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Increasing evidence has shown that noncoding RNAs play significant roles in the initiation, progression, and metastasis of tumours
via participating in competing endogenous RNA (ceRNA) networks. However, the survival-associated ceRNA in lung
adenocarcinoma (LUAD) remains poorly understood. In this study, we aimed to investigate the regulatory mechanisms
underlying ceRNA in LUAD to identify novel prognostic factors. mRNA, lncRNA, and miRNA sequencing data obtained from
the GDC data portal were utilized to identify differentially expressed (DE) RNAs. Survival-related RNAs were recognized using
univariate Kaplan-Meier survival analysis. We performed functional enrichment analysis of survival-related mRNAs using the
clusterProfiler package of R and STRING. lncRNA-miRNA and miRNA-mRNA interactions were predicted based on miRcode,
Starbase, and miRanda. Subsequently, the survival-associated ceRNA network was constructed for LUAD. Multivariate Cox
regression analysis was used to identify prognostic factors. Finally, we acquired 15 DE miRNAs, 49 DE lncRNAs, and 843 DE
mRNAs associated with significant overall survival. Functional enrichment analysis indicated that survival-related DE mRNAs
were enriched in cell cycle. The survival-associated lncRNA-miRNA-mRNA ceRNA network was constructed using five
miRNAs, 49 mRNAs, and 21 lncRNAs. Furthermore, seven hub RNAs (LINC01936, miR-20a-5p, miR-31-5p, TNS1, TGFBR2,
SMAD7, and NEDD4L) were identified based on the ceRNA network. LINC01936 and miR-31-5p were found to be significant
using the multifactorial Cox regression model. In conclusion, we successfully constructed a survival-related lncRNA-miRNA-
mRNA ceRNA regulatory network in LUAD and identified seven hub RNAs, which provide novel insights into the regulatory
molecular mechanisms associated with survival of LUAD, and identified two independent prognostic predictors for LUAD.

1. Introduction

Lung cancer is the most commonly diagnosed and lethal
malignancy worldwide [1]. Lung adenocarcinoma (LUAD)
is a common subtype of lung cancer [2]. Despite the recent
advances in targeted therapeutic strategies, the outcomes of
the available treatment strategies for LUAD remain unsatis-
factory owing to the drug resistance and relapse, and the
five-year overall survival is less than 20% [3]. Therefore, there
is an urgent need to understand the molecular mechanisms
underlying the pathogenesis of LUAD and identify novel
potential prognostic biomarkers to improve prognosis of
the disease.

Genetic mutations and dysregulation that can contribute
to the pathogenesis of cancer are served as biomarkers. Muta-
tions in epidermal growth factor receptor (EGFR) occur in
approximately 20% cases of lung cancer [4], and epidermal
growth factor receptor-tyrosine kinase inhibitors (EGFR-
TKIs) are indispensable in the treatment of EGFR-mutant
advanced LUAD. Next-generation sequencing technology
has been used to study the role of various RNAs in greater
depth. Long noncoding RNAs (lncRNAs) have been consid-
ered as potential biomarkers and therapeutic targets due to
their unique expression in various cells [5]. Several studies
have indicated that dysregulation of lncRNAs, such as
MIR31HG [6] and LINC01512 [7], promotes the progression
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and proliferation of tumour cells in LUAD. microRNAs
(miRNAs) play a crucial role in the regulation of protein
expression and therefore are considered potential biomarkers
in cancer diagnosis. Wang et al. [8] identified a four-miRNA
signature comprising miR-142-5p, miR-409-3p, miR-223-
3p, and miR-146a-5p, for an early detection of LUAD.
Xu et al. [9] reported that miRNA-21, miRNA-125b, and
miRNA-224 are associated with chemotherapy sensitivity
in patients with LUAD. However, the RNA biomarkers
require a critical review before their application for clinical
decision-making.

The competing endogenous RNA (ceRNA) network
hypothesis, which states that noncoding RNAs (ncRNAs),
miRNAs, and mRNAs communicate with each other
through microRNA response elements (MREs), has been
implicated in posttranscriptional regulation [10, 11]. miR-
NAs repress the translation of target mRNAs by partial or
complete complementary binding to MREs on their target
RNA transcripts [12, 13]. ncRNAs can act as endogenous
miRNA sponges to competitively bind miRNAs through
shared MREs to regulate the expression levels of mRNAs,
thereby forming specific ceRNA regulatory network com-
prising ncRNA-miRNA-mRNA interactions [14]. In the past

decade, the study of ceRNAs has gained increased attention
and several studies have reported their involvement in
tumorigenesis [15], migration [16], and prognosis [17]. For
example, lncRNA MAFG-AS1 regulates the expression of
MAFG to facilitate proliferation of LUAD cells via miR-
744-5p [18]. The ceRNA hypothesis provides novel insights
into tumorigenesis [19] and biomarker identification [11] at
the system biology level.

Bioinformatics techniques are used to integrate and
analyse large-scale genomic data, such as RNA-Seq and
microarray, to discover potential molecular mechanisms
and identify biomarkers, and to guide further experiments.
Kumar et al. identified hub genes as potential biomarkers
from a large number of differentially expressed (DE) genes
by protein-protein interaction (PPI) network [20] and
enrichment analysis [21, 22], providing valuable ideas for
further study. Wan et al. [23] identified a prognosis-
associated ceRNA axes in prostate cancer based on RNA
sequencing data using bioinformatics approaches, and vali-
dated their regulatory mechanisms by cell proliferation and
dual luciferase reporter assay.

In this study, we aimed to construct a ceRNA network
associated with survival in DE genes to reveal the molecular
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Figure 1: Flow chart of ceRNA network construction.
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mechanisms underlying LUAD and initially identify prog-
nostic factors, thereby to provide new ideas for further
biological experiments. In addition to identifying the rela-
tionship among various RNAs based on the RNA interaction
database, we also performed three statistical tests on
lncRNA-mRNA pairs to screen for significant ceRNA inter-
actions based on the ceRNA network hypothesis. The concise
LUAD ceRNA network proposed by us would provide accu-
rate and reliable results for subsequent studies.

2. Materials and Methods

2.1. Data Source and Preprocessing. The GDC data portal
(https://portal.gdc.cancer.gov/) [24] is an accessible high-
quality cancer genome data-sharing platform that provides
primary processed genomic data (level 3 data). We acquired
level 3 RNA-Seq (including mRNA and lncRNA) and
miRNA-Seq RNA expression data (HTSeq-counts), and
clinical information of LUAD patients, who were part of
TCGA project from GDC on October 15, 2019. After exclud-
ing duplicate samples and other tissue samples, mRNA and
lncRNA dataset included 524 cancer samples and 59 adjacent
nontumour tissue samples and isoform quantification data
from miRNA-Seq included 516 cancer samples and 46
adjacent nontumour tissue samples.

The RNA-Seq and miRNA-Seq data were processed
using the R package GDCRNATools [25]. The raw RNA
counts were normalised using the trimmed mean ofM value
(TMM) method [26] and transformed via the voom method
[27], wherein the RNAs with lower expression, where the log
CPM was found to be lower than 1 in more than half of the
samples, were filtered out. The procedure followed in this
study is demonstrated in Figure 1.

2.2. Differential Expression Analysis. The limma [28] method
was used to identify DE RNAs. Fold change (FC) refers to
the differences in RNA expression within samples, and the
∣FC ∣ >2 as the threshold value was set based on previous
studies on the ceRNA network [29, 30]. ∣FC ∣ >2 and false
discovery rate ðFDRÞ < 0:01 were considered statistically

significant. Compared to adjacent nontumour tissue samples,
RNAs with a higher expression level (FC > 2) in tumour tis-
sue samples were considered upregulated DE RNAs, whereas
RNAs with lower expression level (FC < −2) were considered
downregulated DE RNAs.

2.3. Survival Analysis of DE RNAs. Univariate Kaplan-Meier
survival analysis was performed to determine the correlation
between the expression level of each DE RNA and the
survival time of patients with LUAD. LUAD patients were
categorised into high- and low-expression groups based on
the median expression of certain DE RNAs. The hazard ratio
(HR) of the two groups was evaluated using the Kaplan-
Meier plot, and their difference was assessed by performing
the log-rank test using the survival package of R [31]. Results
with p < 0:05 were considered statistically significant.

2.4. Functional Enrichment Analysis. The clusterProfiler
package [32] of R software is a widely used method for
functional enrichment analysis. This package performs
overrepresentation and hypergeometric tests to identify DE
mRNAs enriched in biological functions or processes. Several
enrichment methods ignore the numerical information of
DE mRNAs. However, the STRING database (https://
string-db.org/) [33] provides another platform to analyse
the numerical data via the two-sided Kolmogorov-Smirnov
test and aggregate fold change test that perform well in vari-
ous settings [33, 34]. We used aforementioned two tools to
perform functional enrichment analysis on survival-related
DE mRNAs and their FC value (for STRING). The cut-off
value was set as p adjusted < 0.01 for clusterProfiler and
FDR < 0:01 for STRING.

2.5. Construction of Survival-Associated ceRNA Networks and
Identification of Prognostic Predictors. We used miRcode
(http://www.mircode.org/) [35] to predict the potential inter-
actions between survival-related miRNAs and lncRNAs.
Starbase (http://starbase.sysu.edu.cn/) [36] and miRanda
(http://www.microrna.org/microrna/home.do) [37] were used
to predict target genes of survival-related miRNAs. Starbase
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Figure 2: Volcano plots of the DE RNAs: (a) DEmRNAs, (b) DE lncRNAs, and (c) DEmiRNAs. The green dots indicated downregulated DE
RNAs and the red indicated upregulated DE RNAs in tumour samples. The black dots indicated excluded RNAs.
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uses multiple algorithms and Ago-binding sites to predict
miRNA target sites and their target genes. miRanda predicts
the miRNA-mRNA interactions with optimal sequence
complementarity using a weighted dynamic programming
algorithm and thermodynamic analysis. Therefore, we
chose these two databases to improve the reliability of the
prediction outcomes.

The ceRNA hypothesis proposed that lncRNAs and
their target mRNAs had a positive correlation and they
shared miRNAs. Therefore, the competing endogenous
interactions between lncRNA and mRNA were evaluated

by performing three different statistical tests using
GDCRNATools package to select ceRNA pairs matching
the ceRNA hypothesis. First, a hypergeometric test was
performed to test whether lncRNA and mRNA significantly
share a number of miRNAs. Second, Pearson correlation
analysis was performed to test the positive correlation
between lncRNA and mRNA expressions. Third, regulation
pattern analysis [38] was used to measure the regulatory
role of miRNAs on lncRNAs and mRNAs. The test cri-
teria were p < 0:05, and regulation similarity was not
equal to 0.
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4 BioMed Research International



The lncRNA-miRNA-mRNA ceRNA regulatory network
associated with the survival of LUAD was constructed using
Cytoscape 3.7.1 [39]. Hub nodes of the ceRNA network were
identified using Cytoscape plugin cytoHubba [40]. We
imported the mRNAs from the ceRNA network into the
STRING database [33] and selected “Homo sapiens” in
organism and medium confidence in the minimum required
interaction score to obtain a PPI network. The hub RNAs
were subjected to multivariate Cox regression analysis to
identify independent prognostic predictors.

3. Results and Discussion

3.1. Survival-Related DE RNAs. Differential expression
analysis identified 1097 (37.15%) upregulated and 1856
(62.85%) downregulated DE mRNAs (Figure 2(a)), 104
(55.91%) upregulated and 82 (44.09%) downregulated DE
lncRNAs (Figure 2(b)), and 93 (62.00%) upregulated and
57 (38.00%) downregulated DE miRNAs (Figure 2(c))
between tissue samples and adjacent nontumour tissue sam-
ples. Heat maps of the three DE RNAs are shown in
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Figures S1–S3 in the Supplementary Materials. We further
analysed the associations between these DE RNAs and
survival time using univariate Kaplan-Meier survival
analysis. In total, we identified 15 DE miRNAs, 49 DE
lncRNAs, and 843 DE mRNAs with significant overall
survival in 511 patients with LUAD for subsequent analysis.

3.2. Functional Enrichment Analysis of Survival-Related
mRNAs. The 843 mRNAs with significant overall survival
were analysed using clusterProfiler and STRING for Gene
Ontology (GO) enrichment analysis and identified the first
10 terms with p values among three different categories.
GO included three different aspects: biological process (BP),
cellular component (CC), and molecular function (MF).
Figure 3 shows that 36 upregulated mRNAs with high log2
FC values were enriched in six terms associated with BP
and four cellular components as identified via clusterProfiler.
The four terms associated with BP (sister chromatid segrega-
tion, nuclear chromosome segregation, mitotic nuclear
division, and mitotic sister chromatid segregation) were
involved in cell cycle. The four terms associated with CC
were involved in chromosome. Figure 4 shows 60 mRNAs
enriched in eight terms associated with BP and the two terms
associated with CC as identified by STRING. Similar to the
clusterProfiler results, three terms associated with BP
involved in cell cycle (mitotic cell cycle, cell cycle process,
and mitotic cell cycle process) and two terms associated with
CC involved in chromosome. For the MF ontology, the
catalytic activity acting on DNA was identified using two
different methods.

The clusterProfiler Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway results (Figure 5) indicated that
mRNAs were mainly enriched in cell cycle, human T cell

leukaemia virus 1 infection, and cell adhesion molecules
(CAMs). STRING identified two different pathways, namely,
cell cycle and oocyte meiosis.

The two methods revealed that DE mRNAs were
enriched in the cell cycle process and downstream terms. Cell
cycle involves progression of cell and nuclear replication and
dysregulation of cell replication and division contributes to
tumorigenesis. Several studies have reported that overexpres-
sion of cell division cycle-associated genes is associated with
tumour cell proliferation indicating poor survival in lung
cancer patients [41–43]. Rac3 induces apoptosis of LUAD
cells via cell cycle pathway and is associated with longer
survival [44]. Other KEGG pathways have rarely been men-
tioned in earlier studies on LUAD. A previous study indi-
cated that human T cell leukaemia virus type I infection
induces gene expression of CAMs in lung epithelial cells
[45]. However, the association between these pathways and
LUAD has not been reported previously.

3.3. Survival-Related lncRNA-miRNA-mRNA ceRNA Network
in LUAD. To investigate the regulatory interaction in
survival-related RNAs, we acquired information on
lncRNA-miRNA interactions from miRcode and miRNA-
mRNA pairs from Starbase and miRanda. Three statistical
tests were performed on lncRNA-mRNA pairs to confirm
significant ceRNA pairs. The aforementioned results inter-
sected with survival-significant RNAs. Finally, we consid-
ered five miRNAs, 49 mRNAs, and 21 lncRNAs (Table 1)
to construct a survival-related ceRNA network (Figure 6)
comprising 37 pairs of miRNA-lncRNA interaction and 61
pairs of miRNA-mRNA interaction. This network suggests
a potential regulatory relationship between lncRNA-
miRNA-mRNA in LUAD prognosis. Several RNAs in the
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Table 1: The characteristic of RNAs in the survival-related ceRNA network.

Symbol
Differential expression analysis Kaplan-Meier survival analysis
Log2FC FDR HR Lower 95 Upper 95 p value

miRNA

miR-31-5p 3.0390 9:65E − 12 1.4150 1.0581 1.8923 0.0200

miR-21-5p 2.5664 2:29E − 47 1.4347 1.0713 1.9214 0.0133

miR-148a-3p 1.4222 5:86E − 19 0.6238 0.4659 0.8352 0.0014

miR-20a-5p 1.1251 2:26E − 11 1.4703 1.0965 1.9715 0.0084

miR-133a-3p -2.5516 1:71E − 28 0.7333 0.5484 0.9806 0.0380

lncRNA

MNX1-AS1 4.3590 2:83E − 40 1.3367 1.0005 1.7858 0.0483

VPS9D1-AS1 2.4968 4:97E − 23 1.3603 1.0185 1.8169 0.0364

LINC00857 2.0358 4:28E − 25 1.4144 1.0594 1.8883 0.0196

AP004608.1 1.7026 9:91E − 04 0.7047 0.5278 0.9410 0.0176

AC012236.1 1.4183 4:53E − 10 0.6475 0.4847 0.8650 0.0032

MELTF-AS1 1.2753 4:49E − 13 1.3454 1.0073 1.7968 0.0438

SNHG12 1.0474 1:98E − 10 0.6847 0.5128 0.9143 0.0106

CYP1B1-AS1 -1.0387 8:08E − 10 0.7464 0.5586 0.9975 0.0464

HAGLR -1.1145 1:09E − 05 0.7330 0.5490 0.9787 0.0358

AC105942.1 -1.3081 1:45E − 28 0.7063 0.5288 0.9433 0.0183

LINC01852 -1.3648 8:65E − 37 0.7109 0.5319 0.9500 0.0202

AC021016.2 -1.7220 5:30E − 59 0.6566 0.4915 0.8772 0.0043

MIR99AHG -1.7972 2:33E − 26 0.5727 0.4283 0.7658 0.0002

COLCA1 -1.8073 4:92E − 15 0.5809 0.4351 0.7757 0.0003

AC090559.1 -1.8911 4:83E − 36 0.6959 0.5213 0.9292 0.0152

AC093278.2 -1.9808 1:96E − 64 0.7336 0.5495 0.9794 0.0366

AC125807.2 -2.2745 6:44E − 70 1.4521 1.0867 1.9403 0.0111

LINC00261 -2.6041 1:66E − 18 0.6957 0.5208 0.9293 0.0138

C8orf34-AS1 -2.8281 8:13E − 24 0.7072 0.5293 0.9450 0.0184

LINC01936 -2.8318 1:24E − 61 0.6948 0.5204 0.9277 0.0141

LHFPL3-AS2 -4.0809 4:86E − 53 0.6555 0.4908 0.8754 0.0044

mRNA

ZFPM2-AS1 4.3412 8:62E − 26 1.3374 1.0018 1.7855 0.0497

COL1A1 2.7177 1:04E − 39 1.4556 1.0893 1.9450 0.0104

CCNA2 2.5589 2:64E − 22 1.7494 1.3091 2.3379 0.0002

E2F7 2.2124 1:04E − 18 1.6952 1.2665 2.2690 0.0003

RALGPS2 1.5246 1:15E − 20 1.5304 1.1441 2.0470 0.0036

PTGFRN 1.0363 2:55E − 18 1.4189 1.0623 1.8951 0.0173

PSRC1 1.0255 7:85E − 11 1.4873 1.1138 1.9860 0.0075

PDE4B -1.0152 2:67E − 14 0.6564 0.4916 0.8764 0.0046

TMEM64 -1.0200 3:00E − 14 1.3977 1.0460 1.8678 0.0225

SH2B3 -1.0734 2:01E − 27 0.7333 0.5493 0.9791 0.0371

AKAP13 -1.1136 1:52E − 19 0.7233 0.5418 0.9657 0.0294

SATB1 -1.1413 6:49E − 18 0.6896 0.5162 0.9212 0.0117

MAP3K8 -1.1418 6:74E − 26 0.7273 0.5447 0.9711 0.0313

ZC3H12C -1.1441 5:24E − 22 1.5090 1.1294 2.0163 0.0051
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ceRNA network have been verified for their regulatory role
in lung cancer or other cancers. LINC00857 regulates cell
growth, glycolysis, and apoptosis in LUAD [46]. lncRNA
MNX1-AS1 regulates the progression of oesophageal squa-
mous cell carcinoma by targeting the miR-34a/SIRT1 axis
[47]. However, most of these interactions have not been pre-
viously reported to be associated with LUAD.

The number of mRNAs in the ceRNA network was
insignificant to perform functional enrichment analysis via
clusterProfiler or STRING. Therefore, we used the PAN-
THER classification system [48] available on the GO website
(http://geneontology.org/). The cellular components and
KEGG pathways showed no significant results. All 48 genes,
except ZFPM2-AS1, were identified and enriched in 38 terms

Table 1: Continued.

Symbol
Differential expression analysis Kaplan-Meier survival analysis
Log2FC FDR HR Lower 95 Upper 95 p value

SMAD7 -1.1465 6:02E − 34 0.7137 0.5345 0.9529 0.0227

PIK3R1 -1.1601 9:04E − 28 0.6737 0.5044 0.8996 0.0076

ZNF704 -1.1669 6:09E − 13 0.6219 0.4645 0.8326 0.0011

ACSL4 -1.1765 3:70E − 18 1.3909 1.0409 1.8586 0.0246

HLA-DQB1 -1.1923 3:72E − 08 0.7161 0.5362 0.9564 0.0237

DHCR24 -1.2171 5:25E − 22 0.7368 0.5511 0.9851 0.0370

NEDD4L -1.2227 1:94E − 20 0.6713 0.5026 0.8964 0.0070

PRDM6 -1.2377 3:06E − 16 0.7396 0.5539 0.9876 0.0413

LATS2 -1.2416 4:69E − 46 1.3726 1.0268 1.8348 0.0307

VAMP2 -1.2608 9:82E − 36 0.7439 0.5571 0.9933 0.0445

ELMO1 -1.2697 3:39E − 24 0.6072 0.4544 0.8115 0.0007

CRY2 -1.2811 1:89E − 34 0.6354 0.4759 0.8485 0.0023

KAT2B -1.3000 5:49E − 38 0.6358 0.4760 0.8491 0.0022

PREX1 -1.3328 1:98E − 27 0.7411 0.5550 0.9896 0.0446

DNAJB4 -1.4016 1:31E − 32 1.5998 1.1981 2.1362 0.0016

ST6GALNAC6 -1.4423 1:71E − 46 0.6509 0.4873 0.8693 0.0037

SYNE1 -1.4435 3:67E − 17 0.6758 0.5062 0.9023 0.0088

BTG2 -1.4892 1:34E − 18 0.6489 0.4858 0.8666 0.0034

SH3BP5 -1.5820 1:04E − 40 0.7327 0.5487 0.9784 0.0351

APBB1 -1.5852 8:53E − 39 0.7027 0.5262 0.9385 0.0169

DOCK4 -1.7393 7:68E − 50 0.7297 0.5466 0.9743 0.0338

DPYSL2 -1.7951 2:05E − 35 0.6223 0.4659 0.8311 0.0014

FAM184A -1.8098 1:53E − 25 0.6544 0.4898 0.8742 0.0040

TGFBR2 -1.8527 8:59E − 44 0.7118 0.5331 0.9505 0.0214

EGR2 -1.9011 5:23E − 38 0.7471 0.5596 0.9974 0.0490

CADM1 -1.9784 1:95E − 21 0.6975 0.5223 0.9316 0.0145

ADGRD1 -2.1115 3:18E − 21 0.5809 0.4348 0.7762 0.0002

ERG -2.2631 3:57E − 83 0.6820 0.5108 0.9106 0.0099

TNS1 -2.3744 2:53E − 47 0.6708 0.5024 0.8957 0.0071

WWC2 -2.4801 2:28E − 84 1.4189 1.0609 1.8976 0.0168

KLF4 -2.6071 1:81E − 45 1.3800 1.0334 1.8428 0.0290

SEMA6D -2.6946 9:92E − 61 0.6391 0.4784 0.8536 0.0025

ANKRD29 -3.0374 6:21E − 50 0.6755 0.5052 0.9031 0.0074

LAMP3 -3.4411 1:33E − 42 0.7487 0.5607 0.9997 0.0496

NCKAP5 -4.4780 1:21E − 116 0.6821 0.5109 0.9106 0.0101

FC: fold change; HR: hazard ratio; FDR: false discovery rate.
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associated with BP and three terms associated with MF. The
results were sorted based on hierarchical relation of terms via
PANTHER, with the parent term indented below the sub-
class (Table 2). Major genes were enriched in the regulation
of cellular process (GO:0051244), response to stimulus
(GO:0050896), signalling (GO:0023052), and their subclass.
The regulation of cellular process involves the regulation
of the rate, frequency, and extent of cellular processes.
The signalling is a process that transmits information in
biological systems. Moreover, the end of signal transduc-
tion (GO:0007165) regulates the initiation of transcription
[49, 50]. In general, genes in the ceRNA network regulate
the activity of various enzymes, participate in signal
transduction, and indirectly regulate the initiation of
transcription.

3.4. Hub RNAs of ceRNANetwork and Prognostic Predictor.A
subnetwork with 15 hub nodes (Figure 7, Table 3) was iden-
tified using maximal clique centrality (MCC) in cytoHubba
plug-ins. There were a total of six ceRNA pairs in the subnet-
work, among which LINC01936-TNS1 exhibited the highest
correlation coefficient (Figure 8) indicating they might have

the same expression patterns. LINC01936 and TNS1 were
the highest scoring nodes in their respective categories. The
ceRNA network suggested LINC01936 and TNS1 interacted
with miR-20a-5p and miR-31-5p. Our study demonstrated
that lower expression of LINC01936 was associated with lon-
ger overall survival (Figure 9(a)). However, the role of
LINC01936 in LUAD remains unclear. miR-20a-5p exhib-
ited highest topological parameters, indicating that it plays
a crucial role in the ceRNA network. Overexpression of
miR-20a-5p promotes the migration and invasion of tumour
cells [51] and correlates with a shorter survival [52], which is
consistent with the findings of our study (Figure 9(c)). The
low expression group of miR-31-5p showed better survival
(Figure 9(b)). Wei et al. reported that miR31-5p was upregu-
lated in LUAD patients with lymph node metastasis, and low
expression of miR-31 was associated with good prognosis in
patients with T2N0 stage [53]. TNS1 participates in fibrillar
adhesion formation and cell migration [54] and is involved
in signal transduction [55]. However, the role of TNS1 in
tumours remains controversial. TNS1 negatively regulates
tumour migration and invasion, and its high expression is
associated with longer metastasis-free survival in breast
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Table 2: GO enrichment analysis of mRNAs in survival-related ceRNA network.

GO terms Count FDR

Biological process

Regulation of cyclin-dependent protein serine/threonine kinase activity 4 4:42E − 02
Regulation of cyclin-dependent protein kinase activity 4 4:57E − 02
Regulation of cellular process 40 3:16E − 02

Biological regulation 42 3:99E − 02
Regulation of protein kinase activity 9 4:20E − 02
Regulation of kinase activity 11 6:06E − 03

Regulation of transferase activity 12 3:64E − 03
Regulation of catalytic activity 19 3:22E − 03
Regulation of molecular function 22 4:67E − 03
Regulation of protein metabolic process 17 4:94E − 02

Regulation of developmental growth 7 1:11E − 02
Regulation of developmental process 17 3:08E − 02
Regulation of growth 10 3:67E − 03

Response to peptide hormone 8 4:51E − 03
Response to peptide 9 2:89E − 03
Response to chemical 26 4:58E − 03

Response to stimulus 36 3:70E − 03
Response to organonitrogen compound 11 1:12E − 02

Response to organic substance 21 2:89E − 03
Response to nitrogen compound 11 2:17E − 02

Response to hormone 11 3:42E − 03
Response to endogenous stimulus 14 3:83E − 03

Regulation of cell growth 7 3:11E − 02
Negative regulation of catalytic activity 9 4:37E − 02
Negative regulation of transcription by RNA polymerase II 10 3:35E − 02

Negative regulation of nitrogen compound metabolic process 16 4:36E − 02
Negative regulation of protein metabolic process 11 2:51E − 02
Intracellular signal transduction 16 2:70E − 03

Signal transduction 28 2:62E − 03
Signalling 29 2:70E − 03
Cell communication 29 2:93E − 03
Cellular response to stimulus 30 2:19E − 02

Negative regulation of multicellular organismal process 11 4:31E − 02
Regulation of multicellular organismal process 20 1:06E − 02

Regulation of cell differentiation 15 1:14E − 02
Cell differentiation 22 9:65E − 03

Cellular developmental process 22 1:17E − 02
Positive regulation of biological process 29 1:61E − 02

Molecular function

Guanyl-nucleotide exchange factor activity 6 2:16E − 02
Enzyme binding 21 4:54E − 05

Kinase binding 10 2:18E − 02
FDR: false discovery rate.
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cancer [56]. Moreover, higher expression of TNS1 is associ-
ated with worse prognosis in colon adenocarcinoma [57].
In this study, we observed that TNS1 was downregulated in
LUAD tissues and that higher expression was associated with
better prognosis (Figure 9(d)). Based on our analysis, we pre-
dicted that LINC01936 regulates TNS1 via miR-20a-5p and
miR31-5p. However, the role of TNS1 and its regulatory

interaction in LUAD remains unclear and warrants further
in vitro and in vivo studies.

The scale of the ceRNA network constructed in this study
was small. Some information may have been lost during the
identification of hub genes using network topological param-
eters alone. Therefore, we included genes from the ceRNA
network into the STRING to analyse protein interactions to
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Figure 7: The subnetwork of survival-related ceRNA network. The shade of the colour represents the magnitude of MCC score.

Table 3: 10 hub RNAs in the ceRNA network ranked by the MCC method.

Rank Hub RNAs MCC score Betweenness centrality Closeness centrality Degree

1 miR-20a-5p 34 0.5705 0.4933 34

2 miR-148a-3p 25 0.4053 0.4405 25

3 miR-21-5p 18 0.2492 0.4066 18

4 miR-31-5p 14 0.1858 0.3895 14

5 miR-133a-3p 7 0.0727 0.3627 7

6 LINC01936 3 0.0724 0.4485 3

6 HAGLR 3 0.0507 0.3915 3

6 CYP1B1-AS1 3 0.0482 0.3719 3

6 TNS1 3 0.0506 0.4134 3

10 PREX1 2 0.0191 0.3507 2

10 MIR99AHG 2 0.016 0.3231 2

10 COLCA1 2 0.0104 0.3348 2

10 AC021016.2 2 0.0414 0.4134 2

10 SNHG12 2 0.0086 0.3203 2

10 AC125807.2 2 0.0206 0.3682 2

MCC: maximal clique centrality.
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identify hub genes. The PPI network (Figure 10) demon-
strated the protein interactions of the ceRNA network.
TGFBR2, SMAD7, andNEDD4Lwith the highest degree were
identified as hub genes in the PPI network. TGFBR2 is the
crucial receptor for transforming growth factor-β 1 (TGF-
β1). The TGF-β1 ligand binding to TGFBR2 depends on
the serine and threonine residues of the receptor, which in
turn binds to the TGF-β receptor I to initiate downstream
signalling such as Smad and non-Smad signalling pathways
to regulate cell proliferation, migration, and apoptosis
[58, 59]. TGFBR2 is downregulated in various cancers [60].
Borczuk et al. reported that low expression of TGFBR2 asso-
ciated with lymph node metastasis in patients with LUAD
and increased risk of death [61]. Smad complexes translocate
to the nucleus to initiate gene transcription. SMAD7 is an
inhibitory Smad molecule that inhibits the formation of
Smad complex [62]. Inhibition of miR-21 leads to SMAD7

upregulation, which inhibits cell invasion via TGF-β
receptor signalling in non-small-cell lung cancer [63]. A
previous study demonstrated that NEDD4L can limit
TGF-β signalling by activating SMAD2/3 [64]. Downregu-
lated NEDD4L enhances tumour metastasis and results in
poor prognosis [65].

The three hub genes were downregulated in LUAD, and
their high expression levels indicated a longer survival
(Figures 9(e)–9(g)). Moreover, the ceRNA network showed
that LINC01936 is a ceRNA of the three hub genes and medi-
ated through its interaction with miR-20a-5p. In conclusion,
several interactions regulate the three hub genes by compet-
itive binding of LINC01936 to miR-20a-5p, which in turn
regulate TGF-β signalling and downstream signalling path-
ways. This affects LUAD progression and patient prognosis.
To the best of our knowledge, these interactions have not
been reported earlier. Thus, our study outcomes lay a strong
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Figure 8: Correlation analysis between lncRNAs and mRNAs of subnetwork: (a) LINC01936 and TNS1, (b) LINC01936 and PREX1,
(c) MIR99HG and TNS1, and (d) MIR99HG and PREX1.
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Figure 9: Continued.
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Figure 9: Kaplan-Meier curves of 7 hub RNAs: (a) LINC01936, (b) miR-31-5p, (c) miR-20a-5p, (d) TNS1, (e) TGFBR2, (f) SMAD7,
and (g) NEDD4L.
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foundation for future research studies in this field. Moreover,
further studies are required to confirm whether silencing or
overexpression of LINC01936 affects the expression of hub
genes.

Multifactorial Cox regression analysis was performed to
identify independent prognostic factors from the above-
mentioned seven hub RNAs. Our results (Table 4), based
on the multifactorial Cox regression model, indicate that
LINC01936 and miR-31-5p are independent prognostic
predictors of LUAD. LINC01936 was identified as a protec-
tive predictor for LUAD, while miR-31-5p was identified as
a risk factor. The potential of miR-31-5p as a biomarker
has been reported in oral carcinoma [66], colorectal cancer
[67], and lung cancer [68]. This study is the first to demon-
strate the prognostic potential of LINC01936 in LUAD.

Our study has several limitations. The three RNA expres-
sion data and clinical data for this study were based on
TCGA database, and our findings lack biological validation.
Computational prediction is only a preliminary step in
ceRNA research. Therefore, these results need to be verified
by studies involving large-scale clinical samples and labora-
tory methods such as qRT-PCR, luciferase reporter assay,
and western blotting. The regulatory mechanism of the
ceRNA network needs to be validated by further in vivo
and in vitro research.

4. Conclusions

In summary, our study constructed a survival-associated
lncRNA-miRNA-mRNA ceRNA network in LUAD using
bioinformatics approaches and identified seven hub RNAs
(LINC01936, miR-20a-5p, miR-31-5p, TNS1, TGFBR2,
SMAD7, and NEDD4L). LINC01936 and miR-31-5p were
identified as independent prognostic predictors of LUAD.
The ceRNA network identified in this study provides novel
insights into the molecular regulatory mechanisms associ-
ated with LUAD progression. Further studies are required
to explore the biological mechanisms of ceRNAs in LUAD
and validate the prognostic value of LINC01936 and miR-
31-5p in other cohorts.
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