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Abstract

Primary aldosteronism (PA) is a common cause of secondary hypertension and is associated with worse cardiovascular
outcomes. The elevated aldosterone in PA leads to left ventricular (LV) remodeling and dysfunction. In recent decades,
clinical studies have demonstrated worse LV remodeling including increased LV mass and cardiac fibrosis in patients with
PA compared to patients with essential hypertension. Several mechanisms may explain the process of aldosterone-induced
LV remodeling, including directly profibrotic and hypertrophic effects of aldosterone on myocardium, increased reactive
oxygen species and profibrotic molecules, dysregulation of extracellular matrix metabolism, endothelium dysfunction and
circulatory macrophages activation. LV remodeling causes LV diastolic and systolic dysfunction, which may consequently
lead to clinical complications such as heart failure, atrial fibrillation, ischemic heart disease, and other vascular events.
Adequate treatment with adrenalectomy or medical therapy can improve LV remodeling and dysfunction in PA patients. In
this review, we discuss the mechanisms of aldosterone-induced LV remodeling and provide an up-to-date review of clinical
research about LV remodeling-related heart structural changes, cardiac dysfunction, and their clinical impacts on patients

with PA.

Introduction

Primary aldosteronism (PA) is an important cause of sec-
ondary hypertension, and its prevalence ranges from 5 to
15% of hypertension patients [1]. PA is characterized as
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excessive endogenous aldosterone production from adrenal
adenoma or hyperplasia, which is unresponsive to renin
regulation. Subsequently, the excess aldosterone can cause
more cardiovascular complications, including coronary
artery disease, myocardial infarction, stroke, transient
ischemic attack, atrial fibrillation and heart failure than in
patients with essential hypertension (EH) [2-8]. In addition,
it can also lead to cardiovascular remodeling and dysfunc-
tion [9-11]. Clinical studies have demonstrated that patients
with PA have more left ventricular (LV) remodeling
including increased LV mass and cardiac fibrosis than
patients with EH [12-17].

LV remodeling in PA includes two parts: LV hyper-
trophy (LVH) and fibrosis. LV remodeling is the result of
the response of cardiomyocytes, non-myocyte resident cells
and circulatory cells to cardiac injuries caused by various
stimuli, including aldosterone [18]. These molecular, cel-
lular, and interstitial alterations can lead to changes in car-
diac size, mass, geometry and function, and then to LV
remodeling [19] (Fig. 1). Furthermore, LV remodeling may
lead to both LV systolic and diastolic dysfunction, and also
to unfavorable outcomes including heart failure, atrial
fibrillation, and malignant arrhythmias [20].
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Fig. 1 There are three major mechanisms of alsosterone induced
LV remodeling including myocytes hyperthropathy, chronic
inflammation and ECM dysregulation. These detrimental effects
will induce LV hypertrophy and fibrosis and then cause LV systolic
and diastolic dysfunction. The salt will potentiate these effects. CT-1
cardiotrophin-1, ROS reactive oxygen species, ICAM intercellular
adhesion molecule, IL-6 interleukin-6, MMP matrix metalloproteinase,
TIMP-1 tissue inhibitor of metalloproteinases-1, LV left ventricle.

In this review, we discuss the mechanisms of
aldosterone-induced LV remodeling and provide an up-to-
date review of clinical research about LV remodeling-
related heart structural changes, cardiac dysfunction, and
their clinical impacts on patients with PA.

The mechanisms of LV remodeling in PA
patients

LV remodeling is a process of changes in LV size, shape,
texture, and function regulated by complex interactions
between several hemodynamic and non-hemodynamic
variables, including neurohormonal activation [21]. Clin-
ical studies have also demonstrated worse LVH and LV
fibrosis independently of hemodynamic effects in patients
with PA compared to those with EH [14-16], which
emphasizes the role of aldosterone in LV remodeling. Ani-
mal studies have shown that chronic increases in aldosterone
with high salt intake increase LVH and cardiac fibrosis,
which play important roles in LV remodeling [22-24].
Furthermore, Catena et al. demonstrated that urinary sodium
excretion was correlated with the degree of LV reverse
remodeling after both medical and surgical treatment in PA
patients [25]. These studies emphasized that dietary salt
intake plays an important role for LV remodeling [26] and
even after successful treatment for PA [25].

1. Mechanisms of aldosterone-induced LV
hypertrophy

Brilla et al. showed that aldosterone could directly stimulate
hypertrophy of neonatal rat ventricular cardiomyocytes

[27], and that this response was associated with increased
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mRNA levels of a- and p-myosin heavy chain. Further-
more, the authors showed that this response was associated
with the activation of mineralocorticoid receptors (MRs),
extracellular signal-regulated kinase (ERK), c-Jun N-term-
inal kinase and protein kinase C-a [27]. In human vascular
smooth muscle cells, Gros et al. showed that aldosterone
could mediate myosin light-chain phosphorylation in a
dose-dependent manner, and that this was inhibited by an
MR antagonist and phosphatidylinositol 3-kinase (PI3K)
inhibition [28]. On the other hand, cardiotrophin-1 (CT-1) is
a cytokine which can induce the hypertrophy of cardio-
myocytes, and has been shown to increase the expression of
myosin light chain and skeletal a-actin and enhance myosin
light chain phosphorylation [29]. The myocardial expres-
sion of CT-1 has been shown to be increased in aldosterone-
infusion mice with high salt intake [30]. Moreover, aldos-
terone has been shown to induce LVH in wild-type mice,
whereas CT-1-null mice have been shown to be resistant to
aldosterone-induced LVH and fibrosis [30]. Taken together,
these findings support the hypertrophic effects of aldoster-
one on the myocardium.

2. Mechanisms of aldosterone-induced LV fibrosis

Weber et al. first reported the aldosterone can cause cardiac
fibrosis in 1991 [31]. Subsequent basic and clinical studies
revealed that aldosterone promotes cardiac fibrosis through
complex mechanisms involving the activation of MRs and
glucocorticoid receptors (GRs) through genomic and non-
genomic pathways. The direct effects of aldosterone and its
complex intracellular pathways contribute to chronic
inflammation, dysregulation of extracellular matrix (ECM)
metabolism, and finally cardiac fibrosis.

Aldosterone induces chronic inflammation through
reactive oxygen species, pro-inflammatory
molecules and macrophages

Inflammation is an essential step for tissue repair, however
chronic inflammation will induce fibrosis. The chronic
administration of aldosterone with high salt intake has been
shown to induce inflammation and profibrotic responses in
the heart, vasculature, and kidneys [24, 32, 33]. The
mechanisms involved in this process include the formation
of reactive oxygen species (ROS) and increased expressions
of profibrotic and pro-inflammatory molecules [34-36].
ROS play an important role in the generation of LV
fibrosis. Aldosterone has been shown to increase nicotina-
mide adenine dinucleotide phosphate oxidase activity and
decrease the expression of glucose-6-phosphate dehy-
drogenase (G6PD), thereby increasing oxidative stress
[34, 35, 37-39]. In addition, aldosterone has been shown to
promote inflammation by stimulating the generation of
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ROS, which then activate pro-inflammatory transcription
factors such as nuclear factor kappa B [40]. Antioxidants
and MR antagonists can attenuate the inflammatory
response [34].

Macrophages also play a crucial role in aldosterone-
induced inflammation and fibrosis. Aldosterone with high
salt intake has been shown to activate MRs and increase the
expression of pro-inflammatory genes in macrophages [41].
In addition, the macrophage-specific MR knockout of the
gene encoding MRs has been shown to prevent cardiac
fibrosis induced by aldosterone in mice [42]. Aldosterone
also can increase the expression of intercellular adhesion
molecule on endothelial cells, which can then induce
macrophage infiltration and facilitate the inflammatory
process [43].

Aldosterone has been shown to stimulate the expression
of proinflammatory and profibrotic mediators such as
transforming growth factor-fl, plasminogen activator
inhibitor 1, endothelin 1, connective tissue growth factor,
placental growth factor, osteopontin, and galectin-3
[39, 44, 45]. Another pro-inflammatory biomarker, IL-6,
has been shown to be elevated in PA patients compared with
EH controls [36]. In addition, our previous study showed
that IL-6 plays an important role in aldosterone-induced
macrophage recruitment and consequent LV fibrosis
[36, 46]. These pro-inflammatory and profibrotic molecules
can cause chronic inflammation and cardiac fibrosis.

Dysregulation of extracellular matrix metabolism

Fibrosis occurs when collagen and matrix production
exceed their degradation by matrix metalloproteinases.
Abnormal fibroblast activation with the excess accumula-
tion of ECM protein causes fibrosis. Aldosterone promotes
collagen secretion and synthesis from cardiac myocytes and
fibroblasts through the activation of MRs, oxidative stress,
and chronic inflmmation [47-49]. In addition, aldosterone
has also been shown to activate GRs and further inhibit the
degradation of collagen, which then leads to cardiac fibrosis
[50]. Our previous study demonstrated that tissue inhibitor
of metalloproteinases-1 (TIMP-1) protein plays a crucial
role in this process [50]. Further studies are needed to
understand the role of GRs and their interactions with MRs
in cardiac fibrosis.

3. Role of cortisol excess in LV remodeling in PA
patients

Cortisol excess also contributes to LVH in PA patients. A
recent study revealed that glucocorticoid co-secretion was
frequently found in PA and contributes to associated
metabolic risk [51]. Interestingly, cortisol has much higher
circulating level compared with aldosterone. In tissue with

11p-hydroxysteroid dehydrogenase (11B-HSD2), the corti-
sol will be converted to MR-inactive cortisone and therefore
aldosterone can active the MRs [52, 53]. However, the
expression of 11B-HSD2 in cardiomyocytes is not abundant
and the most MRs in the cardiomyocytes are occupied by
cortisol [52, 54]. This has raised the attention of the effects
of cortisol in cardiac remodeling in PA [53]. The effects of
cortisol on MRs are bivalent and dynamic. Normally, it
occupies the MR as an antagonist. However, when the cells
have oxidative stress or damage, the cortisol becomes a MR
agonist and works as aldosterone [53, 55]. McQuarrie et al.
showed urinary corticosteroid excretion was associated with
cardiac remodeling in patients with chronic kidney disease
[56]. Adolf et al. demonstrated that elevated total gluco-
corticoid excretion was correlated with increased LVMI and
higher degree of reverse LV remodeling after PA treatment
[57]. Mihailidou et al. showed that glucocorticoid could
activate the cardiac MRs during experimental myocardial
infarction in rat model, which can be blocked by MR
antagonist instead of GR antagonist [55]. These studies
partially illustrated the role of excess glucocorticoid in PA
and LV remodeling. However, further studies are needed.

Left ventricular remodeling in PA- clinical
perspective

1. LV remodeling in PA patients and clinical tools for
evaluation

LV remodeling in PA patients manifests as changes in LV
morphology and structure, including increases in LV mass,
wall thickness, and concentric remodeling, and alterations in
LV texture, which present as increased LV myocardial
fibrosis. The clinical assessment of LV remodeling in
patients with PA requires many different diagnostic tools,
with a focus on echocardiography due to its non-
invasiveness and easy ready-to-use properties, and cardiac
magnetic resonance imaging (MRI), an ideal alternative
assessment method due to its accuracy and low inter-
operator variability, with other less commonly used methods
such as endomyocardial biopsy. A summary of studies on
PA, LV remodeling and related target treatment effects on
LV structure in comparison to controls is shown in Table 1.

2. Clinical studies of PA and treatment effects on
LVH

LVH in PA: clinical studies and treatment effects
PA is associated with a higher degree of LVH and increased
LV mass index (LVMI) compared to matched EH, and

treatment of PA is related to regression of LVH, as shown in
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Table 1 [2, 1215, 58-72]. In 1996, Rossi et al. investigated
well-matched PA and EH individuals, and found the sig-
nificant decreases of LV mass in PA patients who received
adrenalectomy [12]. Subsequently, many other studies also
reported similar findings [2, 13-15, 60-73]. A higher
degree and percentage of LVH has also been linked to
increased cardiovascular adverse events in PA patients
compared with EH controls [2]. In the long-term, treatment
of PA with surgical adrenalectomy and medical MR
antagonist therapy have both been reported to decrease
LVMI and regress LVH, with more rapid and obvious
effects with adrenalectomy [62]. Adrenalectomy has been
widely studied and been shown to significantly reduce LV
mass and effectively reverse LVH among PA patients
compared with EH controls [12, 62, 66, 68].

Factors affecting LV mass and LV mass regression in PA

Among PA patients, LVMI has been correlated with blood
pressure [12], serum potassium level [68], estimated glo-
merular filtration rate [74], and urine sodium levels [75].
Changes in systolic blood pressure (SBP), postoperative
SBP, pre-operative LVMI, and postoperative potassium
have been correlated with changes in LVMI [66, 68]. PA
has also been associated with LVH independently of the
effect from blood pressure. In 2008, Muiessan et al. further
investigated inappropriate LV mass derived from the ratio
of measured LVMI and predicted LVMI estimated using
body size and blood pressure, and found that PA patients
had a higher ratio of inappropriate LV mass than EH con-
trols regardless of the presence of a diagnosis of LVH [64].
An increased ratio of inappropriate LV mass represents the
pathogenesis of LVH beyond physiological compensation
of hypertension, which is associated with endocrinological
differences between PA patients and EH controls.

3. Clinical studies of PA and treatment effects on
myocardial fibrosis

Myocardial biopsy is the gold standard for studies of myo-
cardial fibrosis; however, it is limited by its invasiveness.
One recent study from Italy reported pathological findings
from endomyocardial biopsies in PA patients, and revealed
prominent myocardial hypertrophy and fibrosis, with rever-
sible water accumulation in the cytosol and organelles of
cardiomyocytes and microvascular smooth muscle cells after
adrenalectomy [76]. However, the small sample size limited
the clinical and statistical power with regards to proving an
increase in myocardial fibrosis due to PA. Clinically, myo-
cardial fibrosis in PA is mostly evaluated by echocardio-
graphy and cardiac MRI, in conjunction with serum
biomarkers that are elevated during increased myocardial
fibrosis, as listed in Table 1 [17, 36, 39, 67, 73, 76-82].

SPRINGER NATURE

Myocardial fibrosis in PA: echocardiography

Collagen content in the myocardium in an important
determinant of integrated backscatter in echocardiography
[83]. Recently, ultrasonic tissue characterization by cyclic
variation of integrated backscatter (CVIBS) has been used
as a non-invasive tool to assess myocardial fibrosis in
hypertensive patients [83]. In 2002, Rossi et al. was the first
to use echocardiography to evaluate myocardial fibrosis in
PA patients, and reported lower CVIBS signals in PA
patients compared with EH controls [77]. Our previous
study also showed that PA patients had lower CVIBS and
higher plasma carboxy-terminal propeptide of procollagen
type I (PICP, a fibrosis marker) compared to EH patients
[67]. In addition, we showed the reversal of CVIBS and
plasma PICP levels after adrenalectomy [67].

Myocardial fibrosis in PA: cardiac MRI

Myocardial fibrosis in PA also can be assessed by cardiac
MRI with gadolinium-enhanced imaging or other imaging
processing methods evaluating the texture of the myo-
cardium. PA patients have been shown to have a higher
fibrosis index, LV stiffness, and noninfarct-related fibrosis
compared with healthy volunteers or EH controls, while
only one small-sized study has reported conflicting data
[82]. Although no difference was found in myocardial
fibrosis after treatment in that study [82], it was limited by a
small sample size.

LV dysfunction in PA patients
1. LV diastolic dysfunction in PA

PA patients have been shown to have more severe diastolic
dysfunction than EH patients [78, 84]. To evaluate diastolic
dysfunction, Doppler echocardiography, tissue Doppler
imaging (TDI) and MRI are commonly used in current
clinical practice. Studies of diastolic dysfunction and related
target treatment effects in PA patients are summarized in
Tables 2 and 3.

Diastolic function evaluation in PA: Doppler
echocardiography

In animal models, rats subjected to aldosterone infusion and
salt intake [85] and transgenic (mRen2) 27 rats with an
excess serum aldosterone level [86] have been shown
to have impaired LV diastolic function by Doppler echo-
cardiography and MRI. The effect of aldosterone on dia-
stolic function in PA patients was first proposed by Rossi
et al. in 1996 [12] via measuring E/A integral ratio and atrial
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APA patients with significantly higher Ei/Ai and lower ACLVF

1 year post surgery; but not in medical treatment

Change of diastolic function

20 adrenalectomy & 6 medical treatment
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No significant improvement of diastolic function in both groups

24 adrenalectomy & 30 spironolactone

APA & idiopathic hyperaldosteronism

APA

E/A, DT
Ei/Ai
E/A

Catena et al. (2007) [62]
Lin et al. (2011) [67]

No significant difference

11 adrenalectomy

No significant difference in both groups

19 adrenalectomy & 41 medical

treatment

APA & BAH

Bernini et al. (2012) [131]

No significant difference

20 adrenalectomy

APA

Ei/Ai

Lin et al. (2012) [73]
Rossi et al. (2013) [97]

110 adrenalectomy & 70 medical DT significantly increased in surgical group but not in medical
treatment

APA & nonlateralized PA

DT, ACLVF

group; ACLVF significantly decreased in medical group but not

in surgical group

Significantly increased Em and decreased E/Em 1 year after

surgery

27 adrenalectomy

Em, E/Em APA

Hung et al. (2015) [84]

Significantly decrease of E/m in both groups 1 year after

treatment

15 adrenalectomy & 16 spironolactone

PA

E/Em

Indra et al. (2015) [95]

Significantly increase of Em & decrease of E/Em 1 year after

surgery

129 adrenalectomy

APA

Em, E/Em

Chang et al. (2019) [93]

APA aldosterone-producing adenomas, BAH bilateral adrenal hyperplasia, E/A E wave and A wave flow velocity ratio, DT E wave deceleration time, Em peak early diastolic velocity of mitral

annulus, ACLVF atrial contribution to left ventricular filling.

contribution to LV filling. However, these parameters are
influenced by preload [87] and result in inconsistent inter-
pretations. Our previous study showed no significant dif-
ference in E/A integral ratio between PA and EH patients
[73]. A more reliable parameter to evaluate diastolic func-
tion is necessary.

Diastolic function evaluation in PA: tissue Doppler imaging

A newer parameter obtained via TDI is E/Em (Em, peak
early diastolic velocity of mitral annulus), which has been
shown to be less preload-dependent [88, 89] and more
correlated with LV diastolic pressure than any other echo-
cardiographic parameter [90]. Some studies have used TDI
to investigate diastolic function in PA patients, however
they have included a small sample size, used healthy people
as the control group, or reported contrasting LVMI results
compared with previous studies [71, 72, 91]. In addition, in
these studies, the baseline blood pressure, antihypertensive
medications, and age were significantly different between
the two study groups. However, the severity of diastolic
dysfunction is proportional to blood pressure [92]. In our
recent study [93], we used propensity score matching ana-
lysis to mitigate the effect of blood pressure on diastolic
function between aldosterone-producing adenomas (APA)
and EH patients. There were 105 patients in each group
after matching, and the APA patients had significantly
worse diastolic function than the EH patients, as reflected
by a lower Em and higher E/Em. This indicated that the
effect of aldosterone on diastolic dysfunction was inde-
pendent of hemodynamic change.

Diastolic function evaluation in PA: cardiac MRI

Cardiac MRI is a standard tool to evaluate LV function via
LV volume qualification, and the time for deceleration
(Tdec) can be determined by LV volume-time curve as an
indicator of LV stiffness [94]. In our previous study [80], 25
patients with PA and 12 age-matched healthy volunteers
underwent cardiac MRI, which showed that the patients
with PA had a significantly shorter Tdec, indicating that
they had impaired diastolic function.

Treatment effect on diastolic function in patients with PA:
MR antagonist and adrenalectomy

A previous animal study [86] investigated the effect of an
MR antagonist on diastolic function using transgenic
(mRen2) 27 rats, which had high blood pressure, elevated
plasma aldosterone levels, and evidence of cardiac hyper-
trophy, fibrosis and diastolic dysfunction as evaluated by
MRI. The rats were treated with high and low doses of
spironolactone for 3 weeks, which resulted in the reversal of
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ventricular hypertrophy, fibrosis, and diastolic function
independently of changes in blood pressure. In a clinical
study including 31 patients with PA, 15 of the patients with
confirmed APA underwent adrenalectomy and the remain-
ing 16 patients took spironolactone for 1 year. The results
revealed improved diastolic function in both groups, as
evidenced by a decrease in E/Em [95].

For patients with APA, although adrenalectomy can
improve blood pressure control and reverse LVM
[12, 16, 62, 96] and myocardial fibrosis [67, 73], the
reversibility of diastolic dysfunction is still under debate
[62, 91, 97, 98]. In a previous study of adrenalectomy
among 110 PA patients, diastolic function as assessed by
prolongation of deceleration time (DT) significantly
improved, but there was no significant change in atrial
contribution to LV filling [97]. In another study of 24 PA
patients who underwent adrenalectomy, diastolic function
as assessed by E/A ratio and DT improved, but without
statistical significance [62]. In our recent study [93], dia-
stolic function improved after adrenalectomy in the APA
patients as evidenced by a significant increase in Em and
significant decrease in E/Em ratio. The improvement in
diastolic function after adrenalectomy was associated with
baseline E/Em and changes in LVMI after adrenalectomy.

2. LV systolic dysfunction in PA

Compared with studies of LV diastolic dysfunction, rela-
tively few studies have investigated LV systolic dysfunction
in PA. In the evaluation of systolic function, endocardial
measurements including LV ejection fraction (LVEF) and
endocardial fractional shortening (eFS), midwall fractional
shortening (mFS), TDI and strain echocardiography are
commonly used. Studies on systolic function measurement
in PA patients and treatment effect are summarized in
Table 4.

Systolic function evaluation in PA: endocardial
measurements

Most previous studies on systolic function as measured by
echocardiography have used endocardial parameters such as
LVEF or eFS and shown no difference between patients
with PA and EH [13-15, 61, 62, 64, 65, 68, 72, 77, 84, 99—
101]. Gaddam et al. also demonstrated that LVEF measured
by MRI was similar between patients with hyperaldoster-
onism and resistant hypertension with normal aldosterone
levels [102].

Systolic function evaluation in PA: midwall measurements

With regards to LV mFS, most studies have demonstrated
no difference between PA and EH patients [17, 61, 62, 99].

Only one study demonstrated that mFS was lower in PA
patients compared with EH patients, and further subgroup
analysis showed that the impairment in mFS was more
pronounced in PA patients with inappropriate LV mass
[64].

Systolic function evaluation in PA: tissue Doppler
echocardiography

In TDI, mitral annular systolic velocity can also be used to
detect the early signs of LV systolic dysfunction [103].
Galetta et al. found that PA patients had a lower mitral
annular systolic velocity (Sm) (at interventricular septum
and lateral wall levels) compared with EH patients and
normotensive healthy controls [78]. However, Choi et al.
found that baseline Sm was not different between patients
with higher and lower plasma aldosterone-to-renin ratio
(ARR) with a cut-off level of 30 [104]. Furthermore, they
found that exertional Sm was lower in the patients with a
higher ARR at 50-watts and peak exercise [104]. In sub-
group analysis, Hidaka et al. found that Sm showed no
difference between patients with APA and idiopathic
hyperaldosteronism [105].

Systolic function evaluation in PA: strain echocardiography

However, conventional measurements such as LVEF, eFS,
and mFS have limitations in assessing LV systolic perfor-
mance in hypertensive patients and patients with LVH
[106, 107]. Recently, speckle tracking echocardiography
has been used for quantitative assessments of LV systolic
performance by myocardial deformation, and it has been
shown to be a more sensitive tool to detect systolic dys-
function [108]. Among parameters of myocardial defor-
mation, longitudinal strain is considered to be the most
useful due to its clinical significance in patients with
structural remodeling in hypertensive heart disease [109].
In 2016, Cesari et al. reported a lower peak systolic
septal strain in PA patients than in patients without hyper-
tension, including normal healthy controls and patients with
secondary aldosteronism, in whom hyperaldosteronism was
due to a physiological response to reduced intravascular
volume or sodium status [71]. However, whether this LV
dysfunction was caused by an excess of aldosterone or
merely the effect of blood pressure was unclear [71]. In our
previous study, we found that PA patients had a lower
magnitude of global longitudinal strain compared to EH
patients with comparable blood pressure, which indicated
subclinical systolic dysfunction in PA patients [9]. This
finding suggested that the effect of aldosterone on systolic
function impairment was independent of hemodynamics.
Boulestreau et al. also reported similar results that were
compatible with our study [110]. In addition, Wang et al.
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demonstrated that PA patients (and especially APA
patients) had more impaired regional systolic function, as
measured by layer-specific strain echocardiography, com-
pared with EH patients [111].

Treatment effect on systolic function in patients with PA:
MR antagonist and adrenalectomy

With regards to the treatment effect of PA on cardiac
function, although both adrenalectomy and spironolactone
have been shown to be effective in reducing LV mass, no
significant changes in LVEF, eFS, or mFS have been shown
after treatment [62, 84, 91, 93, 112, 113]. To date, no strain
study has assessed the effect of treatment in PA patients.

Clinical consequence of LV remodeling

The process of LV remodeling involves LV fibrosis and
hypertrophy [61, 72]. These morphological changes will
further influence diastolic and systolic function to different
extents, causing subtle to overt cardiac failure. Prolonged
isovolumic LV relaxation, slower LV filling, and increased
diastolic LV stiffness contribute to increased LV wall stress
and the elevation of LV end diastolic pressure (LVEDP),
which are the central pathophysiological mechanisms of
heart failure with preserved ejection fraction [114]. If the
changes in cardiac structure become more serious in a
vicious cycle, this may further influence LV systolic per-
formance and even lead to heart failure with reduced ejec-
tion fraction [115]. Clinically, Savard et al. reported an
increased prevalence of heart failure in PA patients com-
pared with EH patients (4.1% vs. 1.2%) [5]. In addition, a
recent meta-analysis by Monticone et al. also showed a
twofold increased risk of heart failure in PA patients com-
pared to EH patients [7].

Moreover, LV remodeling with subclinical systolic
dysfunction and diastolic dysfunction, which further enlarge
the left atrium due to an elevated LVEDP, may be a crucial
determinant for increased arrhythmia. Dilatation of the left
atrium and increased volume have been correlated with the
pathogenesis of atrial fibrillation [116]. In addition, atrial
fibrosis, myocyte hypertrophy, and conduction disturbances
due to an excess of aldosterone have been shown to con-
tribute to a pro-arrthythmogenic effect [117]. A previous
study by Yang et al. reported a higher left atrium volume
index in PA patients compared with EH controls [72].
Wang et al. also demonstrated lower left atrial velocity,
strain and strain rate, and higher left atrial stiffness index in
PA patients than in EH controls [118]. From a clinical
aspect, emerging evidence has shown increased atrial
fibrillation in PA patients compared with EH patients
[2, 3,5, 6,97, 119]. According to the recent meta-analysis
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by Monticone et al., the odds ratio of atrial fibrillation in PA
to EH patients was 3.52 [7]. In our recent study regarding
APA patients using a health insurance database, the APA
patients who underwent adrenalectomy had a lower risk of
new-onset heart failure compared to EH patients [120]. In
contrast, the incidence was comparable between APA
patients who received medical treatment and EH patients
[120].

Moreover, LV mass has been reported to increase in
parallel with the progression of atherosclerosis, and this has
been independently related to the risk of subsequent cardi-
ovascular morbidity, including stroke and myocardial
infarction [121, 122]. LV hypertrophy-induced myocardial
dysfunction and ischemia has also been associated with the
occurrence of arrhythmia and heart failure [123]. In addition
to LV remodeling, aldosterone can cause vascular tone
dysfunction, vascular inflammation, atherosclerosis, and
vascular remodeling [124]. This damage caused by an
excess of aldosterone affects both cardiovascular and cere-
brovascular systems. Murata et al. showed that the increases
in cardiovascular and cerebrovascular risks in patients with
PA were related to plasma aldosterone level [125]. Many
studies have demonstrated a higher rate of cardio-
cerebrovascular complications, including coronary artery
disease, nonfatal myocardial infarction, stroke and transient
ischemic attack in PA patients than in EH controls [2, 3, 5—
7, 119, 126]. Our recent study also demonstrated similar
finding that PA patients who received adrenalectomy had a
comparable incidence of stroke compared to patients with
EH [127]. In contrast, the incidence was significantly higher
in PA patients who received medical treatment with an MR
antagonist compare to EH patients [127]. However, suffi-
cient MR blockage by MR antagonist also mitigates cardi-
ovascular risk in PA patients. Hundemer et al. demonstrated
that PA patients treated with MR antagonist had sig-
nificantly higher risk of cardiovascular events and mortality
compared with EH patients. The excess risk was limited to
PA patients whose renin activity remained suppressed (<1
pg/L per h) under MR antagonist treatment. In contrast, PA
patients who had unsuppressed renin (21 pg/L per h) under
MR antagonist treatment had no significant excess risk
[128]. Similarly, medically treated PA patients with sup-
pressed renin activity (insufficient MR blockade) had high
risk of atrial fibrillation compared with age-matched EH
patients. However, there was no associated risk in medically
treated PA patients with sufficient MR blockage and sur-
gically treated PA patients [129].

LV remodeling in PA patients can cause the subsequent
progression of heart failure, atrial fibrillation, ischemic heart
disease, and cerebrovascular accidents, which are associated
with worse clinical outcomes. LV hypertrophy has also
been identified as an independent risk factor for cardio-
vascular morbidity and mortality [122]. In addition,
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myocardial fibrosis has been adversely associated with
clinical outcomes [20]. All these studies emphasize the
importance and clinical impact of LV remodeling resulting
from hypertrophy and fibrosis in PA patients.

Conclusion

Aldosterone stimulates LV remodeling via cardiac fibrosis
and hypertrophy in patients with PA. The production of
ROS, inflammation, profibrotic mediators, collagen forma-
tion, myosin generation, and phosphorylation induced by
excess aldosterone contribute to LV remodeling. The
structural changes after LV remodeling are associated with
worse diastolic and systolic function and are associated with
worse clinical outcomes.
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