of which 

deal better with the high degree of uncertainty in medicine and take better advantage of prior 

knowledge, such as prevalence of disease in a practice (8).

Less experienced radiologists and radiology trainees typically perform image analysis as 

outlined above, tediously learning and matching normal and abnormal signal and spatial 

patterns, consciously extracting KFs, and then deducing the best matches between the 

observed KFs and memorized KF patterns of specific diseases. This linear intellectual 

process is an example of “thinking slow,” a cognitive process described by Kahneman (10). 

However, when a radiologist is fully trained and has sufficient experience, he/she switches 

from this cognitive mental process to the much quicker “thinking fast,” heuristic mode of 

most professional practitioners in most fields. Most pattern matching tasks take less than a 

second to complete. A skilled radiologist makes the normal/abnormal diagnosis of a chest 

image in less than one second (11).

In his book Outliers, Malcom Gladwell famously concluded that 10,000 hours of training are 

mandatory to function as a professional (12). The specific number has been challenged, of 

course, but it appropriately emphasizes the fact that professionals’ function differently than 

amateurs. They think fast, and, often, accurately. To achieve success at this level, the 

professional needs to have seen and performed the relevant task thousands of times—exactly 

how many thousand, who knows. The neuropsychological processes underlying these “slow” 

and “fast” mental processes are not clear, but it is hypothesized that higher order pattern 

matching processes become encoded in brain structure and eventually allow the “ah hah” 

identification of an “Aunt Minnie” brain stem cavernoma in a fraction of a second on a T1-

weighted MRI image.

However, humans working in this mode do make mistakes related to well-known biases, 

including: availability (recent cases seen), representativeness (patterns learned), and 
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anchoring (prevalence) (13). Other psychophysical factors such as mood and fatigue can also 

affect this process. Slower, cognitive thinking does not have the same faults and biases. The 

two types of decision-making are complementary and often combined, as in the case of a 

radiologist interpreting a case of a rare disease that they have not seen or a case with a 

disease having a more variable KF pattern.

COMPUTER IMAGE ANALYSIS

Whereas humans can analyze analog or digital images, computers can operate only on 

digital or digitized images, both types of which can be defined as before:

I = f m, E x, y, z t

Therefore, computers face the same basic image analysis problem as humans and can 

perform this task similarly. As with human observers, computers can be programmed to 

deconstruct an image in terms of signal, spatial, and temporal content. It is relatively trivial 

to develop and implement algorithms that extract the same image KFs from digital data that 

radiologists extract from analog or digital data. Computers can be trained with pattern 

recognition techniques to match image KFs with normal and/or disease feature patterns in 

order to formulate a differential diagnosis.

A significant difference between human and computer image analysis is the relative strength 

in classifying versus quantifying image features. Humans are very adept at classifying 

observations but can quantify them only crudely. In contrast, quantitative analysis of 

scientific measurements is the traditional forte of computers. Until recently, computers 

tended to use linear algebraic algorithms for image analysis (14), but with the advent of 

inexpensive graphics processing unit hardware and neural network algorithms, classification 

techniques are being widely implemented (15). Each approach has different strengths and 

weaknesses for specific applications, but combinations of the two will offer the best 

solutions for the diverse needs of the clinic.

To illustrate these two computational options for image analysis, let us take the task of 

extracting and reporting the fluid-attenuated inversion recovery (FLAIR) signal KF on brain 

MRI scans (16). A traditional quantitative approach might be based on histogram analysis of 

normal brain FLAIR SIs. After appropriate preprocessing steps, a histogram of SI of brain 

voxels from MRI scans of a normal population can be described by Gaussian distribution 

with preliminary ± 2 SD normal/abnormal thresholds, as for conventional clinical pathology 

tests (17). Those voxels in the >2 SD tail of the distribution can subsequently be classified as 

Increased SI; the voxels <2 SD as Decreased SI; with the remainder of the voxels labeled as 

Normal. By this process, each voxel has a number directly reflecting the measurement of SI 

and a categorical label based on its SI relative to the mean of the distribution of all voxel SIs. 

While useful for many image analysis tasks, this analytical approach has weaknesses in the 

face of noise, which is present on every image. Differentiating signal from noise is difficult 

for these linear models.
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The alternative classification approach requires the labeling, or “annotating,” of brain voxels 

as Increased, Normal, or Decreased FLAIR SI in a training case set. This labeling is often 

performed by human experts and is tedious. This training set is then used to build a digital 

KF pattern of normal and abnormal FLAIR SI. This task can be performed by a 

convolutional neural network of the 3-D U-Net type, using “deep learning” artificial 

intelligence algorithms (18). After validation on a separate case set, this FLAIR “widget” 

can be applied to clinical cases to extract the FLAIR KF. These non-linear, neural network 

classifiers often handle image noise better than linear models, better separating the “chaff 

from the wheat.” Note the fundamental difference of the two approaches. One is qualitative, 

based on the matching of human and computer categorical classification, while the other is 

quantitative, based on the statistical analysis of a distribution of signal measurements.

For most medical images, there is a single signal measured for each image type and, 

therefore, a separate computational algorithm, or “widget,” is needed for each image type or 

modality. For a CT scan of the brain, only a single signal widget is needed to measure or 

classify radiodensity. For a multi-modality MRI examination, not only are signal specific 

pulse sequences required, but signal specific analytic widgets are necessary for FLAIR, T2, 

T1, diffusion-weighted imaging, susceptibility, etc. Regardless, rather than a radiologist’s 

often ambiguous free-text report, the computer derived signal KFs are discrete and easily 

entered into a KF table.

It should be noted that KFs reported in this fashion are associated with only one lesion, and 

this is a significant limitation of this simplistic approach. If there are multiple similar 

appearing lesions from the same disease (metastasis), this limitation is significantly 

mitigated by the additional spatial KF of multiplicity. However, if there are multiple lesions 

from different diseases, separate analysis for each disease must be performed and reported. 

This is a difficult task even for humans, and is, at present, beyond computational techniques.

As with human observers, specific objects within images, such as a tumor, are detected and 

partially characterized on the basis of their abnormal SI. Lesions that have no abnormal 

signal are rare and difficult to identify. Once a computer has identified an object by its signal 

characteristics, whether by classification or numeric methods, the spatial features of the 

object must also be extracted. This requires spatial operators that combine voxels of related 

signal characteristics into individual objects that other algorithms must then count, measure, 

spatially describe, and anatomically localize. These KFs can be entered into the spatial 

components of a KF table.

As with radiologists, organ-based analysis is advantageous and easily performed by 

computers. Requirements for the evaluation of whole organ spatial patterns are “normal” 

anatomic atlases and computer algorithms for identifying specific organs and comparing 

their spatial properties to those of normal atlas templates. Remarkable progress has been 

made over the past 10 years in the development and use of digital, three-dimensional 

anatomic templates (19). Typically, tissue segmentation algorithms are applied, oftentimes 

relying on machine learning models. Atlas-based deformable registration methods then 

apply spatial transformations to the image data to bring anatomically corresponding regions 

into spatial co-registration with the normal atlas. There are numerous sophisticated software 
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programs that perform these functions for evaluating the spatial properties of an organ or 

lesion (20, 21). The output of these algorithms are the same spatial KFs reported by 

radiologists, including the number, size, and shape of organs and lesions and their anatomic 

locations.

The computer, by extracting brain image KFs and reporting them numerically or 

categorically, can generate a highly structured Findings section of a radiology report that is 

directly comparable to that generated by a radiologist. The computer’s extracted, discrete 

KFs can also be entered into a computational inference engine, of which there are many. 

One could use simple, naïve Bayesian networks, which structurally have an independent 

node for every disease with conditional nodes for each KF (22,23). These tools include look-

up tables with rows listing all possible diagnoses, columns for all extracted KFs, and cells 

containing the probabilities of KF states conditioned on each covered disease. Given a set of 

KFs of a clinical examination, a Bayesian network calculates the probability of each disease 

and ranks them into the differential diagnoses that can be incorporated into the “Impression” 

section of the computer report. This is a form of computational pattern recognition resulting 

from best matches of particular KF patterns with a specific diagnosis.

The preceding approach to computer image analysis closely resembles that of the cognitive, 

slow thinking, human. While the process is relatively transparent and comprehensible, it can 

be computationally challenging. But as with humans, there are alternative, faster thinking, 

heuristic computational methods, most commonly based on neural networks, that are a 

revolution in digital image analysis. The algorithms are usually non-linear classifiers that are 

designed to output a single diagnosis, and nothing else. These programs are trained on 

hundreds or thousands of carefully “annotated” cases, with and without the specified 

disease. No intermediate states or information are used or generated. In other words, there 

are no KFs that might inform the basis of a diagnosis, nor is there quantitative output to 

provide more specific information about the disease or to guide clinical management. These 

“black box” systems resemble human professionals thinking fast, but with little obvious 

insight. However, an experienced radiologist incorporates thousands of these heuristic black 

boxes into his/her decision-making, many of which incorporate nonimage data from the 

electronic medical record, local practice mores, the community, and environment.

For a computer algorithm to mimic the radiologist in daily practice, it too must incorporate 

thousands of widgets and vast quantities of diverse data. Such a task may not be impossible, 

but it does not seem eminent. Furthermore, a radiologist can, when necessary, switch from 

heuristics to the deliberative mode and “open” the box to explain why they made a particular 

diagnosis. This often involves the explication of associated KFs (mass effect) that may 

simultaneously be important for clinical management (decompression).

CONCLUSION

A computer using contemporary computational tools functionally resembling human 

behavior could, in theory, read in image data as it comes from the scanner, extract KFs, find 

matching diagnoses, and integrate both into a standardized radiology report. The computer 

could populate the report with additional quantitative data, including organ/lesion 
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volumetrics and statistical probabilities for the differential diagnosis. We predict that within 

10 years this conjecture will be reality in daily radiology practice, with the computer 

operating at the level of subspecialty fellows. Both will require attending oversight. A 

combination of slow and fast thinking is important for radiologists and computers.

Abbreviations:

KF key feature

SI signal intensity

CT computed tomography

MRI magnetic resonance imaging

FLAIR fluid-attenuated inversion recovery
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