
ARTICLE

Optimal marker gene selection for cell type
discrimination in single cell analyses
Bianca Dumitrascu1,7, Soledad Villar2,3,7, Dustin G. Mixon4 & Barbara E. Engelhardt 5,6✉

Single-cell technologies characterize complex cell populations across multiple data modalities

at unprecedented scale and resolution. Multi-omic data for single cell gene expression, in situ

hybridization, or single cell chromatin states are increasingly available across diverse tissue

types. When isolating specific cell types from a sample of disassociated cells or performing

in situ sequencing in collections of heterogeneous cells, one challenging task is to select a

small set of informative markers that robustly enable the identification and discrimination of

specific cell types or cell states as precisely as possible. Given single cell RNA-seq data and a

set of cellular labels to discriminate, scGeneFit selects gene markers that jointly optimize cell

label recovery using label-aware compressive classification methods. This results in a sub-

stantially more robust and less redundant set of markers than existing methods, most of

which identify markers that separate each cell label from the rest. When applied to a data set

given a hierarchy of cell types as labels, the markers found by our method improves the

recovery of the cell type hierarchy with fewer markers than existing methods using a com-

putationally efficient and principled optimization.
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S ingle-cell RNA-seq (scRNA-seq) has generated a wealth of
data allowing researchers to measure and quantify RNA
levels in single cells at unprecedented scales1,2. These stu-

dies yield valuable insights regarding intrinsic properties of single
cells and specific cell types, which is critical to understanding cell
development and disease3. When coupled with other data mod-
alities, such as measurements of cell surface protein levels4 or
spatial transcriptomics5, a more precise and complex partition of
the cell type landscape emerges.

Three single-cell methodologies motivate our work. First,
scRNA-seq performs short read RNA sequencing on dis-
associated cells in a sample; a key goal of scRNA-seq analyses is to
label each of the cells in the sample with a precise cell type by
considering the genes that are expressed in the cell. Second,
single-molecule fluorescence in situ hybridization (smFISH)
approaches assay transcriptional data spatially6. These techniques
rely on fluorescent probes that bind near genes of interest to be
quantified called markers. When the marker genes bound by
probes are expressed above a threshold, fluorescence can be
detected using microscopy at the location of expression. Third,
sorting techniques such as fluorescence-activated cell sorting rely
on a small number of cell surface marker probes that can accu-
rately distinguish cell types according to differences in expression
of a small set of cell surface markers7. When a cell passes through
a flow cytometer to be sorted, the cell is labeled rapidly based on
these markers and sorted appropriately.

If we are to use these methods to visualize, characterize, and
distinguish cell labels among collections of heterogeneous cells, a
key challenge from these emerging technologies is to label each
assayed cell with a precise cell type or cell state label. To do this,
gene panels must be designed that allow us to distinguish between
cell labels both efficiently (with as few markers as possible) and at
high precision (discriminating similar cells with different labels).
The number of markers is experimentally constrained by the
product of the number of fluorescence channels and the number
of hybridization cycles5. In particular, state-of-the-art smFISH
methods use on the order of 40 markers. The task of optimally
choosing markers among all genes that most reliably and pre-
cisely distinguish cell labels given a hierarchical partitioning of
cell type labels is a combinatorially difficult problem.

Existing supervised approaches to marker selection are scarce
and only allow for the identification of markers that distinguish
each single-cell labels from all of the other cell labels in a sample
(one-vs-all)8–10. These methods identify markers that are differ-
entially expressed across two groups by comparing within-group
expression with across-group expression. One such method,
COMET10, exhaustively select sets of k markers that it then ranks
in a one-vs-all task. This has complexity Gk, where G is the
number of genes, and it quickly becomes infeasible as k reaches
even 4. In fact, COMET proposes at most four gene panels, thus
lacking both scalability and generalizability. Furthermore, these
approaches ignore both hierarchical relationships among cell
labels and correlations in expression patterns among genes. The
simplistic one-vs-all representation of cell labels to select markers
prevents a solution to the problem when the number of cell labels
is larger than the number of markers that can be used in an
experiment11.

In contrast, label hierarchy-aware approaches have the ability
to select markers that partition the labels at layers that are not
exclusively at the leaves of the hierarchy, allowing genes that are
robustly differentially expressed across a subset of cell labels to be
selected as markers. For a bifurcating tree representation of the
cell type hierarchy, the number of markers required is k-1, where
k is the number of cell labels (i.e., leaves in the hierarchical tree).
Yet, these markers will be redundant if the latent dimension of
the space spanned by the gene expression profiles of each cell type

is lower than the number of cell labels we aim to distinguish.
Assuming this is true, then a number of markers smaller than k is
needed to maintain the hierarchy.

To fill this methodological gap, we developed scGeneFit, a
rigorous and efficient approach for marker selection in the con-
text of scRNA-seq data with a given hierarchical partition of
labels. Our method draws from ideas in compressive classifica-
tion11 and largest margin nearest neighbor algorithms12,13.
scGeneFit shows good performance in both simulated data and in
scRNA-seq data. Where traditional approaches test the dis-
criminatory value of each gene separately, our approach jointly
recovers the optimal set of genes of a given size that allows robust
partitioning of the given labels. Our framework generalizes to
settings where the input label partition is captured in a hier-
archical, or tree-like, structure.

Results
Briefly, scGeneFit works as follows. Given samples (cells) in a high-
dimensional feature space (genes), and corresponding categorical
sample labels (e.g., cell type and cell state), label-aware compression
methods13 find a projection to a low-dimensional subspace, or the
space of selected markers, where the dimension is specified. Samples
with the same labels are closer in the low-dimensional space than
samples with different labels, when projected into the low-
dimensional space. To ensure that the low-dimensional results
enable marker selection, scGeneFit additionally constrains the
projection so that each of the subspace dimensions must be aligned
with a coordinate axis in the original space. With this constraint,
each dimension in the low-dimensional space—capturing a single
marker—corresponds to a single gene, and not a weighted linear
combination of many genes. Fortunately, this constraint eases the
computational challenge of the original projection problem, which
is intractable in its most general form. This optimization becomes a
linear program.

For input to our method, we use post-quality control scRNA-
seq data with unique molecular identifier counts, a target marker
set size, and a hierarchical taxonomy of cell labels. When cell
labels do not exist, labels may be inferred using a clustering
algorithm, or via another data modality4. Similarly, the label
hierarchy for input to our method can be expert-provided14, or
inferred via a hierarchical clustering algorithm. We assessed
scGeneFit’s performance in both simulated scenarios and existing
scRNA-seq data.

Spectral toy model. We first investigated the behavior of scGeneFit
in the context of simulated data that is often used to evaluate
methods for spectral clustering. Samples of dimension d+ 2 were
generated such that d features are each drawn from a Gaussian
distribution with mean zero and variance σ= 1, and two features,
encoding the desired clusters, represent the two-dimensional
coordinates on one of two concentric circles with different radii;
the cluster label represents whether the sample is on the inner or the
outer circle (Fig. 1A; see “Methods”). We found that scGeneFit
selected as markers the two features representing the circle coor-
dinates whenever the size of the target marker set was ≥2, enabling
the recovery of the sample labels. In contrast, methods that query
each of the features independently are not able to identify the two-
dimensional coordinates.

Heteroskedastic toy model. To illustrate that scGeneFit can
correctly identify multiple planted labels within the data, we
simulated data corresponding to fantasy gene expression profiles
from n= 1000 cells and d= 10,000 genes (Fig. 1B). We con-
sidered three different labelings of these n cells and assigned 250
genes as markers of each of three partitions and another 9250
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genes as non-markers. Within each of the three labelings, the 250
markers for each label were drawn from a multivariate Gaussian
with a 250 dimensional mean (a random sample with mean 0 and
variance 1), and a dense 250 × 250 covariance matrix. The non-
marker genes were drawn from univariate Gaussian distributions

with mean 0 and variance 1. Since the class labels depend on the
covariance structure, no individual group of genes considering
either mean or variance is predictive of class label. We set the
marker set size to 10 and include as input one of two labelings.
scGeneFit correctly recovers markers of the appropriate labeling.
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While there is no unique correct marker set, the probability of
randomly selecting a correct set of k markers is (250/10,000)k.

Synthetic multimodal gene expression. We next considered a
synthetic model based on the intuition that cell labels may be
defined by nonadditive gene interactions. We illustrate this
through simulations in which gene expression is multimodal, and
synthetic cell labels are defined in combinatorial ways, such as an
exclusive-or (xor) relationship among a pair of genes (Fig. 1C-i–v,
Table 1, and Supplementary Figs. 2–6).

For visualization purposes, we first simulated a small dataset of
synthetic gene expression profiles with three distinct functional
gene groups determining ten cell types. Data were simulated from
multivariate normal mixtures with means specified in Table 1 as
follows. A cell label is defined by a tuple of modes (Ai, Bj, Ck),
where i= 1, 2, 3, 4, j= 1, 2, and k= 1, 2, 3, 4. The gene
expression levels of each of the five markers were drawn from a
Gaussian distribution, where the mean is determined by the type
according to Table 1 (Fig. 1C).

We compared the performance of scGeneFit and one-vs-all in
terms of true positive and false positive rates, using receiver-
operating characteristic curves (Fig. 1C and Supplementary Figs.
3 and 4). While scGeneFit optimizes for joint cell label separation,
it is able to outperform one-vs-all for most synthetic cell labels in
one-vs-all tasks (which, by design, should be favorable to the one-
vs-all marker selection methods). The performance of scGeneFit

scales favorably with the number of markers used (Supplemen-
tary Figs. 3–6). This improvement is maintained when consider-
ing a larger simulation with 15 functional groups and 40 classes
across 1000 cells and 10,000 genes (Supplementary Information,
Supplementary Figs. 5 and 6). In this case, data were simulated
from both a multivariate normal model (Supplementary Fig. 5)
and a generalized multivariate normal model with a Poisson link
(Supplementary Fig. 6). In both cases, scGeneFit substantially
improved classification accuracy as the number of markers
increased. This means that not only does scGeneFit achieve
favorable accuracy with fewer markers when theoretically
possible, but scGeneFit also provides a principled approach for
the selection of informative markers, when the number of
markers allowed experimentally exceeds the number of classes we
wish to distinguish.

Markers for flat clustering. We studied the performance of
scGeneFit in the context of two scRNA-seq studies. To do this, we
applied scGeneFit to a cord blood mononuclear cell (CBMC)
study containing isolated cells from cord blood4. In total, 8584
single-cell expression profiles of CBMCs from the 500 most
variable genes from both human and mouse cell lines were
considered. For the cell type labels, we used the reported
transcriptome-based clustering that partitions CBMC types into B
cells, T cells, natural killer cells, monocytes (CD14+ and CD16
+), dendritic cells (DC, pDC), erythrocytes, and erythroblasts.
We found that the discovered marker sets were able to recover
nearly identical cell type partitions in the CBMCs. We explored
the space of marker set size close to the number of cell type labels,
and found that this number affects the ability to discriminate
among cell labels (Fig. 2A, B). We quantified the discriminatory
power of the identified marker set by performing k-nearest
neighbor clustering on the projections of cells in low-dimensional
marker space (see “Methods”). We found that the distinctions
between cell type labels are largely preserved in the reduced
dimensional space (Fig. 2B). scGeneFit achieved slightly better
performance with fewer markers than the curated marker set
based on differential association (8.05% scGeneFit label classifi-
cation error vs 9.90% curated marker set error in held-out data;
see “Methods”), and substantially outperformed a random mar-
ker set (30% error in held-out data).

Markers preserving hierarchical clustering. scGeneFit has simi-
larly good performance in the context of scRNA-seq data char-
acterizing mouse cortical cell type diversity14. Among the 48 cell
types, cells in the mouse somatosensory cortex are organized into a
hierarchy governed by five main neuronal and neuroglial types:
pyramidal neurons, interneurons, astrocytes, oligodendrocytes, and
microglia. We applied the hierarchical version of scGeneFit to
identify 30 marker genes that allow recovery of the hierarchical label
structure (Fig. 2C, D). Our marker selection technique enabled
accurate recovery of the hierarchy of cell labels. These results

Fig. 1 scGeneFit identifies markers associated with a flat partition of cell type labels when applied to a wide range of synthetic datasets. A Proof of
concept inspired by ref. 13; cells are color coded with labels. In simulated high-dimensional data, for each sample, two dimensions (x- and y-axes) are drawn
from concentric circles, and the remaining dimensions are drawn from white noise. The underlying structure is not apparent from the data (A-i).
Considering each dimension in isolation, marker selection fails to capture the true structure (A-ii,iii). In contrast, scGeneFit recovers the correct dimensions
as markers, and is able to recapitulate the label structure (A-iv). B Discriminative markers were correctly recovered by scGeneFit for simulated samples
drawn from mixtures of Gaussians corresponding to two distinct label sets with three (B-ii), and four (B-iii) labels, respectively. Each row is a single sample
and each column is a single feature or gene. Only 1000 genes of 10,000 are visualized, representing all the types simulated. The yellow lines correspond to
the markers selected by scGeneFit. C t-SNE visualizations of results from the functional group synthetic data (C-i–iv). ROC curves comparing the
performance of one-vs-all and scGeneFit in distinguishing cell labels following dimension reduction. scGeneFit outperforms one-vs-all in most cell labels
when using the same number of markers (C-v).

Table 1 In this example, we consider three functional groups,
A, B, C.

Functional group Subgroup G1 G2 G3 G4 G5

A A1 0 0 – – –
A2 0 1 – – –
A3 1 0 – – –
A4 1 1 – – –

B B1 – – 2 – –
B2 – – 3 – –

C C1 – – – 0 0
C2 – – – 2 0
C3 – – – 0 2
C4 – – – 2 2

Across all groups, we consider a homoskedastic variance σIk, with σ= 0.5, where I2 is the
identity matrix and k is the number of genes determining the group. Group A is determined by
two genes with multivariate normal gene expression with means [0, 0], [0, 1], [1, 0], and [1, 1],
group B is determined by one gene with multivariate normal gene expression means [2] (mode
B1) and [3] (mode B2). Similarly, group C is determined by two genes with multivariate normal
gene expression means [0, 0], [2, 0], [0, 2], and [2, 2]. Cell labels are identified through
functional group tuples (Ai, Bj, Ck). In this example, we have 32= 4 × 4 × 2 possible cell types.
For instance, if we consider the cell types T1= (A1, B1, C4) and T2= (A2, B2, C3) it would suffice
to use G3 as a marker to distinguish both cell types. However, if we consider all possible 32 cell
types, one needs all five genes to distinguish them. We use this functional groups example in
Fig. 1C and Supplementary Figs. 3 and 4.
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coincide with those obtained by considering >50% more markers in
the one-vs-all setup (Supplementary Information, Supplementary
Fig. 8). At the first level of the hierarchy, scGeneFit performed on
par with the one-vs-all method, slightly improving on identification
accuracy of the well understood astrocyte population (f1-score of
0.81 vs 0.74 in one-vs-all, Supplementary Information Table 4).

We compared the results obtained by scGeneFit at the second
layer of the hierarchy using 30 or 40 markers with the one-vs-all
method, using 48 markers (Supplementary Information). Our
method with 30 and 40 markers performed on par with the one-vs-
all method using 48 markers (classification error at the first layer of
the hierarchy on held-out cells: 8.75% (30), 6.44% (40), 9.74% (one-
vs-all); see Supplementary Table 2). In particular, scGeneFit
performed well in the astrocyte, pyramidal neuron, and oligoden-
drocyte subpopulations (Supplementary Table 4).

Discussion
In summary, we develop a method, scGeneFit, that identifies
markers to distinguish labeled cells given a structured partition
(flat partition or hierarchy) of cell labels. We show that scGeneFit
is able to accurately recover a set of markers of a prespecified size
and allows robust labeling of cell types in scRNA-seq data.
scGeneFit is able to handle more complex relationships among
class labels than a flat partition, making it the first approach to
exploit hierarchical label structure to robustly solve the marker
selection problem in an efficient and principled fashion. A key
underlying assumption common to both scGeneFit and existing
one-vs-all methods is that cell type classes are linearly separable,
which is a reasonable assumption in high dimensions, but may
not be true in lower dimensions. In future work, we plan to
depart from this assumption by considering a more general class
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profiles of cord blood mononuclear cells (CBMC) given a flat partition of labels4. AMean accuracy and variance of scGeneFit as a function of the number of
allowed markers. B t-SNE visualization of scGeneFit with 15 marker genes distinguishing 13 distinct cell populations. C Hierarchical clustering of brain
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of nonlinear dimension reduction methods. Furthermore, we
envision relaxing the categorical labeling to a manifold constraint
that will allow selection of markers to place unlabeled cells at, for
example, time points along cell trajectories or locations in spatial
assays.

Methods
scGeneFit. In the marker selection problem, xi 2 Rd is gene expression mea-
surements of the ith cell for d different genes. We assume the subset of the cells
used for training include labels.

Setup. We model the marker selection problem as a label-aware dimension
reduction method inspired by compressive classification and largest margin nearest
neighbor algorithms13. One such method, SqueezeFit, aims to find a projection
to the lowest-dimensional subspace for which samples with different labels
remain farther apart than samples with the same label. Consider a dataset D ¼
fðxi; yiÞgi2I in Rd ´ ½k�, here xi is a sample and yi is its corresponding label. We
denote ZðDÞ :¼ fxi � xj : i; j 2 I ; yi ≠ yjg as the vector difference between
samples with different labels.

The following optimization problem corresponds to finding the orthogonal
projection to the lowest-dimensional space that maintains a prescribed separation
Δ > 0 between samples with different labels:

minimize rank Π

s:t: k Πz k ≥Δ 8z 2 ZðDÞ; Π> ¼ Π; Π2 ¼ Π:
ð1Þ

Here, Π is the low-dimensional projection, and Δ > 0 is the desired minimum
distance between projected samples Πxi and Πxj with different labels. This
parameter reflects a fundamental tension in compressive classification: Δ should be
large so as to enable sufficient separation of samples with different labels in the
low-dimensional space, and simultaneously the projected space rank Π should be
of low dimension so that this projection effectively reduces the dimension of the
sample. To address the intractability of the optimization in Eq. (1), a convex
relaxation technique is used13:

minimize tr M

s:t: z>Mz ≥ Δ2 8z 2 ZðDÞ; 0 � M � I:
ð2Þ

The relaxation extends the feasible set from the set of orthogonal projections,
where optimization is intractable—matrices Π that satisfy the constraints in Eq. (1)
—to the set of positive semidefinite matrices—matrices M that satisfy the
constraints in Eq. (2)—where one can use standard optimization toolboxes to find
the global optimum in polynomial time15. The trace norm of M corresponds to the
ℓ1-norm of the vector of eigenvalues of M. Therefore, minimizing the trace norm
trM encourages M to be low rank16.

Marker selection. scGeneFit finds a prescribed number of gene markers, so that
when the samples are projected onto those marker dimensions they exhibit the
same separation of cells with different labels as in the original gene space. The
objective of selecting a handful of marker genes in mathematical terms translates to
finding a projection onto a subset of the coordinates; specifically, M is a diagonal
matrix with entries α1, …, αd. This constraint simplifies the optimization to a linear
program:

minimize kαk1
s:t:

Pd

j¼1
αjz

2
j ≥Δ

2 8z 2 ZðDÞ; 0≤ αj ≤ 1:
ð3Þ

The objective’s same ℓ1 trace norm promotes sparsity in the matrix M (ref. 16).
As a result, numerical experiments show that the solution of Eq. (3) is in fact
sparse, and the dimension of the projection—the number of selected markers—is
smaller than the dimension of the original space.

In order for this method to be useful in practice, we modify the optimization
formulation Eq. (3) to allow for outliers, and we specify the dimension of the
projected space (i.e., the number of markers) s, leading to the scGeneFit
optimization problem:

minimize kβk1
s:t:

Pd

j¼1
αjz

2
j ≥Δ

2 � βz 8z 2 ZðDÞ;

kαk1 ≤ s; 0 ≤ αi ≤ 1; βz ≥ 0:

ð4Þ

Here β is a slack vector that quantifies how much the margin between sets with
different labels is violated for each constraint17. β is indexed by the elements
z 2 ZðDÞ and its dimension equals that of the constraint set ZðDÞ.

Incorporating label hierarchies. Consider a hierarchical partition of the samples
denoted by Tσ, where σ is an ordered set of indices. Say Tσ 0 � Tσ , if σ is a prefix of
σ 0 (for instance Tijk⊂ Tij⊂ Ti, corresponding to a three-level hierarchy; see Fig. 3
for a concrete example).

When provided with the structured relationship of the labels, scGeneFit solves
the optimization problem (Eq. (4)), replacing the set of constraints ZðDÞ to ZT ðDÞ
to reflect the hierarchical information. In detail,

ZT ðDÞ :¼ fxi � xj : xi 2 Tσa; xj 2 Tσb; a≠ b; prefix σg ð5Þ

Alternative optimization constraints. The optimization problem described above
for scGeneFit is effective when the label structure is a flat (star shaped) hierarchy;
however, when the label structure has additional layers, we would like to add an
additional constraint to encourage labels that are closer in hierarchical space to also
be closer in the projected (marker) space. In particular, let I t be the set of indices
i∈ {1, …, n} of cell profiles with label t, and let nt be the number of cells in that set.
The projected center of the profiles labeled t is Πct, with ct ¼ 1

nt

P
i2I t

xi . The desired

constraints can thus be formally encoded as k Πxi � Πct0 k2� k Πxi � Πctk2 ≥Δ2, if
yi= t and t ≠ t0 .

The hierarchical scGeneFit objective encodes the intuition that the distance
between labeled cells should reflect the label distance in the given label hierarchy
(Supplementary Information). This is given by the linear program

minimize kβk1
s:t:

Pd

j¼1
αj ðxi � ct0 Þ2j � ðxi � ctÞ2j
h i

≥Δ2 � βi;t0

8t; t0 ≠ t; i 2 I t ; kαk1 ≤ s; 0≤ αi ≤ 1; βi;t0 ≥ 0;

ð6Þ

where, as before, β is a slack vector.

High-dimensional optimization. The optimization procedure allows the analysis
of thousands of genes at a time as follows. As before, let ct be the empirical gene
expression mean of a class t and consider constraints of the form constraints of the
form ∥ct− cs∥ > Δ. To insure that the number of constraints remains within the
order of the number of classes, we only consider constraints over the cells with
gene expression profiles closest to the cell type centroids in the lower-dimensional
space. Our current implementation finds 50 markers in a simulated dataset with
10,000 cells (40 synthetic cell labels), with 10,000 genes in ~15 min (using a
standard MacBook pro laptop)

Hyperparameter setting. In scGeneFit, the two main hyperparameters are: s (the
target number of markers) and Δ (the target separation of samples with different
labels or centers of different classes). In our code, we implement a dual annealing
method that optimize for the value of Δ for a given training set, test set, and
classifier. The other hyperparameters scGeneFit uses are set to make the problem
smaller in case the computational power doesn’t allow the user to run the opti-
mization in the entire dataset (like capping the number of constraints to be used or

Fig. 3 Example of hierarchical partition explaining the notation. In this
example, we have three classes (T1, T2, and T3) at the first level of the
hierarchy. At the second level of the hierarchy, T1 is divided into three
classes (T11, T12, and T13), and T2 is divided in two classes (T21 and T23).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-21453-4

6 NATURE COMMUNICATIONS |         (2021) 12:1186 | https://doi.org/10.1038/s41467-021-21453-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


sampling the dataset to generate fewer constraints). Such hyperparameters are fully
described in the Supplementary Material.

Optimization of the linear program and scalability. The optimization problem
(Eq. (4)) is a linear program that we solve with scipy linear programming solver
(scipy.opitimize.linprog). The computational bottleneck of the linear program is
the number of constraints in ZðDÞ, which a priori scales quadratically with the
number of cells. In order to resolve this issue and make the optimization more
efficient, we use several strategies. The simplest one is to select the most relevant
constraints in Eq. (4) by considering, for each sample, the K-nearest neighbors
from each of the other classes. Another strategy we use is to randomly select a
subsample, run scGeneFit on the subsample, and project the held-out samples
using the markers chosen on the subsample.

The most efficient strategy we use is to set constraints based on the empirical
centroids of clusters, as discussed in the high-dimensional example above.
However, such a strategy has the underlying assumption that classes are linearly
separable.

A detailed comparison among all variants of our method is documented in our
software release18.

Runtime. The computational complexity of linear programming is an open pro-
blem in optimization, but it is known to be asymptotically upper bounded by O
(N2.5), where N is the size of the problem (number of variables plus number of
constraints)19. For the particular experiments we perform, we solve scGeneFit with
4000 variables and 6000 constraints in <40 s, on Matlab 2018a running on an Intel
Xeon CPU 1.90 GHz using <4 Gb of memory.

Dataset description and preprocessing
Zeisel. Cells in the mouse somatosensory cortex (S1) and hippocampal CA1 region
were classified based on 3005 single-cell transcriptomes via scRNA-seq. The nine
major molecularly distinct classes of cells (layer 1) were obtained through a divisive
biclustering method, and corresponding subclasses of cells (layer 2) were obtained
through repeating the biclustering method within each major class14.

CBMC. The CBMCs were produced with CITE-seq4. Single-cell RNA data pro-
cessing and filtering were performed as specified in ref. 4. In particular, the data are
sparse and normalized by log 2ð1þ XÞ.

Evaluation metrics. In order to evaluate the performance of scGeneFit, we first
split the data in training (70%) and test (30%). We train a K-nearest neighbor
classifier on the training data (for K= 3, 5, 15) after projection to the corre-
sponding markers (computed on the entire dataset). We evaluate the classifier on
the test data and report the misclassification error with respect to the known classes
(Supplementary Table S1). We also evaluate the performance of k-means cluster-
ing, using k-means++, reporting the smallest misclassification error among ten
random initializations. For the hierarchical dataset in Zeisel, we evaluate the per-
formance at the second level. Finally, we provide precision, recall, and f1-metrics
for the classification tasks of both synthetic and real datasets (Supplementary
Information).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The processed data we used in the experiments is available in the scGeneFit-python
Github repository18, as well as the scGeneFit package distributed by the Python
Package Index.

Code availability
We produced a python package that implements the marker selection algorithm
described in this paper18. One can simply install the package pip install
scGeneFit. The code to conduct the simulations and reproduce the analyses is
available at https://github.com/solevillar/scGeneFit-python.
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