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A B S T R A C T   

We assessed the geographic variation in socio-demographics, mobility, and built environmental factors in 
relation to COVID-19 testing, case, and death rates in New York City (NYC). COVID-19 rates (as of June 10, 
2020), relevant socio-demographic information, and built environment characteristics were aggregated by ZIP 
Code Tabulation Area (ZCTA). Spatially adjusted multivariable regression models were fitted to account for 
spatial autocorrelation. The results show that different sets of neighborhood characteristics were independently 
associated with COVID-19 testing, case, and death rates. For example, the proportions of Blacks and Hispanics in 
a ZCTA were positively associated with COVID-19 case rate. Contrary to the conventional hypothesis, neigh
borhoods with low-density housing experienced higher COVID-19 case rates. In addition, demographic changes 
(e.g. out-migration) during the pandemic may bias the estimates of COVID-19 rates. Future research should 
further investigate these neighborhood-level factors and their interactions over time to better understand the 
mechanisms by which they affect COVID-19.   

1. Introduction 

After the first detected COVID-19 case in New York City (NYC) on 
March 1, 2020, the city rapidly became the first epicenter of disease in 
the United States. As of April 2020, at its peak the NYC Department of 
Health and Mental Hygiene (NYCDOHMH) reported 15 days in that 
period with over 6000 new confirmed cases of COVID-19 and over 500 
deaths (New York City Department of Health and Mental Hygiene, 
2020a). There is emerging evidence that marginalized (i.e. low-income) 
and vulnerable (i.e. racial and ethnic minority) populations are dispro
portionately affected by COVID-19 (Webb Hooper et al., 2020; Alsan 
et al., 2020). Black and Hispanic/Latinx people in the U.S. experienced 
higher case rates and death rates compared to Whites, and there was a 
clear socio-demographic gradient in COVID-19 infection by income and 
poverty (New York University Furman Center, 2020; Price-Haywood 
et al., 2020; Raifman and Raifman, 2020). Occupational characteristics 
were associated with risk for the disease as well as secondary trans
missions; e.g., workers in the healthcare sector and other essential 

service occupations were at higher risk for infection, due to frequent 
interactions with possibly infected individuals, and being in close 
quarters for extended periods of time with other workers (Baker et al., 
2020). In addition to the individual-level characteristics, environmental 
factors in urban contexts such as urban design, housing density, and 
transportation systems can impact the transmission of infectious dis
eases (Harlem, 2020). Highly populated neighborhoods and 
multi-family housing structures tend to increase person-to-person con
tacts, which in turn can exacerbate community transmission (Rocklov 
and Sjodin, 2020; Ghinai et al., 2020). The frequent use of public 
transportation systems has also been noted as a potential risk factor of 
COVID-19 in urban areas (Zheng et al., 2020). 

Recent analytic studies looking at associations between neighbor
hood characteristics and the geographic distribution of COVID-19 have 
focused on socio-demographic factors, but have not explored the 
contribution of environmental factors. In addition, as SARS-CoV-2 
testing and COVID-19 case/death rates show geographical clustering 
with high spatial autocorrelation (Kang et al., 2020), it is critical to 
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properly adjust for such spatial similarity in the modeling stage. Lastly, 
with the advent of COVID-19, the socio-demographic landscapes in NYC 
changed due to residents moving out of NYC in response to the 
pandemic. On average, 5% of NYC residents left the city between March 
1 and May 1, but the proportion of residents who left the city was so
cially patterned and varied substantially across neighborhoods (Quealy, 
2020). The COVID-19 rates provided by NYCDOHMH are based on 
estimated populations from census data before the pandemic; thus, the 
SARS-CoV-2 testing and COVID-19 case/death rates are likely to be 
biased estimates. To the best of our knowledge, none of the recent 
studies on socio-demographic predictors of COVID-19 cases, testing, or 
hospitalizations have incorporated data on NYC’s population changes 
across neighborhoods, and few have accounted for spatial dependencies 
that could bias estimates. In this study, we examine the geographic 
variation in socio-demographic characteristics, migration patterns, 
mobility, and built environmental factors in NYC in relation to 
COVID-19 rates, using spatial analytic methods to address potential is
sues of spatial autocorrelation. 

2. Methods 

2.1. Data 

COVID-19 statistics for testing, positive cases, and death counts of 
New York City residents by residential ZCTA (ZIP Code Tabulation Area) 
were obtained from the New York City Department of Health and Mental 
Hygiene on June 10, 2020 (New York City Department of Health and 
Mental Hygiene, 2020c). The NYCDOHMH reports data using modified 
ZCTAs, with certain boundaries modified to combine areas with small or 
no populations to allow for stable estimates of COVID-19 rates. After 
combining 34 such ZCTAs, there were a total of 177 modified ZCTAs 
(referred to simply as ZCTAs from now on) with valid COVID-19 data 
included in this analysis. The three outcomes – number of SARS-CoV-2 
tests, COVID-19 cases, and deaths – were normalized by the popula
tion of their ZCTAs and used as outcomes. The total population by ZCTA 
was obtained from the 2018 American Community Survey 5-year esti
mates. As our method for spatial regression analysis can only account for 
areas with physically-touching neighbors, one ZCTA with no neigh
boring areas (10044: Roosevelt Island) was excluded from the analysis. 
Another island in NYC, Rikers Island, is included in the analysis as it is 
incorporated into ZCTA 11370, which contains land in Queens (Astoria 
Heights) that shares boundaries with neighboring ZCTAs. 

Pre-pandemic socio-demographic characteristics were calculated by 
ZCTA from the 2018 American Community Survey 5-year estimates, 
including age, sex, race/ethnicity, median income, household size, 
occupation, and commuting characteristics (U.S. Census Bureau, 2020). 
Specifically, variables included in the present analysis as predictors of 
COVID-19 outcomes were: male-to-female ratio (number of mal
e/number of female); percentages of the population under 18 (used as 
reference), 18–44, 45–64, 65–74, and over 75 years; percentages of 
non-Hispanic White (used as reference), Black, Asian, others, and His
panic populations; median household income; average household size; 
percentages involved in essential service occupations (firefighting, law 
enforcement, building and ground cleaning and maintenances, food 
preparation and serving related, and personal care) and health-related 
occupations (healthcare practitioners and technical occupations, 
healthcare support services); and percentage commuting via public 
transit. The socio-demographic variables were estimates from 2014 to 
2018 surveys, and therefore the data may not fully reflect characteristics 
during the pandemic. Socio-demographic variables expressed as pro
portions were re-scaled such that a 1-unit change reflected the 
inter-quartile range (IQR), that is, the difference between the 75th and 
25th percentile ZCTA. 

A zoning map for NYC was obtained from the NYC Department of 
City Planning (New York City Department of City Planning, 2020), and 
each ZCTA’s percentages of land assigned to low and high-density 

residential zonings were calculated using Quantum GIS v3.10. (QGIS 
Development Team, Open Source Geospatial Foundation Project). Res
idential zones R1-R5 are classified as low-density zones, predominantly 
consisting of detached or semi-detached single- and two-family housing. 
Zones R6-R10 are classified as higher-density residential zones, and 
allow for high-rise multifamily housing (New York City Department of 
City Planning, 2018). 

Lastly, in order to account for residents moving out of the city during 
the COVID-19 pandemic, a dataset from cellular phone usage was uti
lized as a proxy measure of population changes. The data from cellular 
phone towers captures the mobility and migration patterns of a wide 
range of residents, as the towers interact with all types of cellular devices 
even when those devices are in stand-by and calls are not in progress. 
More than 1 million cellular devices that interacted with cellular towers 
in NYC were analyzed, and the percentage change in registered cellular 
phone signals between March 1, 2020 and May 1, 2020 were aggregated 
into census tracts by Teralytics Inc. (New York, NY). These data were 
provided to our research team by The New York Times (Quealy, 2020). 
The census-tract-level data were converted to ZCTAs with the help of 
Crosswalk Files provided by the U.S. Department of Housing and Urban 
Development. For ZCTAs containing area from multiple census tracts, 
we calculated a weighted average of the component census tracts’ 
population change rates. Weights were determined by calculating the 
proportion of residential addresses in a ZCTA contained within each 
given census tract (U.S. Department of Housing and Urban Develop
ment). The resulting ZCTA-level percent decreases in residential popu
lation was conceptualized as an “out-migration” index, and this metric 
was included in our analyses as a covariate. 

2.2. Statistical analysis 

Spatial autocorrelation indicates geographical interdependencies 
among observations in data. When spatial autocorrelation is detected, 
the major assumptions of uncorrelated error terms and independence of 
observations are violated. This can lead to biased parameter estimates, 
necessitating adjustment for spatial clustering (LeSage and Pace, 2009; 
Ward and Gleditsch, 2019). Therefore, we first tested for spatial auto
correlations of all variables using the Global Moran’s I. In this study, a 
row-standardized binary contiguity spatial weight matrix with 
first-order queen’s criteria was employed, which is a conventional 
spatial matrix for areal data (Haining, 1991). A pseudo p-value of the 
Global Moran’s I for each variable was estimated from a Monte Carlo 
simulation of 999 random iterations. Second, spatially adjusted 
Spearman correlations were tested to evaluate bivariate correlations 
between study variables and COVID-19 rates based on a spatial adjust
ment method proposed by Clifford and Richardson (Clifford and 
Richardson, 1985; Duncan et al., 2011). 

After evaluating spatial autocorrelation for each variable of interest, 
we tested regression models for each exposure variable after adjusting 
for both the spatial autocorrelation and the out-migration index. This set 
of regression models provides unbiased crude associations between 
neighborhood-level factors and COVID-19 rates, adjusting for the po
tential confounding due to out-migration. Lastly, a set of spatially 
adjusted multivariable models with all neighborhood characteristic 
variables were specified. Because the neighborhood-level socio-de
mographic and built-environmental factors are interconnected (Leal 
et al., 2012), we tested variance inflation factors (VIF) for each variable 
to check the degree of multicollinearity (Song et al., 2017). We 
employed a cut-off point of 10, considering the sample size of the 
analysis and underlying correlations between socio-demographic char
acteristics (Craney and Surles, 2002). 

In the model with COVID-19 case rate as the outcome, we included 
testing rate as a covariate because the case rate is associated with the 
number of tests conducted in a ZCTA. Likewise, the case rate was 
included as a covariate in the model with COVID-19 death rate as the 
outcome. The multivariable models were adjusted for spatial autocor
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relation contingent on Lagrange Multiplier (LM) test results. The LM 
tests evaluated spatial error and lag dependences from non-spatial or
dinary least squares (OLS) models (LeSage and Pace, 2009). Based on the 
test results, spatial error models or spatial lag models were developed to 
account for spatial autocorrelation (LeSage and Pace, 2009; Ward and 
Gleditsch, 2019). The spatial error model equation can be represented as 
follows: 

y= βX + λWε + μ  

Where y is the dependent variable; β is the vector of the regression 
parameter associated with the matrix of observations on the covariates 
X; λ is the spatial autoregressive coefficient that indicates the extent to 
which the spatial component of the errors is correlated with each other; 
W is the given spatial weight matrix; and μ is an independent error term. 

The spatial lag model considered is given by: 

y= ρWy + βX + ε  

where y is the dependent variable; ρ is the spatial autoregressive coef
ficient for the lagged dependent variable matrix Wy (W is the given 
spatial weight matrix); β is the vector of coefficients of regression pa
rameters associated with the independent variable matrix X; and ε is an 
error term that is assumed to be independent and identically distributed. 
In the spatial lag model, therefore, spatial autocorrelation is introduced 
in the form of the spatially dependent variable, as the outcomes in one 
place predict an increased likelihood of similar outcomes in neighboring 
places. 

The Akaike Information Criterion was examined for goodness-of-fit 
(Bozdogan, 1987). All statistical analyses were conducted in R statisti
cal software version. 

3. Results 

Maps showing COVID-19 testing, case and death rates and selected 

Fig. 1. COVID-19 testing, case, death rates (/100,000) and socio-demographics in New York city by ZCTA  
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socio-demographic characteristics by ZCTA are provided in Fig. 1. 
Table 1 provides descriptive statistics and the spatial autocorrelation 
statistic (Moran’s I) for each study variable. The city-wide SARS-CoV-2 
testing rate was 9569.9 per 100,000 population (standard deviation 
across ZCTAs (SD): 2641.5), and the COVID-19 case and death rates 
were 2286.8 (SD: 878.0) and 188.7 (SD: 102.0) per 100,000 respec
tively. The Moran’s I statistics show strong spatial autocorrelation of all 
variables of interest, indicating the violation of independence of obser
vations. For example, the COVID-19 case rate has high spatial homo
geneity (Moran’s I = 0.75, p-value<0.01). 

The spatially adjusted Spearman test illustrates the rank-order cor
relations between COVID-19 rates and variables of interest (Table 2). 
For example, a high percentage of the population in health-related oc
cupations is highly correlated with SARS-CoV-2 testing (rho = 0.41), 
case rate (rho = 0.62), and death rate (rho = 0.50). The out-migration 
index was associated with lower testing (rho = − 0.29), case (rho =
− 0.57) and death (rho = − 0.40) rates, meaning that ZCTAs that lost 
more of their population during the pandemic had lower rates for all 
three outcomes assessed. 

Bivariate and multivariable model estimates for each outcome are 
provided in Table 3. The bivariate analyses indicated predictors of each 
COVID-19 rate after adjusting for spatial autocorrelation and out- 
migration. The Moran’s I values for the non-spatial multivariable OLS 
regression residuals showed evidence of spatial autocorrelation in each 
model, confirming the need for a spatial error model or a spatial lag 
model. The LM tests of OLS models indicate that spatial lag models 
would be better-fitting models for SARS-CoV-2 testing and case rates, 
whereas a spatial error model could be applied for COVID-19 death rate 
(Florax et al., 2003). Lastly, the VIF tests for each multivariable OLS 
model detected high multicollinearity of one independent variable: the 

percentage of people in the ZCTA working service jobs (VIF > 10). We 
therefore fitted spatial lag and error models without that variable, and 
the results remained stable in terms of the size and confidence interval of 
each coefficient (data not shown). 

3.1. SARS-CoV-2 test rate 

From the multivariable spatial lag model (Table 3), percentages of 
people aged over 75 years (β = 1232.6, CI: [515.9, 1949.2]), non- 
Hispanic people of “other” races (American Indian, Alaska Native, Pa
cific Islander, some other race, and two or more races: β = 230.9, CI: 
22.2, 439.6]), median household income (β = 2205.4, CI: [375.6, 
4035.2]), workers in essential service occupations (β = 2237.5, CI: 
[993.9, 3481.2]), and health-related occupations (β = 896.9, CI: [92.8, 
1701.0]) were positively associated with SARS-CoV-2 testing rate. The 
out-migration index score was not associated with ZCTA-level test rates. 
Percentages of people aged 45–64 and 65–74 (β = − 1054.2, CI: 1799.3, 
− 309.2]; β = − 891.5, CI: [1742.5, − 40.5]), non-Hispanic Asians (β =
− 948.0, CI: (− 1589.9, − 306.1]), average household size (β = − 1802.1, 
CI: [-3402.1, − 202.1]), commuters using transit (β = − 1239.8, CI: 
[-2109.5, − 370.2]), and average household size (β-1802.1, CI: − 3402.1, 
− 202.1]) in ZCTAs show negative relationships with the SARS-CoV-2 
testing rate. For example, for percent of the population employed in 
the service industry, comparing the 75th to the 25th percentile ZCTA 
(the interquartile range) shows a +2238 per 100,000-person difference 
in the testing rate, after adjusting for covariates. 

3.2. COVID-19 case rate 

Share of male population compared to female (β = 75.8, CI: [5.1, 
146.6]), percentages of non-Hispanic Blacks (β = 248.7, CI: [136.0, 
361.4]), Hispanics (β = 368.9, CI: [211.2, 526.6]), and low-density 
housing zone areas (β = 5.6, CI: [2.6, 8.7]) were positive predictors of 
ZCTA-level COVID-19 positive case rate (Table 3). The out-migration 
index score was positively associated with ZCTA-level case rates (β =
11.5, CI: [0.2, 22.8]). 

3.3. COVID-19 death rate 

Percentages of people aged 18–44 and 45–64 (β = − 37.3, CI: [-67.8, 
− 6.7]; β = − 22.9, CI: [-44.9, − 0.8]) and average household size (β =
− 54.0, CI: [-102.2, − 5.8]) were negatively associated with COVID-19 
death rate. Percentages of non-Hispanic Asians (β = 22.7, CI: [3.1, 
42.4]) and commuters using transit (β = 48.3, CI: [20.9, 75.7]) were 
positive predictors of COVID-19 death rate. The out-migration index 
score was not associated with ZCTA-level COVID-19 death rates. 

4. Discussion 

The aim of this study was to examine social and environmental de
terminants of COVID-19 in NYC. To the best of our knowledge, this is the 
first study to address the potential bias due to residents moving out of 
the city at differential rates across neighborhoods. News-media reported 
that out-migration varied strongly by neighborhood socio-demographic 
characteristics, and our analysis found that neighborhood level out- 
migration, as measured by cell phone derived data, was also associ
ated with COVID-19 case rates. As reported in the Supplemental table 
(Table S1), there appeared to be modest confounding by out-migration; 
the sizes of coefficients for parameter estimates differed between models 
that did and did not adjust for the out-migration. After adjustment for 
out-migration, we identified potential drivers of SARS-CoV-2 test, case, 
and death rates, including a ZCTA’s composition by sex, age, race/ 
ethnicity, income, and occupational risks. Specifically, our results 
showed that higher percentages of residents who were Black and His
panic were positively associated with COVID-19 case rates. We also 
confirmed that neighborhoods with higher percentages of essential 

Table 1 
Descriptive statistics and global spatial autocorrelation (N = 176, as of October 
6, 2020).   

Mean (SD) Range Moran’s 
I 

P- 
valueb 

SARS-CoV-2 testing 
(/100,000) 

9569.6 
(2641.5) 

5136–32,347 0.33 0.001 

COVID-19 cases 
(/100,000) 

2286.8 
(878.0) 

540.6–4418.3 0.75 0.001 

COVID-19 percent 
positive (%) 

22.9 (6.4) 9.0–33.7 0.77 0.001 

COVID-19 deaths 
(/100,000) 

188.7 
(102.0) 

0.0–628.4 0.41 0.001 

Male to female ratio (%) 92.2 (10.1) 69.0–145.8 0.30 0.001 
% under 18 years 20.9 (5.5) 6.3–36.2 0.67 0.001 
% 18–44 years 40.9 (8.3) 23.4–74.4 0.67 0.001 
% 45–64 years 24.9 (3.6) 11.8–34.0 0.55 0.001 
% 65–74 years 8.0 (2.5) 0.5–14.4 0.46 0.001 
% over 75 years 6.3 (2.8) 0.0–14.7 0.42 0.001 
% non-Hispanic Black 19.8 (23.9) 0.4–90.5 0.73 0.001 
% non-Hispanic Asian 14.6 (14.0) 0.1–72.6 0.67 0.001 
% non-Hispanic others 3.2 (3.1) 0.4–28.9 0.45 0.001 
% Hispanic 26.1 (19.5) 1.1–75.8 0.76 0.001 
Median household 

income 
73.5K 
(36.6K) 

21.1K− 250K 0.71 0.001 

Average household size 2.6 (0.5) 1.6–4.0 0.71 0.001 
% service jobs 16.0 (7.2) 0.8–33.3 0.72 0.001 
% health-related jobs 10.8 (4.2) 2.6–21.8 0.73 0.001 
% pre-pandemic transit 

commuters 
53.1 (15.0) 12.3–85.3 0.77 0.001 

% low density housing 
zones 

38.8 (35.9) 0.0–98.7 0.77 0.001 

% high density housing 
zones 

29.4 (30.0) 0.0–96.2 0.71 0.001 

Out-migration indexa 7.5 (8.5) 0.0–37.2 0.80 0.001 

a % changes in unique cellular phone signals between March 1, 2020 and May 1, 
2020. 
b p-value for global Moran’s I. 
Boldface indicates statistical significance. 
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service and healthcare-related workers had increased SARS-CoV-2 
testing and death rates. These findings are consistent with recent 
studies on the social determinants of COVID-19 (New York City 
Department of Health and Mental Hygiene, 2020a; Webb Hooper et al., 
2020; New York University Furman Center, 2020; Baker et al., 2020). 

Contrary to the existing findings (Harris, 2020), higher 
pre-pandemic transit ridership in a neighborhood was not associated 
with higher COVID-19 case or death rates. Subway use has decreased 
dramatically after the declaration of a local state of emergency (Sy et al., 
2020), and this null association may reflect the reduced overall ridership 
during the pandemic. Another possible explanation could be increased 
vigilance in transit riders – and subsequent higher levels of 
health-promoting behaviors such as physical distancing and 
mask-wearing – due to public awareness of the risk for infection in 
enclosed spaces. Additionally, the NYC Metropolitan Transportation 
Authority (MTA) worked to mitigate COVID-19 transmission risk by 
regularly disinfecting all subways and buses, installing hand sanitizers in 
all stations, and marking six feet of distance on subway platforms 
(Goldbaum 2020) (New York City Office of the Mayor, 2020). 

Our results indicated that neighborhoods zoned for predominantly 
low-density housing had higher COVID-19 case rates than those zoned 
for predominantly high-density housing. While this is not consistent 
with the conventional hypothesis (Rocklov and Sjodin, 2020), there are 
inconsistent findings regarding the association between population 
density and COVID-19 rates. Recent studies on neighborhood-level 
factors in Chinese and European cities reported that population den
sity was negatively or not associated with COVID-19 (Liu, 2020; Gerli 
et al., 2020). One explanation could be the differential application of 
mitigation strategies. Early in the pandemic the Center for Disease 
Control and Prevention and the NYCDOHMH announced guidelines for 
maintaining safe operations of multifamily housing, including closing 
public areas in the building, disinfecting common areas, providing hand 
sanitizer in common areas, and mandatory mask-wearing (Centers for 
Disease Control and Prevention, 2020; New York City Department of 
Health and Mental Hygiene, 2020b). A myriad of high-rise residential 
buildings in NYC voluntarily implemented such recommendations (Amy 
Plitt, 2020), and such vigilance may be associated with the relatively 
low COVID-19 case rates in neighborhoods zoned for high-density 

residential buildings. Visual inspection of the map (Fig. 1) shows that 
areas with the highest percentage of low-density housing are located on 
the periphery of the city. It is possible that such a geographic location 
could lead to lower access to healthcare and social support, and subse
quent higher COVID-19 risk despite any protections conferred by living 
in low-density housing (Ji et al., 2020). 

There are limitations in this analysis. First, the city’s COVID-19 
testing and case data are not necessarily representative of the underly
ing populations at risk or experiencing COVID-19 infection in their 
ZCTA. Of note, until early May the NYC DOHMH discouraged people 
with mild and moderate symptoms from being tested due to limited 
testing resources. Therefore, these reported rates are subject to potential 
selection/sampling bias as well as misclassification. To illustrate, NYC 
overall is 52% female and 48% male (U.S. Census Bureau, 2020), but the 
testing breakdown by sex was 56% female and 44% male. Because 
COVID-19 testing and case data did not come from a randomly sampled 
or representative population, our analyses may be confounded by the 
skewedness of the underlying data. However, the COVID-19 testing, 
case, and death rates from the DOHMH were the best and only available 
data to estimate population-level COVID-19 in NYC. Second, this anal
ysis is susceptible to many common problems in neighborhood-level 
analyses. It is susceptible to the ecological fallacy: that the associa
tions found in aggregated data may not translate to corresponding as
sociations at the individual level. Additionally, in ecological studies 
measurement errors in the predictor variables can bias results away from 
the null (Brenner et al., 1992). Our unit of analysis, ZCTA, and similar 
geographic boundaries can be subject to the modifiable area unit 
problem (MAUP) – potential bias due to the artificial aggregation of 
point-based data (Wong, 2009). Third, there is a temporal mismatch 
between the COVID-19 statistics and the socio-demographic data used in 
this analysis. COVID-19 data were retrieved on June 10, 2020, whereas 
the American Community Survey data are estimates from a 5-year sur
vey conducted between 2014 and 2018. Fourth, the analysis is also 
susceptible to potential residual confounding, such as by the uneven 
distribution of underlying health conditions by neighborhood. For 
example, chronic respiratory and cardiovascular diseases can increase 
the risk for COVID-19 death (Jordan et al., 2020), and may also be 
associated with neighborhood conditions, but such measures were not 

Table 2 
Spearman correlation between ZCTA level socio-demographics and COVID-19 rates (N = 176).   

SARS-CoV-2 Test Rate COVID-19 Case Rate COVID-19 Death Rate 

rs P-value Spatially 
Adjusted 
P-valueb 

rs P-value Spatially adjusted P-valueb rs P-value Spatially adjusted P-valueb 

Male to female ratio (%) 0.01 0.92 0.95 − 0.15 0.05 0.13 0.04 0.63 0.71 
% under 18 years 0.23 <0.01 0.10 0.58 <0.01 <0.01 0.42 <0.01 <0.01 
% 18–44 years − 0.38 <0.01 <0.01 − 0.52 <0.01 <0.01 − 0.35 <0.01 <0.01 
% 45–64 years 0.13 0.08 0.29 0.30 <0.01 0.07 0.08 0.28 0.53 
% 65–74 years 0.17 0.03 0.12 0.07 0.37 0.61 0.02 0.72 0.80 
% over 75 years 0.22 <0.01 0.03 0.09 0.26 0.48 0.12 0.10 0.24 
% non-Hispanic White − 0.18 0.02 0.17 − 0.55 <0.01 <0.01 − 0.57 <0.01 <0.01 
% non-Hispanic Black 0.24 <0.01 0.04 0.45 <0.01 <0.01 0.47 <0.01 <0.01 
% non-Hispanic Asian − 0.28 <0.01 0.03 − 0.31 <0.01 0.06 − 0.26 <0.01 0.05 
% non-Hispanic others − 0.26 <0.01 0.01 − 0.25 <0.01 0.05 − 0.13 0.09 0.23 
% Hispanic 0.28 <0.01 0.03 0.45 <0.01 <0.01 0.47 <0.01 <0.01 
Median household income − 0.24 <0.01 0.08 − 0.49 <0.01 <0.01 − 0.65 <0.01 <0.01 
Average household size 0.22 <0.01 0.12 0.62 <0.01 <0.01 0.39 <0.01 <0.01 
% service jobs 0.28 <0.01 0.04 0.59 <0.01 <0.01 0.61 <0.01 <0.01 
% health-related jobs 0.41 <0.01 <0.01 0.62 <0.01 <0.01 0.50 <0.01 <0.01 
% pre-pandemic transit commuters − 0.21 <0.01 0.13 − 0.21 <0.01 0.28 0.14 0.06 0.32 
% low density zones 0.24 <0.01 0.10 0.50 <0.01 <0.01 0.24 <0.01 0.11 
% high density zones − 0.12 0.10 0.37 − 0.21 <0.01 0.25 0.16 0.04 0.26 
Out-migration indexa − 0.29 <0.01 <0.07 − 0.57 <0.01 <0.01 − 0.40 <0.01 <0.01 
Testing rate – – – 0.78 <0.01 <0.01 0.51 <0.01 <0.01 
Case rate – – – – – - 0.71 <0.01 <0.01 

a % changes in unique cellular phone signals between March 1, 2020 and May 1, 2020. 
b P-value of Spearman correlation test accounting for spatial autocorrelation. 
Boldface indicates statistical significance. 
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incorporated in this analysis due to lack of available data. Lastly, the 
cellular phone data-based estimates of out-migration provided by The 
New York Times may not fully capture people’s movement in and out of 
the city, since phone usage may systematically differ from actual 
mobility of the residents in corresponding ZCTA. 

5. Conclusions 

This study provides important information on neighborhood-level 
factors and their association with COVID-19, in the context of a large 
metropolitan city with a high burden of COVID-19 in the United States. 
In addition to socio-demographic characteristics like neighborhood- 
level distributions of sex, age, and race/ethnicity, we must also focus 
on the impacts of the built environment on COVID-19 transmission and 
mortality. Future research should emphasize interactions between 
health behaviors (i.e. social distancing and commuting behaviors) and 
built environments in order to shed light on the environmental de
terminants of COVID-19. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.healthplace.2021.102539. 

Table 3 
Crude and multivariable estimations of the relationships (N = 176).   

Testing rate (Spatial Lag Model) Case rate (Spatial Lag Model) Death rate (Spatial Error Model) 

Crude Modelsa 

Male to female ratio (%) 38.1 (− 353.5, 429.7) 45.9 (− 30.3, 122.0) ¡4.9 (-33.4, -3.1) 
% 18–44 years ¡780.9 (-1295.9, -265.8) ¡123.9 (-225.6, -22.1) ¡35.3 (-56.9, -13.7) 
% 45–64 years 5.9 (− 461.8, 473.5) − 31.2 (− 122.3, 59.9) − 9.8 (− 29.6, 10) 
% 65–74 years 569.6 (110.5, 1028.7) 7.4 (− 82.5, 97.3) 19.5 (0.1, 38.8) 
% over 75 years 806 (409.2, 1202.9) 62.5 (− 16.1, 141.0) 36 (19.7, 52.2) 
% non-Hispanic Black − 48.4 (− 441.6, 344.8) 93 (15.2, 170.7) 27.6 (9.9, 45.4) 
% non-Hispanic Asian ¡561.9 (-1019.5, -104.3) ¡92.3 (-182.1, -2.4) − 7.7 (− 28.3, 12.8) 
% non-Hispanic others − 147.7 (− 342.4, 47) − 6.1 (− 44.2, 31.9) − 1.7 (− 9.9, 6.6) 
% Hispanic 86.2 (− 408.6, 581) 160.5 (59.8, 261.3) 29.2 (6.5, 51.9) 
Median household incomea 56.7 (− 899.5, 1012.9) ¡311.3 (-500.5, -122.1) ¡117.6 (-157.4, -77.9) 
Average household size − 293.2 (− 1183.7, 597.4) 299.7 (121.7, 477.7) − 4.5 (− 41.6, 32.7) 
% service jobs 167.4 (− 417.2, 752) 241.4 (124.4, 358.4) 54.9 (31.9, 77.9) 
% health-related jobs 447.1 (− 126.2, 1020.4) 178.2 (62.9, 293.4) 42.8 (18.5, 67.1) 
% pre-pandemic transit commuters ¡831.5 (-1387.1, -275.9) − 56.6 (− 162.8, 49.7) 24.5 (− 1.3, 50.3) 
% low density housing zones 2.8 (− 8.8, 14.3) 1.4 (− 0.9, 3.7) 0 (− 0.5, 0.5) 
% high density housing zones − 6.6 (− 18.3, 5) − 0.9 (− 3.1, 1.4) 0.4 (− 0.1, 1.0) 
Testing rate – 0.1 (0.08, 0.13) – 
Case rate – - 0.09 (0.07, 0.11)  

Multivariable Models 
Male to female ratio (%) 441.2 (− 12.6, 895.0) 75.8 (5.1, 146.6) − 5.2 (− 18.4, 8.0) 
% 18–44 years − 842.1 (− 1851, 166.8) − 104.1 (− 260.4, 52.2) ¡37.3 (-67.8, -6.7) 
% 45–64 years ¡1054.2 (-1799.3, -309.2) − 79.1 (− 196.2, 38.0) ¡22.9 (-44.9, -0.8) 
% 65–74 years ¡891.5 (-1742.5, -40.5) 9.8 (− 122.6, 142.2) − 6.5 (− 30.9, 17.9) 
% over 75 years 1232.6 (515.9, 1949.2) 61.8 (− 51.6, 175.3) 19.6 (− 1.6, 40.8) 
% non-Hispanic Black − 353.3 (− 1081.6, 375.1) 248.7 (136.0, 361.4) 13.7 (− 9.4, 36.8) 
% non-Hispanic Asian ¡948.0 (-1589.9, -306.1) 29.9 (− 70.9, 130.6) 22.7 (3.1, 42.4) 
% non-Hispanic others 230.9 (22.2, 439.6) 14.4 (− 18.3, 47.2) 3.9 (− 2.3, 10.2) 
% Hispanic − 189.1 (− 1167.6, 789.4) 368.9 (211.2, 526.6) − 2.7 (− 34.3, 28.8) 
Median household incomeb 2205.4 (375.6, 4035.2) − 263.3 (− 549.4, 22.7) − 17.0 (− 71.1, 37.0) 
Average household size ¡1802.1 (-3402.1, -202.1) 132.7 (− 116.9, 382.3) ¡54.0 (-102.2, -5.8) 
% service jobs 2237.5 (993.9, 3481.2) − 47 (− 245.5, 151.6) 18.3 (− 17.8, 54.5) 
% health-related jobs 896.9 (92.8, 1701.0) − 16.1 (− 142.8, 110.5) − 4.1 (− 28.2, 19.9) 
% pre-pandemic transit commuters ¡1239.8 (-2109.5, -370.2) − 29.8 (− 164.7, 105.2) 48.3 (20.9, 75.7) 
% low density housing zones − 5.1 (− 24.6, 14.3) 5.6 (2.6, 8.7) 0.2 (− 0.4, 0.7) 
% high density housing zones − 5.8 (− 24.7, 13) − 1.7 (− 4.6, 1.2) − 0.1 (− 0.7, 0.4) 
Out-migration indexc − 29.9 (− 102.2, 42.4) 11.5 (0.2, 22.8) 1.1 (− 1.0, 3.3) 
Testing rate – 0.11 (0.09, 0.13) – 
Case rate – – 0.09 (0.07, 0.11)  

Non-Spatial OLS Moran’s I (p-value) 0.13 (<0.01) 0.15 (<0.01) 0.13 (<0.01) 
Spatial Model Moran’s I (p-value) − 0.02 (0.62) − 0.03 (0.69) 0.00 (0.49) 
LM Spatial Error Model (p-value) 5.88 (0.02) 7.48 (<0.01) 5.41 (0.02) 
LM Spatial Lag Model (p-value) 7.74 (<0.01) 27.34 (<0.01) 1.24 (0.27) 
Non-Spatial OLS AIC 3218.5 2584.3 1991.1 
Spatial Model AIC 3212.5 2558.2 1986.9 

Boldface indicates statistical significance. 
a Adjusted for Out-migration index. 
b Annual income in $1000. 
c % changes in unique cellular phone signals between March 1, 2020 and May 1, 2020. 

B. Kim et al.                                                                                                                                                                                                                                     

https://doi.org/10.1016/j.healthplace.2021.102539
https://doi.org/10.1016/j.healthplace.2021.102539


Health and Place 68 (2021) 102539

7

References 

Alsan, M., Stantcheva, S., Yang, D., Cutler, D., 2020. Disparities in coronavirus 2019 
reported incidence, knowledge, and behavior among US adults. JAMA Network 
Open 3 e2012403-e2012403.  

Amy Plitt, 2020. How New York City Residential Buildings Are Tackling Coronavirus. 
Curbed, New York, 16 March 2020.  

Baker, M.G., Peckham, T.K., Seixas, N.S., 2020. Estimating the burden of United States 
workers exposed to infection or disease: a key factor in containing risk of COVID-19 
infection. PloS One 15, e0232452. 

Bozdogan, H., 1987. Model selection and Akaike information criterion (aic) - the general- 
theory and its analytical extensions. Psychometrika 52, 345–370. 
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