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Abstract

Olfaction, or the sense of smell, is one of the most ancient senses in men and mice, important for a large variety of innate and
acquired behaviors. Clinical data reveal an early impairment of olfaction during normal aging and in the course of neurodegen-
erative diseases, but the underlying cellular/molecular mechanisms remain obscure. In the current review, we compare different
aspects of the aging- and Alzheimer’s disease related impairment of olfaction in men and mice, aiming at the identification of
common morbidities and biomarkers, which can be analyzed in detail in the appropriate mouse models. We also identify
common, often interdependent (patho)physiological pathways, including but not limited to extracellular amyloid depositions,
neuroinflammation, €4 allele of the apolipoprotein E, CNS insulin resistance, and the impairment of adult neurogenesis, to be

targeted by basic and clinical research.
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Introduction

The sense of smell is one of the most ancient senses [138].
In mammals, this sense is important for (i) food localiza-
tion, (ii) investigation of and navigation through the envi-
ronment, (iii) social interaction and courtship behaviors,
(iv) food-preference determination, (v) regulation of the
appetite, and (vi) emotional contagion [55, 138, 149].
Accordingly, the largest part of the mammalian genome
is occupied by genes encoding the olfactory receptors (ap-
proximately 900 genes in mice and 1500 genes in humans)
[170]. Although in humans the sense of smell is less im-
portant for everyday life as, for example, hearing or vision,
it represents an important constituent of gustatory and vi-
sual perception, psychosexual functions, aggression and
fear learning, attraction and aversion behaviors,
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gastrointestinal functions and, via close connections with
the limbic system, strongly impacts human emotions and
memories [28, 54, 63, 77, 90, 134, 138, 151].

Interestingly, the sense of smell is also an early indicator
of many viral (COVID-19 being the latest example) and
bacterial infections [36, 98, 127, 157] as well as neurode-
generative diseases [46, 101]. Olfactory tests are, for exam-
ple, routinely used in the clinic during the early diagnostics
of Alzheimer’s (AD) and Parkinson’s (PD) diseases as well
as mild cognitive impairment (MCI) [58, 80, 105, 172].
However, our understanding of the olfactory dysfunction
in aging is still very finite. Moreover, it is confounded by
the difficulty to separate normal elderly control (NEC) sub-
jects from prodromal PD/MCI/AD cases, because olfactory
disturbances are among the very first biomarkers of emerg-
ing neurodegenerative pathologies. Currently, most avail-
able studies do not include longitudinal follow-up, which
would be mandatory for disentangling the olfactory dys-
function caused by aging per se from the dysfunction caused
by the beginning age-related pathologies.

Here we review the current knowledge about the aging-
related olfactory dysfunction in humans and mice. We discuss
the similarities and the differences to find out to which extent
the mouse models can help to understand the cellular and
molecular mechanisms of olfactory impairment during normal
aging and in the course of neurodegenerative diseases.
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Olfactory impairment in the elderly

The olfactory system is capable of odor detection, odor dis-
crimination, and olfactory memory and employs these capa-
bilities in a wide range of behaviors (e.g., food localization,
environmental investigation, or social interaction). The under-
lying computations are performed by different brain circuits,
and their function is assessed experimentally by different tasks
using various compositions and concentrations of odorants
[139]. One common olfactory test is the odor detection thresh-
old test. Subjects are asked to smell the different concentra-
tions of an odor to identify the lowest concentration they can
discern. The odor identification test, measuring the ability to
identify and distinguish different odorants, is also widely
used. In addition to the sense of smell, this test requires the
ability related to semantic memory. Indeed, the specific odor
memory has to be acquired during the initial odor presentation
and correctly recalled with a verbal label upon the subsequent
(test) presentation of the same odor [131, 140]. Therefore, it
requires not only the ability of odor detection but also an intact
olfactory memory for specific odors. In contrast to odor iden-
tification, odor discrimination is an ability to distinguish two
or more odors against the background. In different tasks, the
subject is required to distinguish similar or dissimilar odors. In
addition to odor discrimination tasks, the tests also assess the
ability to distinguish different concentrations of the same
odor. Interestingly, discrimination of odor quality activates
brain networks, which are more related to the cognitive func-
tion than the networks, activated when discriminating the odor
intensity [139], suggesting that these two functions are medi-
ated by different neural circuits. This suggestion is further
supported by the patient data showing that bilateral removal
of the medial temporal lobe impairs the discrimination of the
odor quality but not the odor intensity [53].

Olfactory impairment refers to a decrease in the ability of
odor detection, odor discrimination, and olfactory cognition. It
represents a common characteristic of advanced age, with
hyposmia (i.e., the reduced ability to smell and to detect odors)
increasing with age both in men and women [111, 141-143].
How the increasing age impacts the abovementioned abilities
of odor detection, odor discrimination, and olfactory cognition
is reviewed below.

Odor detection

Schubert et al. [144] measured odor detection thresholds in
men and women of advanced age (6899 years old). They
found that older participants (> 85 years of age) were signif-
icantly more likely to have a worse detection threshold than
younger (68—74 years old) participants. There was, however,
no difference in odor detection between men and women.
These results are consistent with the findings of another group
[128], who observed that participants older than 60 years had
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significantly higher odor detection thresholds compared to
younger (< 45 years old) participants. Moreover, in the youn-
ger age group, the odor detection thresholds remained stable
between 20 and 45 years of age, whereas in the older age
group, there was an age-associated decline in the odor
sensitivity.

These findings clearly suggest that the odor detection
threshold increases and the olfactory detection ability declines
with increasing age.

Odor identification

Odor identification requires an ability to sense and to identify
an odor [84]. This ability, especially its cognitive aspect,
might potentially be influenced by many factors including
age, gender, and personality. Previous studies have found a
decline in the ability of odor identification with age.
Especially, individuals over 80 years of age show a high prev-
alence of olfactory impairment [48, 111, 143]. Murphy et al.
[111] used the San Diego Odor Identification Test (SDOIT)
utilizing natural odors to show that 80-97-year-old people are
impaired in odor identification abilities. In 2003, Choudhury
et al. used an odor memory test, which requires the ability of
odor identification and the ability to evaluate the odor identi-
fication ability in 10—68-year-old subjects of both genders.
The results showed that the odor identification ability and
the ability to correctly assess the odor intensity starts to de-
cline at the age of 20 years in men but not until the age of 40
years in women [29]. Hori et al. applied an odor identification
ability test in healthy subjects of different ages: young adults
(2043 years old), middle-aged adults (45—69 years old), and
old adults (70-89 years old). They found that the group of old
adults exhibited lower odor identification ability compared to
young adult and middle-aged adult groups [68]. Other study
assessed the olfactory function in 21- to 84-year-old partici-
pants using the SDOIT and found that the prevalence of ol-
factory impairment is increasing with age from 0.6% in young
adult (< 35 years old) participants to 13.9% in elderly (> 65
years old) population [143]. When compared by decades of
life, the authors observed a continuous increase in the preva-
lence of olfactory impairment. There were also profound gen-
der differences with women performing better than men in all
age groups and men’s scores declining significantly faster
with age (Fig. 1).

In addition to these single time point measurements, the
same group has conducted a longitudinal population-based
study of sensory loss during aging [142]. This study started
at the age of 5359 years and the prevalence of the olfactory
impairment was 3.7% and 4.6% among 53-59-year-old wom-
en and men, respectively. As the population aged, the preva-
lence of olfactory impairment increased steadily amounting to
19.3% and 24.8% in 70—79-year-old women and men, respec-
tively. In the 80-97-year-old population, the respective
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numbers for women and men were 52.9% and 31.6%. In this
study, one out of every eight older adults (beginning at age of
53-59 years) acquired an olfactory impairment over 5 years.
While women again performed equally well or better than
men in all age groups, the rate of decline in women’s scores
caught up to men at the oldest (80-97 years old) age group
[142, 147].

Taken together, these data convincingly show that the odor
identification ability declines with increasing age.
Interestingly, women have better odor identification ability
than men in all age groups. At the end of life, however, wom-
en and men reach a comparable level of decline. Furthermore,
these data clearly document the profound nature of the aging-
associated impairment of olfaction, negatively impacting the
quality of an individual’s life.

Olfactory memory

Olfactory memory refers to odor-evoked memory and the rec-
ognition of the learned or familiar odors [163] and is often
used to test the cognitive function in the elderly. The Sniffin’
Sticks test (Burghardt®, Wedel, Germany), originally
established by Hummel et al., is used to assess olfactory func-
tion and contains three indexes: odor threshold, odor discrim-
ination, and odor identification [70, 135]. It can also be used
as the Sniffin” TOM (test of odor memory) test, to test the
olfactory memory. The olfactory memory acquisition and ex-
pression requires the ability to detect an odor, to acquire an
intact olfactory memory for specific odors, and to retrieve this
odor label from semantic memory upon retest. In 2015, Croy
et al. applied a modified the Sniffin” Sticks test to encode odor
memory in 3 age groups (young adults with the mean age of
24.5 years, middle-aged adults with the mean age of 48.6
years, and old adults with the mean age of 69.8 years) and
then conducted a yes-no recognition test and odor identifica-
tion test. After 17 days, they retested the ability to identify all
odors using the Sniffin” TOM test. They found that the per-
formance in the Sniffin> TOM test in these three groups

Age (years)

declined with increasing age [33]. In 2016, Larsson et al.
assessed olfactory memory in 60- to 100-year-old participants
by the Sniffin’ Sticks test and found an age-related decline in
olfactory memory performance [85]. Recently, Seubert et al.
applied a modified Sniffin’ Sticks identification test in a
healthy population (mean: 69.73 + 8.76) and found that aging
was significantly correlated with episodic (odor recognition
memory) and semantic (odor naming) [56] olfactory memory
performance [146]. Furthermore, they found positive associa-
tions between semantic olfactory memory performance and
regional gray matter volume in the amygdala, posterior
piriform cortex, and anterior hippocampus [146]. The piriform
(olfactory) cortex projects to the amygdala and hippocampus
and these connections are involved in emotion and memory
[107], implying that olfactory function is correlated with cog-
nitive function in the elderly. Interestingly, even though the
elderly participants showed a decline in olfactory cognitive
abilities, non-olfactory cognitive abilities were less impaired
[71], suggesting that olfactory dysfunction is an early indica-
tor of cognitive decline.

Functional connectivity in the olfactory network

Cognitive and olfactory functions decline in parallel during
normal aging [21, 108, 158]. Moreover, elderly people with
olfactory dysfunction often show poor cognitive abilities [42].
However, the link between the two aging-related disabilities is
obscure. One approach is to study the aging of functional
connectivity in the olfactory network by resting-state func-
tional magnetic resonance imaging (fMRI) [154].
Karunanayaka’s lab reported that the resting-state olfactory
network shows extended functional connectivity to the thala-
mus, medial prefrontal cortex, caudate nucleus, nucleus ac-
cumbens, parahippocampal gyrus, and hippocampus [154].
Furthermore, they investigated the effect of aging (20—61-
year-old subjects) on the resting-state olfactory network and
found that functional connectivity between the olfactory net-
work and parahippocampal gyrus was negatively correlated
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with age [74]. A recent study [166] investigated the effect of
aging on global functional connectivity by resting-state fMRI
in young (20-39 years old), middle-age (40-59 years old),
and elderly (age > 60 years old) participants. The data revealed
a negative correlation between aging and global functional
connectivity, including the areas, which relate to the olfactory
network and cognitive function (e.g., olfactory, orbital, medial
prefrontal cortex, and amygdala).

Taken together, these data suggest that in part, the age-
related impairment of the olfactory and cognitive function
may be caused by the decline of functional connectivity within
the olfactory network.

Early olfactory impairment in patients
with Alzheimer’s disease

AD is a complex age-related neurodegenerative disorder that
is characterized by aberrant accumulation of the amyloid 3
(AP) protein and its precipitation in the senile plaques, forma-
tion of neurofibrillary tangles (composed of aggregates of
microtubule-associated protein tau), cognitive disability, de-
mentia, olfactory dysfunction, and the progressive loss of neu-
ronal structure and function. Cumulative evidence suggests
that soluble oligomeric forms of A3 initiate a vicious cycle
leading to the deposition of dense-core plaques, activation of
the brain’s immune system, tau misfolding, and assembly of
neurofibrillary tangles. Subsequently, these pathologies
spread throughout the cortex, resulting in neural network dys-
function, neurodegeneration, and cognitive decline. Amyloid
plaques are initially deposited in the neocortex, particularly in
medial prefrontal and medial parietal regions, spreading from
there to the neighboring cortical areas as well as the hippo-
campus and eventually infiltrating all cortical areas. Tau ag-
gregates first appear in the entorhinal cortex and hippocam-
pus, propagating to limbic and association areas as the disease
progresses [14, 18]. While plaque deposition is also found in
the brains of cognitively normal individuals, the tau pathology
is more closely related to neuronal loss and clinical symptoms
of AD. Tau aggregates are also abundant in all layers of the
olfactory bulb, while amyloid plaques are mostly found in the
anterior olfactory nucleus [118]. The prevalence of late-onset
AD within the world’s population is rising, and the number of
patients is expected to double by 2050, causing numerous
medical and social burdens [65, 67, 102]. However, the
decade-long development of the disease makes the study of
underlying mechanisms difficult and points out the urgent
need for early disease diagnostics.

Early olfactory dysfunction is a common feature of AD and
Parkinson’s disease and has been widely described in the
medical literature [58, 80, 105, 172]. In fact, olfactory deficits
are observed in 85-95% of AD patients, and therefore can be
considered a sensitive marker of AD [50]. AD patients often

@ Springer

show impairments in odor detection threshold, odor identifi-
cation and odor recognition capabilities [125] as well as
marked structural and biochemical alterations in the olfactory
bulb (OB) and the entorhinal cortex, brain regions important
for olfactory function [40, 47, 110]. A reduced volume of the
OB has been typically found in AD patients with a higher
burden of neurofibrillary tangles and minimal mature amyloid
plaques [22, 109, 152], accompanied by the atrophy of the
olfactory glomeruli, loci, where olfactory receptor neuron syn-
apse on mitral and tufted cells [22]. Senile plaques have been
also found in the olfactory epithelium [83], and neuronal loss
has been reported in the whole olfactory system, including the
olfactory epithelium, OB, anterior olfactory nucleus, and the
higher cortical centers [35, 82, 150]. Bellow, we discuss when
during the development of AD pathology and how the main
features of the olfactory processing become impaired.

Odor detection

Studies in AD or mild cognitive impairment patients have
revealed deficits in the odor detection threshold. Djordjevic
et al. [43], for example, evaluated the detection threshold in
male and female AD patients (n =27; 14M/13F), MCI patients
(n = 51; 25M/26F), and normal elderly control subjects (n =
33; 17M/16F) of the similar age (55-88, 59-86, and 63-87
years, respectively). They found that AD and MCI patients
had significantly higher odor detection thresholds and thus
lower olfactory sensitivity than NEC subjects. Besides, they
noticed that AD patients had lower olfactory sensitivity com-
pared to MCI patients. These data suggest the quantitative
relationship between the degree of AD pathology and the de-
gree of impairment in olfactory sensitivity. Using the Sniffin’
Sticks Threshold Test, Li et al.[91] have also found the lower
performance in odor detection (threshold sensitivity) in the
early-stage AD group (age: 75.7 = 4.1; 4M/6F) compared to
the age-matched control group (76.3 + 3.9; 4M/6F). This dif-
ference, however, did not reach the level of statistical signif-
icance. A recent study on somewhat younger AD patients
(69.5 + 9.4 years old) also failed to find any difference in
the odor threshold sensitivity between AD patients and the
age-matched (62.5 + 6.8 years old) control group [44].

In summary, at a younger age and/or in the early stage of
the disease, AD patients seem to exhibit rather normal odor
threshold sensitivity. Thus, the impairment of odor threshold
sensitivity is probably not the earliest symptom in AD-
mediated olfactory system dysfunction. However, it becomes
progressively more apparent during the development of the
disease. Here and below, one has to keep in mind that olfac-
tory dysfunction is also observed in other aging-related disor-
ders (e.g., PD as well as other synucleinopathies) with decade-
long prodromal phases. The latter might remain unrecognized
when ascribing the subjects to different study groups.
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Odor identification

Recent studies have demonstrated that AD patients are often
impaired in the ability to correctly identify a given odorant
[44, 68, 72, 91, 123]. Typically, this disability is much more
profound than the problem with the odor detection threshold
[125]. The University of Pennsylvania Smell Identification
Test (UPSIT) is one of the commonly used tests to assess this
capability [49]. Djordjevic et al. [43] used the UPSIT to test
the odor identification ability in AD and MCI patients as well
as NEC subjects. Compared to NEC subjects, both MCI and
AD patients showed gradually decreasing odor identification
abilities with significant differences between the three groups
(see also ref. [72]). Similar results were also obtained by other
groups [44, 68, 91], reporting significantly lower odor identi-
fication ability of 60—75-year-old AD patients compared to
age-matched controls.

Interestingly, not only AD but also MCI patients and sub-
jects with prodromal or preclinical stages of AD have difficul-
ties with odor identification [123]. This impairment turned out
to be more severe in MCI individuals with memory impair-
ment (amnestic MCI) compared to MCI individuals without
memory impairment (non-amnestic MCI) [123].

Taken together, the studies document a profound and early-
onset impairment in olfactory identification ability and sug-
gest that this impairment is exacerbated by accompanying
cognitive impairments.

Odor discrimination

The process of odor discrimination requires both odor de-
tection and identification and relies on the retrieval and
processing of the stored odor information [38]. It, there-
fore, does depend on the intact working memory as well as
episodic memory of odor percepts and thus might turn out
to be a better biomarker of AD than the described above
odor identification ability, which is also impaired in cog-
nitively normal Parkinson’s patients and aged individuals
(see above). Consistently, Djordjevic et al. has found that
compared to NEC subjects, both AD and MCI patients
show the impaired ability of odor discrimination with sig-
nificant differences between all three groups [43]. Dhilla
Albers et al. confirmed these results and found that worse
odor discrimination performance was associated with re-
duced adjusted hippocampal volume and thinner entorhinal
cortices [41]. The odor discrimination measure, however,
was also influenced by age, gender, and education. The
authors concluded that these multiple associations poten-
tially complicate the interpretation of odor identification
and odor discrimination deficits as biomarkers in clinically
normal populations. They do, however, possess enough
power for early diagnostics of AD pathology [41].

Olfactory memory

A classic approach to study long-term odor recognition mem-
ory is based on a yes-no task, in which two sets of stimuli are
presented with minute-to-hour-long intervals. The first set of
stimuli allows for odor exploration and memory encoding,
whereas the second (test) set of stimuli comprises ‘“known”
stimuli from the first set together with novel stimuli. Analyses
of the long-term odor recognition memory in patients with
mild-to-moderate AD (73.0 £ 11.2 years old) and age-
matched healthy subjects (67 + 12.7 years old) revealed clear
memory deficits in the AD group [117]. However, it was also
found that patients with mild-to-moderate AD had poor olfac-
tory recognition performance only for unfamiliar odors, sug-
gesting that the olfactory impairment in AD patients is mostly
caused by impaired memory acquisition. Using a similar ap-
proach Dhilla Albers et al. have tested cognitively normal
participants (75 + 1.01 years old) and possible or probable
AD patients (77 £ 2.60 years old) and found that the patients
perform at chance level in the olfactory memory test [41].
Consistently, among clinically normal elderly performing
well in the olfactory memory test, the individuals with ApoE
€4 allele (a known genetic risk factor for AD) were found
significantly less frequently [41].

Functional connectivity in the olfactory network

The olfactory network, consisting of the primary olfactory
cortex, hippocampus, insula, and striatum [73, 154], processes
environmental chemical signals, transferring them into odor
perception [62, 87]. Impairments of the functional connectiv-
ity in the olfactory network have been shown in early-stage
AD patients [96, 97], and are also present in patients with MCI
[96]. Besides, AD pathology is well-known to involve the
hippocampus [15], thus impacting memory formation as well
as information transmission and reception [167]. A recent
study in age-matched cognitively normal subjects, early and
late MCI and AD patients showed that functional connectivity
between the olfactory network and hippocampus, calculated
using low-frequency fMRI signal fluctuations, became pro-
gressively disrupted across disease states, with significant dif-
ferences between early and late MCI groups. This disruption
happens before the atrophy of the hippocampal tissue [96].
Besides the olfactory network, the default mode network is
also important for memory function and is vulnerable to ag-
ing, amyloid deposition, and AD [9, 34]. The default mode
network includes the posterior cingulate/retrosplenial cortex,
the bilateral inferior parietal cortex, the medial prefrontal cor-
tex, the anterior cingulate cortex, and the medial/lateral tem-
poral lobe [9, 17, 62]. The default mode network is active at
rest and gets suppressed (deactivated) during successful mem-
ory formation and goal-directed behavior. Lu et al. demon-
strated that olfactory deficits in the early stage of AD are
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accompanied by the disruption of the connectivity not only of
the olfactory but also of the default mode network [97].

Figure 2 summarizes the human data showing at which age
the decline in the given ability occurs with aging, compared to
young adult subjects (Fig. 2a), and with the development of
AD, compared to normal elderly controls (Fig. 2b). As shown
in Fig. 2b, in AD, all aspects of the odor sensing and process-
ing of the odor information are impaired.

AD-related olfactory deficits are recapitulated
in mouse models of the disease

The olfactory system is phylogenetically conserved in a broad
array of animals [1] with men and mice sharing striking simi-
larities in the nature of odorant receptor proteins, molecular
mechanisms underlying the transduction of olfactory signals,
organization of the peripheral and central olfactory pathways,
as well as odor-guided behavior and olfactory memory.
Moreover, same odorants were reported to be similarly attractive
to mice and humans, revealing a component of olfactory pref-
erence conserved across the two species [100]. Therefore, mice
represent a valid model for analyzing molecular mechanisms
underlying both aging- and AD-related changes in olfaction.
In patients with AD, the functional impairment of the OB
occurs in the presence of neurofibrillary tangles and amyloid
plaques, with plaque load increasing during disease

Fig. 2 Summary of the known a
olfactory impairments during

normal aging and the

development of AD. a Human

data showing at which age the

decline in the given ability occurs,

compared to young adult subjects.

b Human data showing at which

age the AD-related decline in the

given ability occurs. Here, in

progression [8]. Animal models of the disease, for brevity
referred to as AD mice, also show co-occurrence of the olfac-
tory dysfunction and amyloid plaque deposition. The AD
mice usually overexpress amyloid precursor (APP), presenilin
1 (PS1), presenilin 2 (PS2), or tau proteins with mutations,
known to cause a familiar form of AD in humans (see
Table 1). Some recently established models are knockin mice,
with known familiar mutations introduced in the respective
mouse gen [136].

In Tg2576 mice (Table 1), for example, Af3 first deposits in
the OB almost a year before its deposition in the piriform and
entorhinal cortex or hippocampus [161]. Inputs from the ol-
factory sensory neurons in the nose synapse on the dendrites
of mitral and tufted cells in the glomerular layer (GL) of the
OB, containing also the local interneurons (juxtaglomerular
cells). Other OB layers include the external plexiform layer
(EPL), mitral cell layer (MCL), and granule cell layer (GCL)
[112]. In Tg2576 mice, A3 deposition within particular layers
of the OB is age-dependent, starting in the GL at 3—4 months
of age and spreading to the GCL 10-12 months later [161].
The degree of amyloid deposition in these mice significantly
correlates with the impairment of odor habituation as well as
atypical odor discrimination and novel odor investigation be-
haviors [161]. Interestingly, the odor habituation behavior
(see below) could be rescued by acute treatment with the
liver-X receptor agonist GW3965, promoting proteolytic deg-
radation of A3 [162].

Normal Aging

contrast to panel a, NEC subjects
serve as a reference. Because of
the lack of reliable longitudinal
studies of the mentioned
capabilities, the arrows in the b
given graph reflect the age of the
cohort under study rather than the
true age when the given
impairment appears. Data are
taken from refs. [41, 43, 44, 68,
78,96,97, 117,128, 143, 144]. Y-
axis is shown in arbitrary units
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Impairment of gamma oscillatory activity and

phase-amplitude theta-gamma coupling in

the OB circuit starting at 3 months of age.

Impairment of the short-term plasticity at 3

months of age, and long-term potentiation at

6 months of age
Impaired (i) habituation to repeated odor

[22, 61, 159]

Deposition of AP plaques in the GCL

APPSwFILon, PSEN1*M146L

5xFAD mice
(Tg6799)

presentations, (ii) odor discrimination, (iii)

olfactory memory

Impaired odor detection

at 6 months of age

*L286V 6799Vas

[115, 175]

[175]

ApOE tm1Unc

ApoE KO mice

Increased power of gamma oscillations in the

OB at 3—5 months of age

In the 3xTg mice (Table 1), sparse A3 deposition in the
GCL and a decreased neurogenesis in the OB were found by
20 months of age [106]. Likewise, the GCL was found to be
preferentially affected by amyloid plaques in APP/PS1 mice
(Table 1), which co-express human familiar mutations in APP
and PS1 proteins [37, 94, 119, 130, 137, 168]. In addition,
behavioral tests performed in middle-aged (9 and 12 months
old) APP/PS1 mice revealed an impairment in odor detection,
odor discrimination, and odor recognition memory as well as a
significantly longer latency to find buried food pellets [130,
168].

Odor detection

The buried food and the olfactory habituation/dishabituation
tests are two common behavioral tests to analyze the animal’s
olfaction. The buried food test is used to assess the ability to
smell volatile odors by using olfactory cues (chow, cookies, or
food pellets) and the natural ability for foraging. The olfactory
habituation/dishabituation test is used to evaluate the ability to
detect and distinguish known and novel odors. The APP/PS1
mice show a decline in odor detecting ability (revealed by the
habituation/dishabituation test) as early as 3 months of age
and cognitive dysfunction (revealed by the Morris water maze
test assessing spatial learning and memory) at the age of 9—10
months [164, 168]. Another study, however, reported similar
olfactory detection ability in the buried food test for 13-
month-old APP/PS1 and WT mice [27]. For the 5xFAD
mouse model (Table 1), the buried food test revealed a decline
in the odor detection ability in 6-month-old males [165], but
not females [79]. Females, however, showed an age-related
reduction in interest for social odors and a reduced investiga-
tive behavior towards novel conspecifics [79].

Transgenic mice overexpressing mutated tau protein (both
P301L and P301S strains; Table 1) also showed a significant
impairment in the olfactory detection ability, increasing with
advancing age [69, 92]. Taken together, the data clearly show
that different mouse models of AD recapitulate the AD-related
odor detection deficits seen in human patients.

Odor discrimination

Odor discrimination requires the piriform cortex [10] and an
intact function of the local OB circuits [52]. Both regions
present with profound A3 deposition in mouse models of
AD [81, 86, 161, 164, 173]. The spontaneous odor discrimi-
nation ability in animals is evaluated with the help of the
cross-habituation test [32]. This test relies on the animal’s
instinctive curiosity and interest in novel stimuli. After a re-
peated presentation of the same odorant (aiming to cause ha-
bituation to this odorant), a novel odorant is introduced and
the time spent investigating the novel odorant compared to the
time spent investigating the known odorant is recorded.
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The first study, using the cross-habituation test to evaluate
the ability of odor discrimination, revealed lower odor dis-
crimination abilities in Tg2576 compared to age-matched
WT mice at 6-7, 16, and 21-29 months of age [161].
Similar dysfunction was found in 6-month-old P301L tau
mice [69]. Additionally, Wesson et al. investigated the rela-
tionship between A3 deposition and age-dependent deficits in
odor discrimination. They found that specific behavioral im-
pairments developed in line with a progressive A3 burden in
specific olfactory regions. For example, first non-fibrillar A3
deposits within the GL of the OB appeared as early as 3
months of age but odor discrimination deficits appeared later,
together with A3 deposits within the piriform and entorhinal
cortices [161].

Olfactory memory

The olfactory learning and memory task relies on the animal’s
ability to associate the olfactory-guided food-seeking with, for
example, a water reward. The animals learn this connection by
getting a reward after choosing the right odor. A task can be
made more complex by introducing a so-called olfactory H-
maze, in which the mice had to remember at which of the four
ends of H they have already obtained their reward in order to
succeed in either alternating or non-alternating learning task
[39, 61, 156]. In 5xFAD mice, the olfactory H-maze task
revealed olfactory memory impairment as early as 4 months
of'age [61], whereas olfactory memory deficits in the olfactory
habituation test were seen at 68 months of age [159].

The social transmission of food preference task is used to
evaluate olfactory memory without the spatial learning com-
ponent. This task uses conspecifics as a cue to lead mice to
choose their food [59, 60]. The 18-month-old 3xTg mice
(Table 1) exhibited pronounced deficits in odor-based memo-
ry, as revealed by the social transmission of food preference
task [25]. In Tg2576 mice, olfactory memory impairment de-
veloped already at 4 months of age and was getting increas-
ingly more severe with aging [162, 171].

Taken together, many different strains of AD mice exhibit
an impairment of olfactory memory, which is getting more
severe as the disease progresses.

Functional connectivity in the olfactory network

As already mentioned above, odor information enters the OB
via the axons of the olfactory sensory neurons and is further
processed by ON microcircuits containing mitral/tufted, gran-
ule, and juxtaglomerular cells [89]. This process is accompa-
nied by gamma oscillations [121], including low (40-70 Hz)
and high (70-100 Hz) gamma [88]. Besides gamma oscilla-
tions, phase-amplitude coupling was also reported to be in-
volved in the processing of odor information [95]. Deficits in
both OB gamma network oscillations and phase-amplitude

coupling were found in aging and AD mice [2—4, 12].
P301S mice not only exhibit AD-related olfactory dysfunction
and cognitive decline but also present with excessive tau
hyperphosphorylation, particularly in mitral cells [92, 169].
Consistently, a significant decrease in firing frequencies of
mitral cells (seen already at 2 months of age) and a significant
increase in the power spectra of gamma and low gamma were
observed in P301S mice [92]. A recent study showed that the
P301S mice exhibit impairments in gamma oscillatory activity
and phase-amplitude theta-gamma coupling (PAC) in the OB
circuit, but not in the entorhinal cortex as well as hippocampal
CA1 and CA3 regions, starting at 3 months of age. Besides,
fEPSP recording showed a deficit in the short-term plasticity
at 3 months of age, while both short-term plasticity and long-
term potentiation showed deficits at 6 months of age [4].

In summary, P-tau might contribute to olfactory dysfunc-
tion in AD by decreasing firing frequencies of mitral cells,
impairing the structure of synaptic contacts between MC and
GC as well as PAC, and increasing the power spectra of gam-
ma and low gamma in the OB. However, the role of Af3
accumulation for the functional connectivity of olfactory net-
works in AD still remains unclear.

Common cellular/molecular mechanisms
underlying impairment of olfaction

The observation that odor detection ability declines in the
elderly population, late-stage AD patients and AD mice, en-
ables the use of mouse models of AD for understanding the
cellular/molecular mechanisms of this pathology.

One of the known molecular mechanisms is the accumula-
tion of AP itself, as its accumulation in the olfactory system
correlates with the olfactory impairment. Even in the absence
of amyloid plaques, soluble Af triggered axonal dysfunction
in the olfactory epithelium and impaired innate aversive or
appetitive responses of mutant mice [24]. Consistently, APP/
PS1 mice also showed impairment in the odor detection capa-
bility at 3—4 months, right after the non-fibrillar A3 deposits
were detected in the MCL [164]. In 5xFAD mice, however,
the intracellular accumulation of soluble A3 (clearly present
in 3-month-old animals) was insufficient to impair learning
and memory as well as odor discrimination abilities [165].
The latter became impaired only after the extracellular depo-
sition of amyloid plaques in 6-month-old mice. The causal
relationship between A3 and the impairment of olfaction
was obtained using the intrabulbar injection of soluble Af3
oligomers [6]. Two weeks after intrabulbar Af3 injection, ex-
perimental rats and mice showed a significant reduction in the
odor detection ability (buried food test). This impairment was
not related to alterations in motor performance or motivation
to seek food and correlated with the formation of A3 deposits
with the bulb. By recording extracellular local field potentials
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from the GCL in OB slices, the same authors have shown that
bath application of clinically relevant concentrations (30 nM)
of A3 oligomers for 1 h induces a significant, concentration-
dependent, and reversible inhibition of the neural network
activity in the OB [6]. In vivo, local field potential recordings
in the OB of Tg2576 mice also revealed abnormal spontane-
ous network activity at just 3—4 months of age [162]. This
time, however, A deposition correlated with neural network
hyperactivity, accompanied by prominent increases in both
beta- and gamma-band power not only in the OB but also in
the piriform cortex. This hyperactivity persisted until later in
life when the network converted to a hypoactive state. This
conversion was also A3-dependent, because liver-X receptor
agonist treatment, which promotes A3 degradation, was able
to normalize the neural network activity as well as olfactory
behavior [162]. These A3-mediated effects on the activity of
neural networks are not unique to the olfactory system and
were observed previously in the cortex as well as in the hip-
pocampus [7, 19, 20, 66]. Moreover, AD patients as well as
mouse models of AD are more susceptible to epileptic sei-
zures than the respective controls [66, 122], and epilepsy is
often accompanied by robust olfactory deficits, including def-
icits in odor detection, identification, discrimination, and ol-
factory memory [51, 75].

Accumulation of A3 and formation of the amyloid plaques
inevitably cause neuroinflammation and activation of the
brain’s immune system [124]. Consistently, a significant in-
crease in the density of amoeboid (i.e., activated and phago-
cytic) microglia, the innate immune cells of the brain, was
observed within the anterior olfactory nucleus and the OB of
AD patients [45]. In line with the ability of activated microglia
to produce pro-inflammatory cytokines [31, 126, 132, 148],
aged APP/PS1 mice exhibited a significant increase in expres-
sion of mRNA encoding for interleukin-1{3, tumor necrosis
factor-«, and chemokine MCP1 in the OB [129]. The levels of
pro-inflammatory factors like monocyte chemoattractant
protein-1 (MCP-1/CCL2) and interleukin-12 were also signif-
icantly higher in the olfactory mucus of elderly (65-80 years
old) compared to young (2140 years old) subjects [160].
Similar data were obtained in mice, with the expression of
the mRNA of pro-inflammatory cytokine interleukin-6 in the
nasal mucosa of aged (16-month-old) mice being significantly
higher than that in 2-month-old mice [155].

Apolipoprotein E (ApoE) is another interesting molecule
contributing to the impairment of olfaction in mice and
humans. A lipid transport protein ApoE is expressed in the
brain, where it serves as a cholesterol transporter, and is
enriched in the olfactory brain structures [114, 116]. ApoE is
polymorphic, with three major alleles (€2, €3, and €4). The
ApoE-€4 represents a known genetic risk factor for the devel-
opment of AD [93]. Interestingly, elderly (7580 years old) €4
carriers have a higher propensity to develop both olfactory
impairment and a decline in episodic memory [120].

@ Springer

Olfactory dysfunction is also prevalent among obese elderly
(6090 years old) €4 carriers [145]. Besides olfactory dys-
function, ApoE4 was shown to exacerbate AD-related pathol-
ogy by (i) increasing 3 pathway processing of full-length APP
and, therefore, A3 production; (ii) decreasing astrocyte- and
microglia-mediated A3 clearance; (iii) reducing neuroprotec-
tive Sirtuin T1 expression; (iv) inducing mitochondrial dys-
function and lysosomal leakage; (v) triggering Tau and APP
phosphorylation; (vi) inhibiting insulin signaling; and (vii)
inducing programmed cell death [23, 153, 176].

The correlation between ApoE and olfactory impairment
was also found in animal studies. Thus, ApoEfF mice exhib-
ited olfactory deficits in the buried food test, indicating that
ApoE deficiency or dysfunctionality may be related to olfac-
tion deficits [115, 175]. Interestingly, in vivo local field po-
tential recordings in the OB of 3—5-month-old ApoE "~ mice
revealed selective neural network hyperactivity in the gamma
frequency range, accompanied by an increased number of
adult-born and parvalbumin-expressing interneurons [175].

In humans, olfactory dysfunction is also significantly relat-
ed to insulin resistance [104]. On the other hand, the impair-
ment of the neuronal insulin signaling increases the concen-
tration of toxic A3 oligomers and hyperphosphorylation of
tau protein [11, 76]. The CNS insulin resistance may promote
AD by enhancing pathological phosphorylation of tau [76]
and production of Af4,, an aggregation-prone variant of A3
[113]. In aging mice, downregulation of insulin-like growth
factor production, a high level of which is related to impaired
glucose tolerance and a higher risk of type 2 diabetes in
humans [57], improves OB neurogenesis and olfactory mem-
ory [26]. In addition, treating 7-month-old APP/PS1 mice
with antidiabetics liraglutide decreased amyloid plaque load
and the level of soluble amyloid oligomers in the cortex, along
with prevention of the synapse loss and deterioration of syn-
aptic plasticity in the hippocampus, commonly observed in
this mouse model of AD [103].

Because the degree of adult neurogenesis in the OB corre-
lates with olfactory memory function [5, 16, 64, 99, 133, 155],
the aging- or AD-related olfactory impairment might in part
be caused by the impaired neurogenesis. Previous studies
have shown that middle-aged (12-month-old) mice have a
lower density of the subventricular zone—derived neuroblasts
in the OB and a lower stem cell activity in the subventricular
zone compared to young adult (2-month-old) mice [13].
Moreover, a decreased number of the olfactory receptor neu-
rons were found in the olfactory epithelium of aged (16-
month-old) mice [155], suggesting that age-related olfactory
impairment might be caused by the depletion of neural stem
cells, maintaining the population of the olfactory receptor neu-
rons. In young control mice, the experimentally induced abol-
ishment of the adult neurogenesis caused a drastic reduction in
the short-term olfactory memory leaving, however, the odor
discrimination ability and the long-term olfactory memory
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intact [16]. Both adult neurogenesis and short-term olfactory
memory are also impaired in AD mice [30, 37, 64, 159, 161,
174]. In 6.5-8-month-old Tg2576 mice, for example, this re-
duction was likely caused by poor migration and survival of
adult-born cells due to degeneration of the locus coeruleus and
a reduced expression of the polysialylated neuronal cell adhe-
sion molecule (PSA-NCAM) [64].

Taken together, these data reveal a plentitude of different,
often interdependent, mechanisms contributing to aging- and
AD-associated olfactory impairment in men and mice. The
latter include the activation of the innate immune system and
production of pro-inflammatory species, decreased trophic
support, impairment of adult neurogenesis in the olfactory
epithelium and the OB, and dysfunctional lipid and protein
homeostasis. The sheer amount of modulatory pathways in-
volved accounts for the enhanced sensitivity of the olfactory
system and enables it to serve as an early biomarker of aging-
associated damage or disease.
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