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Summary
A transcriptome-wide association study (TWAS) integrates data from genome-wide association studies and gene expression mapping

studies for investigating the gene regulatory mechanisms underlying diseases. Existing TWAS methods are primarily univariate in na-

ture, focusing on analyzing one outcome trait at a time. However, many complex traits are correlated with each other and share a com-

mon genetic basis. Consequently, analyzing multiple traits jointly through multivariate analysis can potentially improve the power of

TWASs. Here, we develop a method, moPMR-Egger (multiple outcome probabilistic Mendelian randomization with Egger assumption),

for analyzing multiple outcome traits in TWAS applications. moPMR-Egger examines one gene at a time, relies on its cis-SNPs that are in

potential linkage disequilibriumwith each other to serve as instrumental variables, and tests its causal effects onmultiple traits jointly. A

key feature of moPMR-Egger is its ability to test and control for potential horizontal pleiotropic effects from instruments, thus maxi-

mizing power while minimizing false associations for TWASs. In simulations, moPMR-Egger provides calibrated type I error control

for both causal effects testing and horizontal pleiotropic effects testing and is more powerful than existing univariate TWAS approaches

in detecting causal associations. We apply moPMR-Egger to analyze 11 traits from 5 trait categories in the UK Biobank. In the analysis,

moPMR-Egger identified 13.15% more gene associations than univariate approaches across trait categories and revealed distinct regula-

tory mechanisms underlying systolic and diastolic blood pressures.
Introduction

Transcriptome-wide association studies (TWASs) are widely

applied to integrate genome-wide association studies

(GWASs) with gene expression mapping studies for inves-

tigating the causal molecular mechanisms underlying dis-

eases and disease-related complex traits.1,2 While TWASs

were originally proposed either as a weighted SNP set

test2 or a test for various relationships among SNPs, gene

expression, and an outcome trait,1 TWASs are closely

related to Mendelian randomization (MR) analysis per its

detailed algorithmic formulation, with one of the out-

comes effectively testing the causal effect of a gene on

the GWAS trait by treating the cis-SNPs of the gene as its

instrumental variables.3,4 Many statistical methods have

been recently developed for TWASs and exemplary

methods include PrediXcan,2 TWAS,1 DPR,5 TIGAR,6

SMR,7 PMR-Egger,4 FOCUS,8 and UTMOST,9 to name a

few. Different TWAS methods differ in their ways of using

cis-SNPs (i.e., some use one cis-SNP7 while others use all cis-

SNPs), modeling SNP effects on gene expression (i.e., some

make a sparse effect assumption7 while others make

different polygenic modeling assumptions), fitting models

(i.e., some use a likelihood-based algorithm4 while others

use two-stage regression based algorithms), and account-

ing for horizontal pleiotropy (i.e., some account for it4

while others do not)—horizontal pleiotropy occurs when

genetic variants affect the GWAS trait through pathways

other than or in addition to the gene of focus and is partic-
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ularly important to control for as it is widespread in TWAS

applications.4

Despite the above technical differences, almost all exist-

ing TWAS methods are univariate in nature and analyze

one GWAS trait at a time. However, GWASs often collect

multiple correlated phenotypes10 that share a common

genetic basis.11 Indeed, many loci have been recently iden-

tified to have pleiotropic associations with multiple phe-

notypes. Exemplary pleiotropic gene associations include

CACNA1C (MIM: 114205) for both bipolar disorder

(MIM: 125480) and schizophrenia (MIM: 181500),12

SLC39A8 (MIM: 608732) for schizophrenia and Parkinson

disease (MIM: 168600),13 and RGS12 (MIM: 602512) for

serum lipids and inflammatory bowel disease (MIM:

266600).14 Consequently, performing multivariate anal-

ysis to test gene associations with multiple traits jointly

may lead to an appreciable power gain. The benefits of

multivariate analysis over univariate analysis have been

well documented in other analytic settings such as associ-

ation tests in GWASs.15–18 There, by modeling multiple

traits together, multivariate analysis can increase power

over univariate analysis in identifying pleiotropic loci

that affect multiple traits simultaneously. In addition, by

explicitly modeling phenotypic correlation, multivariate

analysis can also increase power over univariate analysis

to identify loci that affect only one trait, because of its abil-

ity to control for the other correlated traits. Therefore, it is

appealing to develop statistical methods for analyzing

multiple traits jointly for TWAS applications.
ine, Shandong University, Jinan, Shandong 250012, China; 2Department of

221004, China; 3Department of Biostatistics, University of Michigan, Ann

, Ann Arbor, MI 48109, USA

(X.Z.)

y 4, 2021

mailto:yuanzhongshang@sdu.edu.cn
mailto:xzhousph@umich.edu
https://doi.org/10.1016/j.ajhg.2020.12.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ajhg.2020.12.006&domain=pdf


Here, we develop such a method to identify genes asso-

ciated with multiple correlated traits in TWASs. Our

method builds upon a previously developed likelihood

inference framework for TWAS analysis4 and extends it to

analyze multiple outcome traits. Our method explicitly ac-

counts for the correlation structure among multiple traits,

accommodates cis-SNPs that are in linkage disequilibrium

(LD) with each other, relies on the widely used Egger

assumption to model horizontal pleiotropic effects, and

performs inference based on amaximum likelihood frame-

work. We refer to our method as the multiple outcome

probabilistic Mendelian randomization with Egger

assumption (moPMR-Egger). With simulations and real

data applications, we show that moPMR-Egger provides

calibrated type I error control for both causal effects testing

and horizontal pleiotropic effects testing, yields substan-

tial power gain over univariate approaches, and is compu-

tationally efficient for biobank scale datasets.
Material and Methods

moPMR-Egger Overview
Weprovide an overview ofmoPMR-Egger here, with its details sup-

plied in the Supplemental Material and Methods. moPMR-Egger is

developed for identifying genes causally associated with multiple

outcome traits in TWAS applications. moPMR-Egger builds upon

the two-sample MR framework, which aims to estimate and test

for the causal effect of an exposure on an outcome in the setting

where the exposure and outcome are measured in two separate

studies with no sample overlap. In the TWAS setting we consider

here, the exposure is gene expression level that is measured in a

gene expression study, while the outcomes are multiple correlated

quantitative traits that are measured in a GWAS. In moPMR-Egger,

we examine one gene at a time and treat its cis-SNPs as instru-

mental variables. With the instrumental variables, we estimate

and test the causal effects of the gene on multiple outcome traits

together. We do so by performing joint analysis of gene expression

andmultiple outcome traits in a likelihood framework while prop-

erly accounting for potential horizontal pleiotropic effects. An

illustrative diagram of the moPMR-Egger model is displayed in

Figure 1A.

Technically, we follow existing TWAS approaches and use all cis-

SNPs that are in LD with each other as instruments. We denote x

as an n1-vector of gene expression levels that are measured on n1
individuals in the gene expression study and denote Zx as an n1
by p matrix of genotypes for p instruments (i.e., cis-SNPs) in the

same study. We denote Y as a k by n2 matrix of k outcome traits

measured on n2 individuals in the GWAS and denote ZY as an n2
by p matrix of genotypes for the same p instruments there. We as-

sumex and each column ofYT ,Zx, andZY have all been standard-

ized to have a mean of zero and a standard derivation of one. We

consider three linear regressions to model the two studies

separately,

x¼1n1mx þ Zxbþ εx; (Equation 1)

~x¼1n2mx þ ZYbþ ε
~x
; (Equation 2)

Y ¼ ~mY1
T
n2

þ a~xT þ GZT
Y þ ~E; (Equation 3)
The America
where Equation 1 is for the gene expression study and Equations 2

and 3 are for the GWAS. Above, both mx (a scalar) and ~mY (a k-vec-

tor) are intercepts; ~x is an unobserved n2-vector of gene expression

for GWAS individuals; b is a p-vector of SNP effect sizes on gene

expression; a is a k-vector and represents the k causal effects of

gene expression on the k outcomes; G is a k by pmatrix of horizon-

tal pleiotropic effects, representing the pleiotropic effects of p in-

struments on the k outcomes; εx is an n1-vector of residual error

with each element independently and identically distributed

from a normal distribution Nð0;s2xÞ; ε~x is an n2-vector of residual

error with each element independently and identically distributed

from the same normal distribution Nð0;s2xÞ; and ~E is a k by n2 ma-

trix of residual error, with each column following a multivariate

normal distribution MVNk 0;Uð Þ, where U is a k by k covariance

matrix that accounts for the correlation structure among k out-

comes. Note that, while the above three equations are specified

based on two separate studies, they are joined together with the

common parameter b and the unobserved gene expression mea-

surements ~x. Equations 2 and 3 can also be combined into

Y ¼mY1
T
n2

þ aðZYbÞT þ GZT
Y þ E; (Equation 4)

where E ¼ aε~x
T þ ~E and mY ¼ amx þ ~mY : Importantly, we empha-

size that the above Equations 1, 2, 3, and 4 define a data generative

model, which determines how gene expression and outcome traits

are generated based on cis-SNPs. In addition, the inclusion of the

horizontal pleiotropic effects term GZT
Y in Equations 3 and 4,

when further paired with the equal horizontal pleiotropic effects

assumption made on G detailed below, effectively extends the

commonly used MR-Egger modeling framework19 toward accom-

modating multiple correlated instruments and multiple outcome

traits.

Because p is often larger than n1, we will need tomake additional

modeling assumptions on b to make the model identifiable. In

addition, we will need to make additional modeling assumptions

on G; otherwise the two instrumental effect terms defined in Equa-

tion 4—the vertical pleiotropic effects aðZYbÞT and the horizontal

pleiotropic effects GZT
Y—are also not identifiable from each other.

Here, we follow the standard omnigenic modeling assumption

and assume that all elements in b are non-zero and each follows

a normal distribution Nð0;s2bÞ. In addition, we follow the PMR-Eg-

ger assumption4 and assume equal horizontal pleiotropic effects

across SNPs for each trait i: Gij ¼ gi for j ¼ 1;/;p, with gi being a

scalar of horizontal pleiotropic effect. The assumption on equal

horizontal pleiotropic effects across SNPs on a trait is widely

applied in other TWAS8 and robust MR studies19,20 and is equiva-

lent to assuming G ¼ g1T
p , with 1p being a p-vector of ones and

g ¼ ðg1;/; gkÞT .
Our key parameters of interest in the above joint model are the

causal effects a of the gene on multiple outcome traits. The causal

interpretation and identification of a can be derived based on the

decision-theoretic framework of causal inference21–24 (details in

Supplemental Material and Methods). Such causal interpretation

of a requires at least two assumptions of MR to hold: (1) instru-

ments are associated with gene expression; (2) instruments are

not associated with any other confounders that may be associated

with both gene expression and each outcome. moPMR-Egger no

longer requires the general exclusion restriction condition of tradi-

tional MR (i.e., instruments only influence each outcome through

the path of gene expression), as we make an explicit modeling

assumption on the horizontal pleiotropy effects G. However, our

explicit modeling assumption on G follows (3) the InSIDE
n Journal of Human Genetics 108, 240–256, February 4, 2021 241
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Figure 1. A method schematic for
moPMR-Egger and illustration of its power
as compared to the univariate counterpart
in various scenarios
(A) moPMR-Egger applies to the TWAS
setting and attempts to estimate the causal
effects (a1,., ak) of gene expression (x) on
multiple traits of interest (y1,.,yk) in the
presence of confounding factors (U, not
shown) by using cis-SNPs (z) as instrumental
variables. moPMR-Egger relies on a joint
likelihood framework and effectively ac-
counts for the horizontal pleiotropy (g1,.,
gk) and the correlation among multiple
traits.
(B–G) Multi-trait modeling with moPMR-
Egger (pink) is beneficial under various sce-
narios as compared to univariate method
PMR-Egger that analyzes one trait at a time
(gray). Six scenarios are examined using
simple illustrative simulations on two traits
(y1, y2): gene affects two correlated traits,
with its causal effects on the two traits in
the opposite direction of trait correlation
(B); gene affects two uncorrelated traits
(C); gene affects two correlated traits, with
its causal effects on the two traits in the
same direction of trait correlation (D);
gene affects one of the two correlated traits
(E); gene affects one of the two uncorrelated
traits (F); or gene does not affect any trait
(G). In these scenarios, the gene has either
non-zero causal effects on two traits (two ar-
rows from gene to traits) or one trait (one ar-
row) or no trait (no arrow), with causal ef-
fects in the same direction (two dotted
arrows) or in the opposite direction (one
solid arrow and one dotted arrow) or in
either directions (two solid arrows). The
traits are positively correlated (solid dou-
ble-head arrows) or negative correlated
(dotted double-head arrows) or either
(dashed double-head arrows) or uncorre-
lated (no double-head arrows). y axis shows
power in (B)–(F) and type I error in (G). Type
I error is calculated as the percentage of dis-
coveries among 1 million null simulation
replicates. Power is calculated as the per-
centage of discoveries among the 1,000
alternative simulation replicates. For power
calculation, discoveries are declared based
on a Bonferroni corrected p value threshold:
0.05/1,000 for the multivariate approach
and 0.05/2,000 for the univariate approach
that tested each of the two traits separately.
assumption that the instrument-gene expression effects and in-

strument-outcome effects are independent of each other, which

is sometimes referred to as the weak exclusion restriction condi-

tion.19 Consequently, the causal effect interpretation of a depends

onMR assumptions as well as the other explicit modeling assump-

tions. Many of these assumptions are not testable in practice as an

exhaust list of confounding factors is often unknown. Therefore,

while we follow standard MR analysis and use the term ‘‘causal ef-

fect’’ throughout the text, we only intend to use this term to
242 The American Journal of Human Genetics 108, 240–256, Februar
emphasize that the a estimates here are more likely to be closer

to the causal estimates than the effect size estimates from a stan-

dard multivariate regression of Y on ~x.

In the above model, we are interested in estimating the causal

effects a and testing the null hypothesis H0 : a ¼ 0 in the presence

of the horizontal pleiotropic effects g. Rejecting the null hypoth-

esis of a ¼ 0 would suggest that the gene of focus has non-zero

causal effects on at least one trait. In addition, we are interested

in estimating the horizontal pleiotropic effect size g and testing
y 4, 2021



the null hypothesis H0 : g ¼ 0. Rejecting the null hypothesis of

g ¼ 0 would suggest that the cis-SNPs have non-zero horizontal

pleiotropic effects on at least one trait. We accomplish both tasks

under the maximum likelihood inference framework, in direct

contrast to the standard MR-Egger inference framework19 and

most previous TWAS approaches1,2,5 that use two-stage regres-

sion-based algorithms. Compared to the two-stage regression-

based algorithms, maximum likelihood-based inference can

properly account for the uncertainty in parameter estimates in

the first regression stage, thus potentially improving statistical po-

wer.4 To enable maximum likelihood-based inference, we develop

a parameter expansion version of the expectation maximization

(EM) algorithm by maximizing the joint likelihood defined based

on Equations 1 and 4 (details in the Supplemental Material and

Methods). The EM algorithm allows us to obtain the maximum

likelihood of the joint model, together with maximum likelihood

estimates for both a and g. In addition to the joint model, we

apply the EM algorithm to two reduced models, one without a

and the other without g, to obtain the corresponding maximum

likelihoods there. Afterward, we perform likelihood ratio tests for

either H0 : a ¼ 0 or H0 : g ¼ 0, by contrasting themaximum likeli-

hood obtained from the joint model to that obtained from each of

the two reduced models, respectively.

We refer to our model and algorithm together as the two-sample

probabilistic Mendelian randomization with Egger regression for

multiple outcomes (moPMR-Egger). The term ‘‘mo’’ is referred to

the modeling of multiple outcomes of interest. The term ‘‘probabi-

listic’’ is referred to the data generative nature of ourmodel and the

maximum likelihood inference procedure as explained above. The

term ‘‘Egger’’ is referred to the horizontal pleiotropic assumption

made on G that effectively generalizes the MR-Egger regression

assumption to both correlated instruments and multiple

outcomes.

Extensions to summary statistics
While we have presented moPMR-Egger based on individual-level

data, moPMR-Egger can be easily extended to perform inference

using summary statistics only. To do so, we denote S1 as the

SNP-SNP correlation matrix (i.e., LDmatrix) among cis-SNPs of

the gene of focus in the gene expression study. We denote S2 as

the corresponding SNP correlation matrix in the GWAS data.

Both matrices are of dimensionality p by p and are positive semi-

definite. Note that both S1 and S2 can be estimated using individ-

uals of corresponding ethnicity from an LD reference panel (e.g.,

the 1000 Genomes project). With the definition of S1 and S2,

we can re-express the moPMR-Egger model in terms of summary

statistics as

bbx ¼S1bþ ex; (Equation 5)

bBy ¼aðS2bÞT þ GS2 þ Ey ; (Equation 6)

where bbx is a p-vector of estimates for the standardized marginal

SNP effect sizes on the gene expression; bBy is a k by p matrix of

estimates for the standardized marginal SNP effect sizes on the k

outcomes; ex is a p-vector of estimation errors that follow a multi-

variate normal distribution Nð0;S1s
2
x =ðn1 � 1ÞÞ; and Eyis a k by p

matrix of estimation errors that follow a matrix normal distribu-

tion MNð0;U;S2 =ðn2 �1ÞÞ with U being a k by k row covariance

matrix and S2=ðn2 �1Þ being a p by p column covariance matrix.

Again, the matrix U is used to model the covariance structure

among multiple correlated outcome traits. We adapt our EM algo-
The America
rithm for individual-level data to perform estimation and infer-

ence using summary statistics (details in the Supplemental Mate-

rial and Methods). The estimation and inference procedures are

all based on the maximum likelihood framework and are largely

similar to what has been described in the previous section.
Simulations
We performed cross-gene based simulations to assess the perfor-

mance of moPMR-Egger and compare it with existing approaches.

To do so, we randomly selected 10,000 genes from GEUVADIS.25

We extracted cis-SNPs for these 10,000 genes, obtaining a median

of 576 cis-SNPs per gene (min¼ 11; max¼ 7,409). For each gene in

turn, we simulated the gene expression level and the outcome

traits using the genotype data obtained from the gene expression

study and the GWAS, respectively. Specifically, we first obtained

genotypes for p cis-SNPs of the gene of focus from the GEUVADIS

data. We standardized the genotype vector of each SNP to have a

zero mean and a unit standard deviation. With the standardized

genotype matrix Zx, we simulated the SNP effect sizes b from a

normal distribution Nð0; PVEzx =pÞ, where PVEzx represents the

proportion of gene expression variance explained by genetic ef-

fects. We summed the genetic effects across all cis-SNPs as Zxb.

In addition, we simulated the residual errors εx from a normal dis-

tribution Nð0; 1 � PVEzxÞ. We finally summed the genetic effects

and residual errors to yield the simulated gene expression level.

Next, we obtained genotypes ZY for the same p SNPs from 2,000

randomly selected control individuals in the Kaiser Permanente/

UCSF Genetic Epidemiology Research Study on Adult Health and

Aging (GERA).26,27 We standardized the genotype vector of each

SNP to have a zero mean and a unit standard deviation. With the

standardized genotype matrix ZY , we simulated the causal effects

of the gene of focus on four outcome traits. Specifically, we used

the same SNP effect sizes b in the gene expression data and set

the four causal effects a1;a2;a3;a4ð ÞT ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PVEzy=PVEzx

p
. Here,

PVEzy is a vector of size four and each of its elements represents

the proportion of phenotypic variance explained by the causal ef-

fect of SNPs for the corresponding phenotype. Afterward, we simu-

lated the residual errors for the four phenotypes for each individual

from a multivariate normal distributionMVNð0;UÞ, where we used

the correlationmatrix of four lipid traits (total cholesterol [TC], low-

density lipoprotein [LDL], high-density lipoprotein [HDL], and tri-

glyceride [TG]) calculated in theNFBC1966 database28 to serve asU.

Specifically, the correlations are 0.13 between TC andHDL, 0.88 be-

tween TC and LDL, 0.41 between TC and TG, 0.09 between HDL

and LDL, �0.44 between HDL and TG, and 0.29 between LDL

and TG (Table S1). We also simulated the horizontal pleiotropic ef-

fects g of these SNPs on the four traits, with details described in the

next paragraph. We finally summed the horizontal pleiotropic ef-

fects, vertical pleiotropic effects, and residual errors to yield the

four simulated traits.

In the simulations, we first examined a baseline simulation

setting where we set n1 ¼ 465, n2 ¼ 2,000, PVEzx ¼ 10%, and

PVEzy ¼ (0,0,0,0)T, with all Gkj ¼ 0 k ¼ 1;/;4; j ¼ 1;/; pð Þ. On

top of the baseline setting, we varied one parameter at a time to

examine the influence of various parameters. For PVEzx, we set it

to be either 1%, 5%, or 10%; the last value is close to the median

gene expression heritability estimates across genes.29,30 For b, we

examined alternative SNP effect size distributions that deviate

from the omnigenic assumption. Specifically, we considered

sparse settings where we randomly selected either one SNP or

three SNPs to have non-zero effects on gene expression, as well
n Journal of Human Genetics 108, 240–256, February 4, 2021 243



as polygenic settings where 1% or 10% of the SNPs were randomly

selected to have non-zero effects. Again, these non-zero effects

were simulated from a normal distribution to explain a fixed

PVEzx. For the horizontal pleiotropic effects G, for each trait in

turn, the trait-specific horizontal pleiotropic effect size is

randomly selected for each gene among five choices: 0, small

(1 3 10�4), moderate (5 3 10�4, 1 3 10�3), or large (2 3 10�3),

which corresponds approximately to the 0%, 50%, 70%, 90%, or

95% quantiles of horizontal pleiotropic effect estimates from real

data,4 respectively. Note that the large horizontal pleiotropic effect

of 2 3 10�3 is also large in our real data applications: across 11

analyzed traits, on average, only 5.27 genes among 13,513 genes

have an absolute horizontal pleiotropic effect size greater than

23 10�3 (Figure S1). The same trait-specific horizontal pleiotropic

effect is assigned to all SNPs with non-zero horizontal pleiotropic

effects. The proportion of non-zero effect SNPs for each trait is

further determined randomly with replacement from five choices

(0%, 10%, 30%, 50%, or 100%) and thus may vary across genes

and traits. In addition, we examined directional pleiotropy setting

(the ratio of SNPs with negative versus positive horizontal pleio-

tropic effects is 0:10), approximately directional pleiotropy set-

tings (1:9 or 3:7), and balanced pleiotropy setting (5:5). For U, in

addition to using the estimatedU from the real data, we also exam-

ined settings where U is an identity matrix and where U has an

exponential covariance structure with each element Ui;j ¼ rji�jj

with r being either 0.5, 0.7, or 0.9. The trait correlation in the

exponential covariance structure ranges from 0.125 to 0.9, closely

resembling the estimates obtained from real data (Table S1). We

also examined the setting where b are correlated. In this setting,

we simulated the SNP effects on gene expression from a multivar-

iate normal distribution with covariance matrix wS. Here, S is the

LD matrix among SNPs and w is a scalar that is chosen to ensure

that PVEzx equals to 10%. For PVEzy, in addition to the baseline

setting with zero causal effects, we also examined homogeneous

causal effect settings and heterogeneous causal effect settings. In

the homogeneous causal effect settings, we set all elements of

PVEzy to the same value v, with v being either 0.5%/4, 1%/4,

1.5%/4, or 2%/4 in different settings. In the heterogeneous causal

effect settings, we set the first element of PVEzy as v and the other

elements of PVEzy as 0.15v, 0.85v, and 0.50v, respectively, with v

being either 0.5%, 1%, 1.5%, or 2% in different settings. In terms

of causal effect size direction, we randomly selected one, two,

three, or four traits to be affected by gene expression both in the

homogeneous and heterogeneous causal effect settings. When

the gene expression affected two phenotypes, its effect on one of

the two traits was in the opposite direction of its effect on the

other. When the gene expression affected three phenotypes, its ef-

fects on two randomly selected traits were in the opposite direc-

tion of its effect on the third trait. When the gene expression

affected four phenotypes, its effects on two or three randomly

selected traits were in the opposite direction of its effects on the

other two or one trait.

For type I error control examination, we performed 10,000

simulation replicates for each simulation scenario described

above. For power calculation, we examined two different ap-

proaches depending on the methods we compare to (more details

in the next section). In the first approach, we performed 1,000

alternative simulations and compared power based on a Bonfer-

roni corrected p value threshold (0.05/1,000 for the multivariate

approach and 0.05/4,000 for the univariate approaches that tested

each of the four traits separately). In the second approach, we per-

formed 100 alternative simulations together with 900 null simula-
244 The American Journal of Human Genetics 108, 240–256, Februar
tions for each simulation scenario and calculated power based on a

false discovery rate (FDR) of 0.05. While we mainly focus on using

individual-level data for simulations, we also validate the imple-

mentation of the summary statistics based moPMR-Egger in a sub-

set of simulations (details in Discussion).

Besides the above comprehensive simulations, we also conduct-

ed a set of simple simulations on two traits to illustrate the benefits

of multivariatemodeling over univariatemodeling. Here, we set n1
¼ 465, n2 ¼ 2,000, PVEzx ¼ 10%, and g ¼ ð0:0001;0:0005ÞT , and
set the correlation between the two traits to be either 0.66 (corre-

lated) or 0 (independent). The value 0.66 corresponds to the corre-

lation estimate between systolic blood pressure (SBP) and diastolic

blood pressure (DBP) in UK Biobank (Table S1). In the simulations,

we examined three causal effect settings: a setting where the gene

causally affects both traits with PVEzy ¼ (0.01,0.01)T, with effect

sizes either in the same direction or in the opposite direction; a

setting where the gene causally affects one trait with PVEzy ¼
(0.01,0)T; and a null setting where the gene affects neither traits

causally with PVEzy ¼ (0,0)T. In total, we examined six simulation

scenarios that combine three causal effects settings and two trait

correlation settings. We performed 1,000 simulation replicates

for each alternative scenario for comparing power at the Bonfer-

roni thresholds and performed 1 million simulation replicates

for each null scenario for examining type I error control. We

only compared moPMR-Egger with the univariate method PMR-

Egger in these simple simulations for illustrative purposes.
Compared Methods
No other multivariate methods have been developed so far for

analyzing multiple traits in TWAS applications. Therefore, we

examined three univariate TWAS methods that include the

following. (1) PMR-Egger, which tests and controls for horizontal

pleiotropy using multiple correlated instruments, for which we

used all cis-SNPs for the model and used PMR_individual function

implemented in the R package PMR to test the causal effect and

pleiotropic effect. (2) PrediXcan, which uses multiple correlated

instruments but does not control for horizontal pleiotropy. For

PrediXcan, we used all cis-SNPs for the model and used ElasticNet

implemented in the R package glmnet to obtain the coefficient es-

timates for the cis-SNP effects on gene expression. (3) TWAS,

which uses multiple correlated instruments but does not control

for horizontal pleiotropy. For TWAS, we used all cis-SNPs for the

model and used BSLMM31 implemented in the GEMMA32 soft-

ware to obtain coefficient estimates for the cis-SNP effects on

gene expression. All these methods are suitable for two-sample

design and yield p values for testing the causal effects. These three

methods differ in their prior assumptions on b: PrediXcan relies

on the ElasticNet assumption; TWAS relies on the BSLMM31

assumption; and PMR-Egger relies on the normal assumption. In

addition, PrediXcan and TWAS rely on a two-stage regression pro-

cedure while PMR-Egger is based on maximum likelihood. In the

analysis, we applied each univariate TWAS method to analyze

one trait at a time. We then declared gene association significance

based on a Bonferroni corrected p value threshold that adjusted for

both the number of genes tested and the number of traits tested.

We also modified the above three univariate TWAS methods

into ad hoc multivariate TWAS procedures for analyzing multiple

outcome traits. Specifically, for each univariate method, we exam-

ined one gene at a time and obtained the minimal p value across

multiple traits to serve as the association evidence for the gene

of focus. Because the null distribution of minimum p values is
y 4, 2021



not trivial to obtain, we compared the power of these minimal p

value approaches based on FDR. Specifically, for simulations, we

computed the power of different methods based on an FDR cutoff

of 0.05. For real data applications, we first performed 10 random

permutations on the individuals while maintaining the correla-

tion among traits. We then applied each method on the permuted

data to obtain the null distribution of minimum p values, with

which we calculated empirical FDR and declared gene association

significance based on an FDR cutoff of 0.05.

Besides the above methods, we also compared moPMR-Egger

with TWMR33 in simulations. TWMR is a two-stage based MR

method that incorporates multiple genes as exposure variables.

TWMR analyzes one outcome trait at a time and uses only inde-

pendent SNPs to serve as instruments. Here, we considered both

the standard univariate procedure of TWMR for analyzing one

trait a time and the minimum p value procedure of TWMR similar

to what is described above for multiple trait analysis.We examined

the type I error control of TWMR in the baseline simulation set-

tings, with parameters n1 ¼ 465, n2 ¼ 2,000, PVEzx ¼ 10%, PVEzy

¼ (0,0,0,0)T, and g ¼ ð0;0;0;0ÞT in the absence of horizontal plei-

otropy or g ¼ ð1310�4;5310�4;1310�3;2310�3ÞT in the pres-

ence of horizontal pleiotropy. We also assessed power of TWMR

for testing causal effects in alternative simulation settings using

the minimum p value approach of TWMR in the homogeneous

causal effects settings where each element of PVEzy is set to be

2%/4. In the TWMR analysis, we examined one gene at a time

while controlling for its neighboring genes as covariates. To do

so, following Porcu et al.,33 for each gene in turn, we used PLINK

software34 (v.1.90b6.13) to perform linear regression analysis on

its cis-SNPs and obtain cis-SNPs that are significantly associated

with gene expression level at an FDR threshold of 0.05. We termed

these significant cis-SNPs as cis-eQTLs. Next, we retained genes

that have at least one cis-eQTL and retained SNPs that are cis-

eQTLs for at least one of these genes for analysis. We further

pruned these SNPs using PLINK (with r2 < 0:1, which is the

default setting recommended in TWMR) to retain an independent

set of SNPs to serve as instruments. Due to these stringent filtering

steps required by TWMR,33 we were only able to analyze an

average of 81.61% of genes in the simulations. TWMR results are

described in the Discussion section.
Real data applications
We applied moPMR-Egger to perform multi-trait TWAS by inte-

grating gene expression data from GEUVADIS25 with GWASs

from UK Biobank.35 Specifically, we obtained the GEUVADIS

data as the gene expression data and examined 11 traits from

the UK Biobank. The traits were selected based on previous

studies36,37 and all traits have a SNP heritability greater than 0.2.

These outcome traits can be roughly divided into the following

five trait categories: (1) blood pressure (SBP and DBP), (2) physical

measures including height (MIM: 606255), body mass index (BMI

[MIM: 606641]), forced vital capacity (FVC), and FEV1-FVC ratio,

(3) blood count (platelet count, red blood cell count, eosinophils

count, and white blood cell count), (4) white blood cell indices

(eosinophils count and white blood cell count), and (5) red blood

cell indices (red blood cell count and red blood cell distribution

width [RDW]). Note that the white blood cell indices category rep-

resents a subset of the blood count category. The correlations

among all analyzed trait pairs within each category are listed in Ta-

ble S1. For each of these five trait categories in turn, we applied

moPMR-Egger and the univariate approach PMR-Egger to analyze
The America
the traits in the trait category. The detailed data processing steps

for the GEUVADIS data and UK Biobank data are described below.

The GEUVADIS data25 contains gene expression measurements

for 465 individuals collected from five different populations that

include CEPH (CEU), Finns (FIN), British (GBR), Toscani (TSI),

and Yoruba (YRI). In the expression data, we only focused on pro-

tein coding genes and lincRNAs that are annotated in GENCODE

(release 12).38,39 Among these genes, we removed lowly expressed

genes that have zero counts in at least half of the individuals to

obtain a final set of 15,810 genes. We performed PEER normaliza-

tion to remove confounding effects and unwanted variations

following previous studies.5,40 Afterward, following Zeng and

Zhou,5 to remove the remaining population stratification, we

quantile normalized the gene expression measurements across in-

dividuals in each population to a standard normal distribution,

and then further quantile normalized the gene expression mea-

surements to a standard normal distribution across individuals

from all five populations. Besides the expression data, all individ-

uals in GEUVADIS also have their genotypes sequenced in the

1000 Genomes Project. We obtained genotype data from the

1000 Genomes Project phase 3. We filtered out SNPs that have a

Hardy-Weinberg equilibrium (HWE) p value < 10�4, a genotype

call rate < 95%, or a minor allele frequency (MAF) < 0.01. We re-

tained a total of 7,072,917 SNPs for analysis.

The UK Biobank data consists of 487,298 individuals and

92,693,895 imputed SNPs.35 We followed the same sample QC

procedure in Neale lab (Web Resources) to retain a total of

337,129 individuals of European ancestry. We filtered out SNPs

with an HWE p value < 10�7, a genotype call rate < 95%, or an

MAF < 0.001 to obtain a total of 13,876,958 SNPs. For each trait

in turn, we regressed the resulting standardized phenotypes on

sex and top ten genotype principal components (PCs) to obtain

the residuals, standardized the residuals to have a mean of zero

and a standard deviation of one, and finally used these scaled re-

siduals to conduct TWAS analysis.

We integrated the GEUVADIS data with GWASs from UK Bio-

bank for TWAS analysis. For each gene in turn in the GEUVADIS

data, we extracted cis-SNPs that are within either 100 kb upstream

of the transcription start site (TSS) or 100 kb downstream of the

transcription end site (TES). We overlapped these SNPs in GEUVA-

DIS with the SNPs obtained from UK Biobank to obtain common

sets of SNPs. The mean number of the overlapped cis-SNPs

between GEUVADIS and UK Biobank is 497 (median ¼ 443, min

¼ 1, max ¼ 8,085). Afterward, for each pair of gene (from GEUVA-

DIS) and trait category (from GWAS) in turn, we run the multivar-

iate approachmoPMR-Egger and the univariate approach PMR-Eg-

ger to examine the causal relationship between gene expression

and multiple traits in the category. For comparison between

moPMR-Egger and PMR-Egger, we declared significance based on

the corresponding Bonferroni corrected thresholds: 0.05/15,810

for moPMR-Egger and 0.05/(15,810*k) for PMR-Egger, where k is

the number of the outcome traits in the specific category.

Among the five trait categories, we focused on the blood pres-

sure category further for an in-depth analysis. The blood pressure

category contains two traits, SBP and DBP, with an estimated cor-

relation of 0.66 between them. Blood pressure is a complex trait

with heritability estimated in the range of 0.3–0.5.36 Many large-

scale GWASs have been conducted to investigate the genetic archi-

tecture underlying blood pressure.41–45 Elevated blood pressure is a

strong and modifiable46–49 driver for risk of stroke (MIM: 601367)

and coronary artery disease (MIM: 608320), which are leading

causes of mortality and morbidity globally.50,51 For the blood
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pressure category, in addition tomoPMR-Egger and PMR-Egger, we

also applied the minimum p value approaches of PMR-Egger,

TWAS and PrediXcan. For these minimum p value approaches,

we applied each method to examine one gene at a time. For

each gene in turn, we analyzed each trait in the trait category sepa-

rately and obtained the minimum p value across these traits as the

association evidence for the gene of focus. We performed 10

random permutations of individuals to obtain a null distribution

of minimum p values, with which we calculated FDR. Note that

the correlation between the two phenotypes remains after such

permutation. In the moPMR-Egger analysis, we also divided the

identified genes based on their effect sizes on the two traits into

two gene groups: genes that have the same effect signs on both

traits and genes that have opposite effect signs on both traits.

We examined these two gene sets carefully by performing gene

set enrichment analysis using the Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways with the

clusterprofiler R package.52 We declared gene set significance

based on a q-value threshold of 0.05.

For the in-depth analysis of the blood pressure category traits,

we also considered two other TWAS methods: FOCUS8 and

TWMR.33 FOCUS is a TWAS fine mapping method and relies on

a Bayesian framework to analyze genomic regions that contain

at least one significant gene detected by any standard TWAS

method. Therefore, we paired FOCUS with moPMR-Egger or

each of the three univariate TWAS methods to analyze regions

that contain at least one significant gene detected by the corre-

sponding TWAS method. Following Mancuso et al.,8 we obtained

a set of independent non-overlapping genomic regions termed as

LD blocks from LDetect.53We removed genomic regions that over-

lap with the MHC region due to the extensive LD structure there.

Also following Mancuso et al.,8 we conducted our analysis on a

subset of regions that harbor at least one genome-wide-significant

SNP (p < 5 3 10�8) and at least one significant TWAS gene identi-

fied by the corresponding TWAS method based on an FDR

threshold of 0.05. Due to these stringent filtering steps required

by FOCUS, we were able to analyze only 4,692 genes in 246 re-

gions. We declared genes as significant if they are in the 90% cred-

ible set output from FOCUS. We then compared the performance

of moPMR-Egger and each of the three univariate TWAS methods

by examining how consistent the significant genes are before and

after FOCUS analysis. For TWMR, we followed the same procedure

described in the comparedmethods subsection to extract multiple

independent cis-eQTLs to serve as instrument variables. We re-

tained 398,996 cis-eQTLs and 5,573 genes for TWMR analysis.

We analyzed the two blood pressure traits with the minimum p

value approach of TWMR and declared gene significance based

on a Bonferroni corrected threshold.
Results

Method overview

moPMR-Egger is described in the Material and Methods,

with technical details provided in the Supplemental Mate-

rial and Methods. For TWAS applications, moPMR-Egger

examines one gene at a time and estimates and tests its

causal effects on multiple outcome traits together.

Different from many existing TWAS approaches,

moPMR-Egger models multiple SNP instruments that are

in LD with each other, performs TWAS in a maximum like-
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lihood inference framework, is capable of testing and con-

trolling for horizontal pleiotropic effects commonly

encountered in TWAS, while jointly analyzing multiple

outcome traits (Figure 1A). By modeling multiple corre-

lated traits together, moPMR-Egger can improve the power

of TWAS.

We first performed simple simulations to develop intui-

tion and illustrate the benefits of modeling multiple traits

together. Briefly, we relied on real genotype data and simu-

lated gene expression along with two outcome traits (Ma-

terial and Methods). We compared moPMR-Egger with its

univariate counterpart PMR-Egger. In the simulations, we

found that multi-trait modeling is particularly beneficial

in the pleiotropic causal effects setting where the gene

causally affects both traits, regardless whether the two

traits are correlated (Figure 1B) or not (Figure 1C). The po-

wer gain brought by multi-trait modeling in the absence of

trait correlation is presumably due to its ability to properly

account for the correlation between test statistics on the

two traits there—the univariate TWAS test statistics on

the two traits remain correlated (correlation coefficient ¼
0.58) due to the shared underlying gene expression predic-

tor, even though the two traits are not correlated with each

other. The power gain brought by multi-trait modeling is

especially apparent when the gene effects on the two traits

are in the opposite direction as the trait correlation

(Figure 1B), but becomes much less obvious when the

gene effects on the two traits are in the same direction as

the trait correlation (Figure 1D) where it becomes harder

to disentangle the causal effects from the trait correla-

tions.16 Multi-trait modeling is also beneficial in the case

where the gene only affects one trait, as long as the two

traits are correlated with each other (Figure 1E). Afterall,

multivariate analysis can also improve power to detect

genes associated with only one trait by effectively control-

ling for the other correlated traits and thus reducing error

variance as previously shown in other settings.15,16

Certainly, the power of multi-trait modeling is similar to

or slightly lower than univariate trait modeling when the

gene only affects one trait and when the two traits are

also independent of each other (Figure 1F). The power

gain brought by multivariate modeling across majority of

simulation scenarios is accompanied with effective type I

error control (Figure 1G).

Simulations: testing and estimating the causal effects

We performed comprehensive simulations to carefully

examine the effectiveness of moPMR-Egger and compared

it with existing TWAS approaches in realistic scenarios.

Briefly, we relied on real genotype data and simulated

gene expression along with four outcome traits (Material

and Methods). We compared moPMR-Egger with three ex-

isting univariate TWAS methods that include PMR-Egger,

PrediXcan, and TWAS. We examined type I error control

and power of moPMR-Egger for both causal effects testing

and horizontal pleiotropic effects testing across a total of

287 simulation scenarios (25 null and 152 alternative
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Figure 2. Type I error control and power
for testing the causal effects under various
simulation scenarios
(A and B) Quantile-quantile plot of
�log10 p values for testing the causal effects
either in the absence or in the presence of
horizontal pleiotropic effects under null
simulations. Null simulations are performed
under different horizontal pleiotropic effect
sizes: (A) g ¼ ð0;0;0;0ÞT ; (B) gj randomly
selected from (0, 1 3 10�4, 5 3 10�4, 1 3
10�3, 2 3 10�3), j ¼ 1,2,3,4. p values from
moPMR-Egger are on the expected diagonal
line across a range of horizontal pleiotropic
effect sizes.
(C–F) Power (y axis) at a Bonferroni adjusted
threshold to detect the causal effects
is plotted against different causal effect
sizes characterized by PVEzy for the first
trait (x axis) in the heterogeneous causal
effect settings, where the PVEzy for the
remaining traits are 15%, 85%, 50% of
the PVEzy for the first trait. Compared
methods include moPMR-Egger (magenta),
PMR-Egger (blue), PrediXcan (green), and
TWAS (orange). Different line symbols
represent whether the four traits are corre-
lated or not in (C) and the direction of
causal effects in (D)–(F). Simulations are per-
formed under different number of affected
traits being from one to four (C–F) in the
absence of horizontal pleiotropic effect.
scenarios for causal effects testing; 22 null and 88 alterna-

tive scenarios for horizontal pleiotropic effects testing).

These simulation scenarios are summarized in Table S2

and include both those simulated under the model and

those simulated with various model misspecifications.

Our first set of simulations is focused on the causal ef-

fects test. We first examined type I error control of

moPMR-Egger under the null, where the gene has no

causal effects on any of the four traits. We found that

moPMR-Egger provides well-calibrated type I error control

both in the absence (Figure 2A) and presence (Figure 2B) of
The American Journal of Human Ge
horizontal pleiotropic effects, regard-

less of the horizontal pleiotropic effect

sizes. The null p value distribution

from moPMR-Egger remains largely

similar regardless whether the genetic

architecture underlying gene expres-

sion is sparse or polygenic (Figure S2),

regardless of the gene expression heri-

tability (Figure S3), regardless whether

the SNP effects on gene expression

are simulated to be correlated with

respect to LD or not (Figure S4), and

regardless whether the multiple traits

are correlated or not (Figure S5). Note

that the p values of moPMR-Egger are

slightly conservative when the gene

expression heritability is low, likely
due to the fact that the joint likelihood is no longer

informative on the causal effects and thus cannot be

approximated well by an asymptotic normal distribution

(Figure S3).

moPMR-Egger makes a relatively strong modeling

assumption on the horizontal pleiotropy and assumes

that for a given trait all SNPs have the same horizontal

pleiotropic effects. Such horizontal pleiotropic modeling

assumption follows that of the Egger regression. To

examine the robustness of such assumption, we randomly

selected a fixed proportion of SNPs, instead of all of them,
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to exhibit horizontal pleiotropic effects. We found that

p values of moPMR-Egger remain calibrated regardless

of the sparsity of the horizontal pleiotropic SNPs

(Figure S6). Besides the directional pleiotropy settings

where the ratio of SNPs with negative versus positive ef-

fects is set to be 0:10, we also examined two approxi-

mately directional pleiotropy settings (1:9 or 3:7) and

one balanced setting (5:5) by randomly assigning the cor-

responding proportion of SNPs to have negative versus

positive effects. We found that p values of moPMR-

Egger remain calibrated in either the approximately

directional pleiotropy settings or in the balanced setting

when the horizontal pleiotropic effects for each trait is

small or moderate (Figure S7A). However, when horizon-

tal pleiotropic effect for one of the traits is large, as one

might expect,4 moPMR-Egger p values become inflated

(Figure S7B). Overall, the p values of moPMR-Egger for

testing causal effects generally adhere to the diagonal

line under the null with various moderate model

misspecifications.

Next, we examined the power of moPMR-Egger and

compared it with three univariate methods to identify

non-zero causal effects. As expected, moPMR-Egger is

more powerful than the univariate TWAS methods in

most simulation scenarios. Specifically, across a total of

152 simulation scenarios, moPMR-Egger achieves an

average of 53.12%, 42.40%, and 36.79% power gain as

compared to PMR-Egger, PrediXcan, and TWAS, respec-

tively. The power gain by moPMR-Egger remains substan-

tial regardless whether the causal effects on different traits

are homogeneous (Figures S8 and S9) or heterogeneous

(Figures 2C–2F and S10), whether the gene affects one

trait or multiple traits (Figure S11), how these traits are

correlated with each other (Figure S12), and in the

absence (Figures 2C–2F and S8) or presence of horizontal

pleiotropic effects (Figures S9 and S10). The only excep-

tion is the simulation scenario where four traits are all

independent of each other and where the gene is only

associated with one of the four traits (Figures 2C and

S8A–S10A). The lower power of moPMR-Egger in this sce-

nario is presumably because moPMR-Egger uses extra pa-

rameters to model the non-zero causal effects on multiple

correlated traits, thus suffering from a loss of degrees of

freedom and subsequent loss of power there. However,

even when the gene is associated with only one of the

four traits, moPMR-Egger still has substantially more po-

wer than the other methods when traits are correlated

with each other (Figures 2C, S8A, S9A, and S10A). Note

that both moPMR-Egger and PMR-Egger control for hori-

zontal pleiotropy while PrediXcan and TWAS do not.

Consequently, in the presence of horizontal pleiotropy,

the p values from PrediXcan and TWAS are known to be

inflated and fail to control for type I error.4 As a result, Pre-

diXcan and TWAS appear to have higher power than

PMR-Egger if we treat all p values as calibrated and rely

on a nominal p value threshold instead of the corrected

type I error threshold. However, even in the presence of
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horizontal pleiotropy and inflated p values, the apparent

power based on a nominal p value threshold for PrediX-

can and TWAS is lower than that for moPMR-Egger, high-

lighting the importance of multi-trait modeling.

Power of different methods and the power gain brought

by moPMR-Egger depend on several important parame-

ters. First, the power of all methods reduces as the causal

effects decrease, regardless whether the horizontal pleiot-

ropy is absent or present. However, the power reduction

of moPMR-Egger is the lowest among all methods, sup-

porting its robust performance (Figure S11). Second,

moPMR-Egger models multiple traits jointly and explicitly

accounts for the trait correlations. Consequently, the

power of moPMR-Egger increases as the correlation

among the traits increases, while the power of the

other methods does not change much (Figure S12). Third,

as in illustrative simulations, the relative power gain

brought up by modeling multiple traits depends on

whether the causal effects on traits are in the same direc-

tion as the trait correlation or not. Specifically, when two

traits are positively correlated with each other, then the

power gain by moPMR-Egger is larger when the causal ef-

fect on one trait is in the opposite direction of that on the

other as compared to being in the same direction, and

vice versa (Figures 2D, S8B, S9B, and S10B). Finally,

moPMR-Egger explicitly models the horizontal pleiotropic

effects of SNPs on multiple traits separately. Conse-

quently, moPMR-Egger remains powerful with an

increased number of traits influenced by horizontal plei-

otropy or with an increased horizontal pleiotropic effect

size, whereas the other methods suffer (Figures S11C

and S11D).

In the above simulations, we have primarily compared

moPMR-Egger with the univariate approach of three exist-

ing TWASmethods. Here, we also compared moPMR-Egger

with a minimum p value modification of these univariate

methods for adapting them to analyze multiple traits

together. Specially, we obtained the minimum p values

across traits as the association evidence for the given

gene and computed power of different methods based on

an FDR of 0.05. Consistent with previous simulation re-

sults, the power improvement by moPMR-Egger over

PMR-Egger, PrediXcan, and TWAS remains substantial

regardless whether the causal effects on different traits

are homogeneous (Figures S13A and S13C) or heteroge-

neous (Figures S13B and S13D) and whether there is an

absence (Figures S13A and S13B) or presence (Figures

S13C and S13D) of horizontal pleiotropy effects. Note

that different from the above results under the Bonferroni

adjusted threshold, both PrediXcan and TWAS display

lower power in the presence of horizontal pleiotropy effect

conditional on fixed FDR as one would expect (Figures

S13C and S13D).

Finally, besides testing, moPMR-Egger produces accurate

estimates of the causal effects, both under the null and un-

der various alternatives, in the absence or presence of hor-

izontal pleiotropic effects (Figure S14A).
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Figure 3. Type I error control and
power for testing the horizontal pleio-
tropic effects under various simulation
scenarios
(A and B) Quantile-quantile plot of
�log10 p values from moPMR-Egger
for testing the horizontal pleiotropic
effects either in the absence or presence of
causal effect under null simulations. Null
simulations are performed under different
causal effect sizes characterized by different
PVEzy: (A) PVEzy ¼ ð0;0;0;0ÞT ; (B)
PVEzy; j randomly selected from (0, 0.005,
0.01, 0.015, 0.02), j ¼ 1,2,3,4. p values
from moPMR-Egger are on the expected di-
agonal line across a range of causal effect
sizes.
(C–F) Power (y axis) at a Bonferroni
adjusted threshold to detect the pleio-
tropic effects is plotted against different
causal effect sizes characterized by
PVEzy (x axis). Simulations are performed
under either correlated traits (D and F)
or independent traits (C and E), in the
presence of horizontal pleiotropic effect
with g ¼ ð0;1310�4;5310�4;1310�3ÞT in
(C) and (D) and g ¼ ð1310�4;5310�4;
1310�3;2310�3ÞT in (E) and (F).
Simulations: testing and estimating horizontal

pleiotropic effects

Our second set of simulations is focused on horizontal

pleiotropic effects testing. A benefit of moPMR-Egger, as

compared to the usual TWAS/MR methods, is its ability

to test whether SNPs exhibit non-zero horizontal pleio-

tropic effects on any outcome traits.

We first examined type I error control of moPMR-Egger

on horizontal pleiotropic effects testing under the null,
The American Journal of Human Ge
where no horizontal pleiotropic effect

exists for any of the four traits. We

found that the p values from

moPMR-Egger on testing horizontal

pleiotropy are well calibrated, either

in the absence or presence of causal ef-

fects (Figures 3A and 3B), regardless of

the correlation among multiple traits

(Figure S15) and regardless whether

the genetic architecture underlying

gene expression is sparse or polygenic

as long as causal effects are absent

(Figure S16). The only setting where

moPMR-Egger fails is when its

modeling assumptions are violated in

multiple ways. For example, when

the genetic architecture underlying

gene expression is sparse and when

the gene affects more than two traits,

then the p values of moPMR-Egger

become inflated (Figures S16C and

S16D). Overall, the p value of

moPMR-Egger for testing horizontal
pleiotropic effects under the null is well calibrated across

the majority of scenarios.

Next, we examined the power of moPMR-Egger in de-

tecting non-zero horizontal pleiotropic effects. Here, we

compared the performance of moPMR-Egger with PMR-Eg-

ger, which is the only existing method that can provide a

calibrated test for horizontal pleiotropic effect.4 We first

compared with the univariate approach of PMR-Egger. In

the simulations, we found that the power of PMR-Egger
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Figure 4. TWAS analysis results for five trait categories in the UK Biobank using moPMR-Egger and PMR-Egger
Quantile-quantile plots of �log10 p values for testing the causal effects are shown for the blood pressure trait category (A), the physical
measures trait category (B), the blood count trait category (C), the white blood cell indices trait category (D), and the red blood cell
indices trait category (E). Quantile-quantile plot of �log10 p values for testing the horizontal pleiotropic effects are shown for the blood
pressure trait category (F), the physical measures trait category (G), the blood count trait category (H), the white blood cell indices trait
category (I), and the red blood cell indices trait category (J). Comparedmethods include themulti-trait methodmoPMR-Egger (magenta)
and univariate method PMR-Egger (different colors for different traits). SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI,
body mass index; FVC, forced vital capacity; RBC, red blood cell count.
and moPMR-Egger increases with increasing horizontal

pleiotropy, with moPMR-Egger outperforming PMR-Egger

across a range of settings (Figure 3C versus Figure 3E and

Figure 3D versus Figure 3F). While moPMR-Egger has

comparable power with PMR-Egger when all four traits

are uncorrelated with each other (Figures 3C and 3E),

moPMR-Egger outperforms PMR-Egger in the presence of

trait correlation (Figures 3D and 3F). In addition, the power

of both methods reduces with increasing sparsity of the

horizontal pleiotropic effects, though moPMR-Egger re-

mains more powerful than PMR-Egger across a range of

sparsity levels either in the absence or presence of causal ef-

fects (Figure S17). Consistent with the simulations on

causal effects testing, the power of both methods on pleio-

tropic effects testing suffers in the absence of directional

pleiotropic effects (Figure S18). Besides the univariate

approach of PMR-Egger, we also compared moPMR-Egger

with theminimump value approach of PMR-Egger and ob-

tained consistent results (Figure S19).

Finally, moPMR-Egger can estimate the horizontal pleio-

tropic effects accurately in the presence of directional

pleiotropic effects. However, in the absence of directional

pleiotropic effects, as expected, the pleiotropic effect esti-

mates become downward biased (Figure S14B).

Real data applications

We applied moPMR-Egger for TWAS analysis to integrate

gene expression data from GEUVADIS with GWAS data

on 11 traits from 5 trait categories in the UK Biobank (de-

tails in Material and Methods). The gene expression data

fromGEUVADIS study includes 15,810 genes. The five trait
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categories in UK Biobank include the blood pressure cate-

gory, physical measures category, blood count category,

white blood cell indices category, and red blood cell indices

category. We examined one trait category at a time to iden-

tify genes associated with traits in the category.

The p values for testing the causal effects of each gene on

the traits from moPMR-Egger are displayed for each trait

category, along with the p values from PMR-Egger for

each trait in the category (Figures 4A–4E) as well as the cor-

responding minimum p values across traits in the category

(Figure S20).We did not apply the univariate approaches of

PrediXcan and TWAS as both do not control for horizontal

pleiotropic effects that are prevalent in the data as demon-

strated before.4 Indeed, both approaches produce inflated

p values under the null simulations when the absolute hor-

izontal pleiotropic effect exceeds 0.0001 (Figure S21),

which happens on an average of 1,636.46 genes across

11 traits examined here (ranges from 1,320 for BMI to

2,632 for height; Figure S1). Therefore, instead, we

compared the minimum p value approaches of these two

methods in an in-depth analysis described in the next

paragraph. Consistent with simulations, moPMR-Egger

identified more genes than the univariate PMR-Egger at

the corresponding Bonferroni corrected transcriptome-

wide thresholds (Table S3). moPMR-Egger identified a total

of 13.15% more genes as compared to PMR-Egger, high-

lighting the power of analyzing multiple traits jointly in

TWAS. Majority of genes (89.29%) identified by PMR-Egger

are also identified by moPMR-Egger but with increased as-

sociation significance (Figure S22A). For example, TFRC

(MIM: 190010) is identified to be associated with RDW
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(PMR-Egger p ¼ 3.22 3 10�17), but with increased associa-

tion evidence when all traits in the red blood cell indices

category are modeled together (moPMR-Egger p ¼ 5.72 3

10�22). TFRC encodes the classical transferrin receptor

that is involved in cellular iron uptake.54 Multiple SNPs

in TFRC have been established to be associated with

various erythrocyte phenotypes in GWASs.55 These associ-

ated erythrocyte phenotypes include the mean corpus-

cular hemoglobin (MCH) and mean corpuscular volume

(MCV, the average volume of red blood cells) which is

closely related to RDW.54,55 The variants in TFRC likely

lead to decreased iron availability for red cell precursors,

as has been observed in mice deficient in Tfrc, thus result-

ing in a compensatory increase of red blood cell size as

measured by RDW.56 In addition, and perhaps more

importantly, moPMR-Egger detected many likely causal

genes that are missed by PMR-Egger. For example, EPHB4

(MIM: 600011) is identified by moPMR-Egger only in the

blood pressure category (moPMR-Egger p ¼ 1.41 3 10�8,

PMR-Egger p ¼ 0.98 for SBP and p ¼ 5.33 3 10�4 for

DBP). EPHB4 encodes the Ephrin type-B receptor 4 that

binds to ephrin-B2 and plays an essential role in vascular

development and angiogenesis.57,58 Previous studies have

demonstrated that deletion of Ephb4 inmice leads to hypo-

tension,59 supporting the causal role of EPHB4 in regu-

lating blood pressure. We list the regional association plots

for TFRC and EPHB4 in Figures S23–S25.

We performed an in-depth analysis on the blood pres-

sure category, which contains only two traits (SBP and

DBP) and is thus easy to explore in detail. Here, in addition

to comparing with the univariate approach of PMR-Egger

as described above, we compared moPMR-Egger with the

minimum p value approaches of PMR-Egger, PrediXcan,

and TWAS. We calculated the power of different methods

based on an empirical FDR of either 0.01, 0.025, 0.05,

0.075, or 0.1 using permutations. Consistent with simula-

tions, moPMR-Egger identified more genes than the other

methods, highlighting the importance of multi-trait

modeling (Figure S26). Specifically, the number of signifi-

cant genes detected by moPMR-Egger, PMR-Egger, PrediX-

can, and TWAS based on an empirical FDR of 0.05 are 765,

691, 90, and 83, respectively. The performance of moPMR-

Egger is followed closely by PMR-Egger, supporting the pre-

vious observation that likelihood-based inference as used

in these two methods is more powerful than the two-stage

based inference used as in PrediXcan and TWAS.4,60

Among the genes identified by moPMR-Egger, approxi-

mately 40% (301/765) of significant genes identified by

moPMR-Egger have opposite causal effect directions on

the two traits. GO and KEGG pathway enrichment ana-

lyses (Figure 5) show that genes with the same causal effect

direction on the two traits are significantly enriched in the

pathways of antigen processing and presentation (q ¼
1.96 3 10�4; Figure 5A), human T cell leukemia virus 1

infection (q¼ 0.03), viral myocarditis (q¼ 0.03), and intes-

tinal immune network for IgA production (q ¼ 0.04,

Figure 5B). Such enrichment in inflammation and induced
The America
immune response pathways supports their recently re-

vealed roles in regulating blood pressure.61–63 Indeed,

inflammation activates innate and adaptive immune re-

sponses, resulting in alterations in the vasculature, kid-

neys, and sympathetic nervous system (SNS) that can

eventually lead to chronically elevated blood pressures.64

In contrast, genes with opposite causal effect directions

on the two traits are significantly enriched in the pathways

of COP9 signalosome (q ¼ 0.02; Figure 5C) and lysosome

(q¼ 5.143 10�4, Figure 5D). The enrichment in COP9 sig-

nalosome and lysosome pathways supports their critical

functions in maintaining homeostasis and plasticity of

vasculature and subsequent regulation of blood pressure.

Indeed, both COP9 signalosome and lysosome control

ubiquitination in the vasculature and the subsequent

modulation of protein turnover.65 Protein ubiquitination

and turnover in the vasculature determine the vascular

tone and stiffness, which can affect SBP and DBP differ-

ently during cardiac cycles of cell contraction and relaxa-

tion.66

Next, we shifted our focus to testing horizontal pleio-

tropic effects. The p values for testing the horizontal

pleiotropic effects of each gene from moPMR-Egger and

PMR-Egger are shown for the five trait categories (Figures

4F–4J). Consistent with simulations, moPMR-Egger de-

tected a total of 17.10% more genes with horizontal pleiot-

ropy than PMR-Egger (Table S3). Specifically, moPMR-Egger

detected 56 genes in the blood pressure category, 275 in the

physicalmeasures category, 383 in the blood cell count cate-

gory, 146 in the white blood cell indices category, and 153

in the red blood cell indices category, with gene overlaps

showing in Figure S27. In contrast, PMR-Egger detected

26, 196, 266, 106, and 136, respectively. The majority of

genes (71.53%) identified by PMR-Egger are also identified

by moPMR-Egger (Figure S22B). Importantly, 36.16% of

genes with significant horizontal pleiotropic effects identi-

fied by moPMR-Egger have significant causal effects, while

11.64% of genes with significant causal effects have hori-

zontal pleiotropic effects. The noticeable overlap between

genes with horizontal pleiotropic effects and genes with

causal effects highlights the importance of modeling both

effects in TWAS. In-depth analysis in the blood pressure

category also revealed that genes with significant causal ef-

fects on DBP and SBP are enriched in pathways of antigen

processing and presentation as well as protein refolding

(Figures S28A and S28B), while genes with the significant

horizontal pleiotropic effects are enriched in various meta-

bolic processes and protein export (Figures S28C and S28D).

Finally, we note that moPMR-Egger is also computation-

ally efficient, with similar computing time and physical

memory requirement as existing TWAS methods (Table S4).
Discussion

We have presented moPMR-Egger, a method that extends

the univariate PMR-Egger for analyzing multiple outcome
n Journal of Human Genetics 108, 240–256, February 4, 2021 251
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Figure 5. GO function and KEGG pathway enrichment analysis on genes identified by moPMR-Egger and PMR-Egger in the blood
pressure trait category
Dot plots show the top ten enriched GO BP, CC, andMF terms for identified genes that have the same causal effect direction on SBP and
DBP (A) and that have the opposite causal effect directions on SBP and DBP (C). Dot plots show the top ten enriched KEGG pathway
terms for genes that have the same causal effect direction on SBP and DBP (B) and that have the opposite causal effect directions on
SBP and DBP (D). Dot color represents statistical significance of enrichment analysis based on q-value while dot size represents the frac-
tion of genes annotated to each term. SBP, systolic blood pressure; DBP, diastolic blood pressure; GO, Gene Ontology; BP, biological pro-
cess; CC, cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
traits in TWAS applications. moPMR-Egger accounts for

the correlation structure among multiple traits, takes

advantage of all cis-SNPs that are in LD with each other,

tests and controls for horizontal pleiotropic effects, and

performs inference under a likelihood framework. In

both simulations and real data applications, moPMR-Egger

yields calibrated p values across a wide range of scenarios

and substantially improves power over existing univariate

approaches.

One important modeling assumption we made in

moPMR-Egger is that SNPs exhibit the same horizontal

pleiotropic effect on the same trait. Such equal effect size

assumption for each trait directly follows that of the Egger

assumption4,19,20 and is analogous to the burden effect size

assumption commonly used for rare variant tests. Consis-

tent with previous studies,4,19,20 we found that the equal

effect size assumption employed in moPMR-Egger appears

to work reasonably robust for causal effect estimations and

testing with respect to a range of model misspecifications

and appears to be effective in the real data applications

examined here. However, we do acknowledge that our

equal effect size assumption inmoPMR-Egger can be overly

restrictive in many settings. Therefore, while we view

moPMR-Egger as an important first step toward multi-trait
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TWAS applications, we emphasize that imposing more

realistic modeling assumptions on the horizontal pleio-

tropic effects in the future will likely be beneficial.

We have primarily illustrated the benefits of moPMR-Eg-

ger for analyzing individual-level GWAS data. moPMR-Eg-

ger can be easily extended to take input in the form of

summary statistics alone (details inMaterial andMethods).

Specifically, the summary statistics version of moPMR-Eg-

ger requires standardized marginal SNP effect size esti-

mates or marginal z-scores, both on the gene expression

and on the multiple outcome traits of interest. Moreover,

it requires an LD correlation matrix among cis-SNPs that

can be constructed based on a reference panel. Note that

when a reference panel is used to construct the LD correla-

tion matrix, one needs to ensure that the ethnicity of the

reference panel matches that of the study data to avoid

potentially biased inference results.4 In addition, it re-

quires an estimated correlation matrix among multiple

traits. The trait correlation matrix can be easily estimated

by using the marginal z-scores of genome-wide SNPs for

each trait: because the correlation between two traits

equals approximately to the correlation between the mar-

ginal z-scores for the two traits under the null where SNPs

are not associated with any trait, we can select SNPs with a
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p value greater than a predefined significance threshold

(e.g., 10�5) for any trait and use the correlation among

these marginal z-scores as an estimate for the trait correla-

tion.67 We have validated the implementation of the sum-

mary statistics version of moPMR-Egger in the simulations

and found that the results are largely consistent with that

of moPMR-Egger fitted using individual level data (Figures

S29, S30). Being capable of making use of summary statis-

tics extends the applicability of moPMR-Egger to datasets

where individual-level genotype or phenotype is not

available.

We have mainly compared moPMR-Egger with three ex-

isting univariate TWAS methods that include PMR-Egger,

PrediXcan, and TWAS. These three univariate TWAS

methods and moPMR-Egger all examine one gene at a

time. We note, however, that other univariate TWAS

methods have been recently developed for modeling mul-

tiple genes jointly. For example, TWMR analyzes one gene

at a time while controlling for its neighboring genes as co-

variates. In the null simulations, we found that the p

values from the univariate approach of TWMR are overly

conservative while the p values from theminimum p value

approach of TWMR are inflated (Figure S31A), even in the

absence of horizontal pleiotropy. The p values from both

the univariate approach and the minimum p value

approach of TWMR are overly inflated in the presence of

horizontal pleiotropy (Figure S31B). In the alternative sim-

ulations, we found that TWMR is much less powerful than

moPMR-Egger, resulting in an average of around 20-fold

power loss across simulation scenarios: the power of

TWMR is only around 0.08 in the absence of horizontal

pleiotropy and only around 0.03 in the presence of hori-

zontal pleiotropy. The low power of TWMR is likely due

to the relatively small sample size in GEUVADIS as brought

up by Porcu et al.33 We also applied TWMR to analyze the

two blood pressure traits. Due to the stringent filtering

criteria recommend by Porcu et al.,33 we analyzed a total

of 5,573 genes. In the real data analysis, TWMR identified

only 8 significant genes associated with at least one trait

while moPMR-Egger identified 67 in the same analyzed

gene set, supporting the low power of TWMR as observed

in simulations. As another example, FOCUS8 is a TWAS

fine mapping method that examines one genomic region

at a time to identify the causal gene among a list of candi-

date ones in the region. FOCUS is commonly applied to

only examine genomic regions that contain at least one

significant gene detected by a standard TWAS method.

Consequently, FOCUS can be effectively paired with any

univariate TWAS method including moPMR-Egger as a

pre-selection step. We followed Mancuso et al.8 to pair

FOCUS with moPMR-Egger and each of the three univari-

ate TWASmethods to analyze the two blood pressure traits.

Due to the stringent filtering criteria recommend by Man-

cuso et al.,8 we analyzed a total of 246 genomic regions and

4,692 genes. In the analysis, we found that the significant

genes identified by moPMR-Egger are largely consistent

with those identified after FOCUS analysis, more so than
The America
the other methods (Figure S32), supporting the effective-

ness of moPMR-Egger. Integrating multi-trait modeling

with multi-gene modeling is an important future research

direction.
Data and code availability

No data were generated in the present study. The GEUVA-

DIS gene expression data are publicly available online. The

GERA data is publicly available on dbGaP with accession

number phs000788. The UK Biobank data is from UK Bio-

bank resource under application number 30686.

The moPMR-Egger is implemented in the R package

PMR, freely available on GitHub.
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