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ABSTRACT

TET2, a member of ten-eleven translocation (TET) family
as α-ketoglutarate- and Fe2+-dependent dioxygenase
catalyzing the iterative oxidation of 5-methylcytosine
(5mC), has been widely recognized to be an important
regulator for normal hematopoiesis especially myelo-
poiesis. Mutation and dysregulation of TET2 contribute
to the development of multiple hematological malig-
nancies. Recent studies reveal that TET2 also plays an
important role in innate immune homeostasis by pro-
moting DNA demethylation or independent of its enzy-
matic activity. Here, we focus on the functions of TET2 in
the initiation and resolution of inflammation through
epigenetic regulation and signaling network. In addition,
we highlight regulation of TET2 at various molecular
levels as well as the correlated inflammatory diseases,
which will provide the insight to intervene in the patho-
logical process caused by TET2 dysregulation.
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INTRODUCTION

Innate immune responses are critical in protecting the host
from infection and injury, which are efficiently and timely
regulated to maintain the immune homeostasis. Diverse
epigenetic mechanisms, referring to dynamic regulation of
DNA modifications, histone modifications, chromatin
remodeling and non-coding RNAs (ncRNAs), are implicated
in precise regulation of innate immune responses through

establishing specific gene expression patterns especially at
transcriptional and post-transcriptional levels (Zhang and
Cao, 2019). As the most canonical epigenetic modification,
DNA methylation occurs by transferring the methyl group
onto 5-carbon of the cytosine to form 5-methylcytosine
(5mC), which plays a vital role in transcriptional silencing and
genome stability (Jones, 2012), and is of great importance
for mammalian development (Jones, 2012; Smith and
Meissner, 2013). Aberrant changes of DNA methylation is
associated with various pathological diseases, such as
cancer (Klutstein et al., 2016), obesity (Zhang et al., 2017a)
and inflammatory autoimmune diseases (Meda et al., 2011).

As the chromosomal translocation partner initailly found in
leukemia, TET family members, TET1, TET2 and TET3, have
been proved to be a key regulator for DNA demethylation owing
to its dioxygenase activity. Specifically, TET enzyme oxidizes
the methyl group of 5-methylcytosine (5mC) into 5-hydrox-
ymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-car-
boxylcytosine (5caC) (Tahiliani et al., 2009; He et al., 2011; Ito
et al., 2011), thereby inducing active and passive DNA
demethylation through DNA replication or thymine-DNA glyco-
sylase (TDG) and base excision repair (BER) pathway (Wu and
Zhang, 2017). TET protein-mediated dynamic regulation of
DNA methylation and its oxidation are largely involved in regu-
lating lymphoidandmyeloid differentiation and function (Lio and
Rao, 2019). In innate immunecells, especiallymyeloid cells, the
expression of TET2 and TET3 is much higher than TET1, and
the expression of TET2 increases, while TET3 decreases after
TLR ligands stimulation (Zhang et al., 2015; Xue et al., 2016;
Cull et al., 2017), implying that TET2 may act as an activation-
induced regulator during innate immune response.

Among the three TET family members, TET2 is identified
as an important regulator for normal hematopoiesis
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especially myelopoiesis (Quivoron et al., 2011; Alvarez-Er-
rico et al., 2015). Dysfunction of TET2 is well-proved to be
associated with acute myelocytic leukemia (AML),
myelodysplastic syndromes (MDS) and other myeloid dis-
orders (Delhommeau et al., 2009; Langemeijer et al., 2009).
Recently, numerous studies suggest that TET2 also plays a
crucial role in various inflammatory related diseases by
regulating innate signaling network and expression of innate
effectors during both onset and resolution of immune
responses and inflammation. In this review, we provide an
overview of the functions of TET2 in innate immunity. In
addition, we summarize the regulation of TET2, from tran-
scription, post-transcription, post-translation to gene-specific
targeting aspect, and its involvement in inflammatory dis-
eases, thereby implying TET2 as a potential therapeutic
target for intervention in inflammatory diseases.

TET2 IN INFLAMMATION INITIATION

Innate immune responses are initiated during pathogen
infection and tissue injury by multiple innate immune cells,
mainly including macrophages, dendritic cells (DCs), neu-
trophils, innate lymphoid cells, mast cells, epithelial cells,
and endothelial cells (Medzhitov, 2008). Pathogen- or dan-
ger-associated molecular patterns (PAMPs or DAMPs) are
recognized by germline-encoded pattern-recognition recep-
tors (PRRs) such as Toll-like receptors (TLRs), RIG-I-like
receptors (RLRs) and NOD-like receptors (NLRs), which
trigger the intracellular signaling pathways to promote the
production of various proinflammatory cytokines and medi-
ators (O’Neill et al., 2013; Cao, 2016).

TET2 is required for the differentiation and proliferation of
mast cells in mice (Montagner et al., 2016). Loss of TET2
severely changes the 5mC oxidation and the gene expres-
sion pattern, which impairs the differentiation of mast cells
and the production of cytokines. And TET2 expression is
essential for restraining the proliferation of mast cells, inde-
pendent of its enzymatic activity. Besides, there is evidence
that TET2 is involved in regulating the transduction of innate
signaling pathways during inflammation initiation. Epigenetic
regulator CXXC finger protein 5 (CXXC5) recruits TET2 to
maintain hypomethylation of CpG islands (CGI) in the gen-
ome of plasmacytoid dendritic cells (pDCs), a rare subset of
DCs that highly produce IFN-α in response to viral infection.
Among these CGI-associated genes, transcription of Irf7 is
promoted via TET2-sustained promoter hypomethylation,
which is critical for TLR-induced type I IFN production for
initiating anti-viral immune response (Ma et al., 2017).
Besides DNA, TET2 could also act on RNA and perform
oxidation of 5mC on RNA in innate immune cells (Fu et al.,
2014). TET2 directly binds to the mRNA 3′-UTR of Socs3, a
negative regulator of JAK-STAT pathway which is important
for cytokine-induced myelopoiesis during pathogen infection,
and decreases the 5mC level in this region in an enzymatic
activity-dependent manner, therefore promoting the degra-
dation of Socs3 mRNA through ADAR1 and activating the

emergency production of mature innate immune cells during
pathogen infection (Shen et al., 2018). Although proved to
oxidize the 5-methylcytosine on mRNA, whether TET2 can
demethylate 5mC in mRNA is still indeterminate, implying
that certain cofactors potentially function in this process.

Furthermore, the roles of TET1 and TET3 in innate
immunity are also revealed these years. TET3 recruits
HDAC1 to the promoter of Ifnb1 and negatively regulates
type I IFN production independent of DNA demethylation
(Xue et al., 2016). TET1 is thought to regulate 5hmC in the
promoter regions of pro-inflammatory cytokine genes,
thereby contributing to the activation of macrophages (Sun
et al., 2019).

TET2 IN INFLAMMATION RESOLUTION

The resolution of inflammation refers to an intricate process
in which inflammatory agents are eliminated, inflammatory
mediators are catabolized or suppressed, and immune cells
including leukocytes are cleared from the inflamed tissue
(Buckley et al., 2013). The prompt and effective inflammation
resolution is critical for host to maintain the homeostasis and
prevent the inflammatory disorders. In recent years, it is
increasingly indicated that TET2-involved epigenetic regu-
lation is a key factor for the resolution of inflammation. In an
enzymatic activity-independent manner, TET2 binds and
recruits HDAC1/2 to facilitate histone deacetylation and
suppresses IL-6 and IL-1β expression during the resolution
stage of inflammation in innate myeloid cells and macro-
phages respectively (Zhang et al., 2015; Cull et al., 2017).
Loss of TET2 results in upregulation of IL-1β expression and
unexpected IL-1β cleavage mediated by NLRP3 inflamma-
some (Fuster et al., 2017), which confirms the role of TET2 in
promoting inflammation resolution. Moreover, tumor-associ-
ated macrophages with absent TET2 expression exhibit an
immune-active phenotype, including increased expression of
inflammatory cytokines and decreased expression of ARG1,
which promotes the anti-tumor T cell response (Pan et al.,
2017), although another study showed that mutations of
DNMT3A and TET2 are most likely associated with the
increased expression of ARG1 in bone marrow
myelomonocytic cells in MDS/CMML patients (Cull et al.,
2018). In summary, these studies indicate that TET2 plays
an important role for inflammation resolution by regulating
the function of innate immune cells (Fig. 1).

TRANSCRIPTIONAL AND POST-TRANSCRIPTIONAL
REGULATION OF TET2

Previous studies have identified many transcriptional regu-
lators of TET2 expression. For example, the transcription
factor CCAAT/enhancer binding protein alpha (C/EBPα)
induces TET2 expression during pre-B cell to macrophage
trans-differentiation through binding to the upstream of TET2
gene (Kallin et al., 2012). Furthermore, the sulfhydrated
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Figure 1. Negative (blue) or positive (pink) regulation of TET2 in the inflammatory immune responses and related diseases.

During the onset of innate immune response, CXXC5 recruits TET2 to maintain low 5mC level of CpG islands of Irf7 gene, which

promotes IRF7 expression to activate type I IFN production for initiating anti-viral immune response. Besides, TET2 binds to the

mRNA 3′-UTR of Socs3 and inhibits its 5mC level, which promotes the degradation of Socs3 mRNA through ADAR1 and thereby

facilitates infection-induced myelopoiesis. As to the resolution phase of inflammation, TET2, whose expression is promoted via IL-1R-

MyD88 pathway, downregulates the expression of inflammatory cytokines IL-6 and IL-1β through recruiting HDACs for histone

deacetylation in innate myeloid cells and macrophages respectively. Loss of TET2 in tumor-associated macrophages results in

increased expression of inflammatory cytokines as well as decreased expression of ARG1. In addition, TET2 regulates the

differentiation of regulatory T cells (Treg) and smooth muscle cells (SMC), thus acting as the repressor of type I diabetes and

atherosclerosis.
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nuclear transcriptional factor Y subunit beta (NFYB) binds to
TET2 promoter and thereby promotes TET2 gene tran-
scription (Yang et al., 2015).

Expression of TET2 can also be regulated by microRNAs
(miRNAs) and long noncoding RNAs (lncRNAs) post-tran-
scriptionally. For instance, miR-125a-5p targets the 3′-UTR
of TET2 mRNA to inhibit TET2 expression during immune
responses, thereby activating NLRP3 inflammasome and
promoting the expression of proinflammatory cytokine IL-1β
and IL-18 (Zhaolin et al., 2019). Let-7a-1/let-7d/let-7f-1 (Let-
7adf) microRNA cluster represses TET2 expression or
activity through either directly targeting TET2 mRNA or
promoting succinate accumulation by regulating the Lin28a/
SDHA axis in LPS-activated macrophages, leading to
enhanced production of IL-6 (Jiang et al., 2019) (Fig. 2).
Moreover, lncRNA AC016405.3 restrains proliferation and
metastasis of glioblastoma multiforme cells through spong-
ing of miR-19a-5p and the subsequent upregulation of TET2
expression (Ren and Xu, 2019).

POST-TRANSLATIONAL REGULATION OF TET2

Degradation

It has been reported that TET2 is degraded via four different
pathways. CXXC domain-containing protein IDAX (also
known as CXXC4) can promote caspase activation probably
via regulating gene transcription. As a TET2 binding partner,
IDAX promotes degradation of TET2 protein (Ko et al.,
2013). A family member of calcium-dependent proteases,
calpain1, mediates TET2 degradation, which is likely to
affect global 5hmC level and expression of certain lineage-
specific genes in mESCs (Wang and Zhang, 2014). The
degradation of TET2 can also be mediated by the ubiquitin-
proteasome pathway that poly-ubiquitination of the C-termi-
nal conserved DSBH domain increases the instability of
TET2 (Lv et al., 2018). Recently, it was proposed that p53
facilitates the autophagic degradation of TET2 by promoting
the shuttling of nuclear TET2 toward the cytoplasmic
autophagosome (Zhang et al., 2019a).

C/EBP

2+

as

de
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Figure 2. Regulation of TET2 gene expression and protein function. Transcription factors, such as C/EBPα and NFYB, promote

TET2 expression at mRNA levels, while certain miRNAs and lncRNAs post-transcriptionally regulate TET2 expression. Post-

translational modifications (PTMs), including O-GlcNAcylation, phosphorylation, ubiquitylation and acetylation at specific residues

respectively, are also involved in regulating TET2 expression. The degradation of TET2 is mediated by four different pathways,

namely calpain1, caspase, ubiquitin-proteasome and autophagosome pathway. For some small molecule metabolites, succinate,

2-HG and Ni2+ can inhibit TET2 protein activity, while ascorbate, retinol acid and retinol enhance TET2 activity or expression.

Transcription factors including IкBζ, WT1 and SNIP1, as well as proteins AID and PSPC1, are able to recruit TET2 to regulate certain

gene expression.
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Monoubiquitylation and acetylation

TET2 binds to VprBP and is monoubiquitylated by the
CRL4VprBP E3 ubiquitin ligase on a highly conserved lysine
residue, which facilitates TET2 binding to chromatin,
although CRL4VprBP also can destabilize TET2 through
lysine poly-ubiquitination (Nakagawa et al., 2015; Lv et al.,
2018). TET2 is acetylated at lysine 110 by p300, which
stabilizes TET2 protein through the inhibition of TET2 ubiq-
uitination. Consequently, the recruitment of TET2 to chro-
matin during oxidative stress is promoted to prevent
abnormal DNA methylation (Zhang et al., 2017b).

O-glcNAcylation and phosphorylation

O-linked GlcNAc transferase (OGT) catalyzes TET2
O-GlcNAcylation and thereby reduces TET2 phosphoryla-
tion at the N terminus and low-complexity insert region
(Bauer et al., 2015). AMPK phosphorylates TET2 and
enhances TET2 stability (Zhang et al., 2019b). Increased
glucose levels hinder AMPK-mediated human TET2 phos-
phorylation at serine 99, resulting in the destabilization of
TET2 followed by dysregulation of both 5hmC level and the
tumor suppressive effect of TET2 in vitro and in vivo (Wu
et al., 2018). 14-3-3 protein can bind TET2 to maintain
AMPK-mediated serine 99 phosphorylation via protecting
TET2 from protein phosphatase 2A (PP2A)-mediated
dephosphorylation (Kundu et al., 2020). Besides, JAK2 can
also phosphorylate TET2 at tyrosine 1939 and 1964 which
increases TET2 activity and enhances binding of transcrip-
tion factor KLF1 with TET2 upon hematopoietic cytokine
erythropoietin (EPO) stimuli (Jeong et al., 2019).

Metabolic factors

TET2-mediated oxidation of 5mC can also be regulated
during metabolic reprogramming (Yang et al., 2014). TET
proteins belong to 2-oxoglutarate oxygenases, employing
Fe2+ as metal cofactor and α-KG as co-substrate (Tahiliani
et al., 2009; Loenarz and Schofield, 2011). α-KG-dependent
TET2 enzymatic activity is suppressed due to the accumu-
lation of metabolites that share structural similarity with α-
KG, such as succinate which inhibits the oxidation of 5mC to
5hmC (Killian et al., 2013) and 2-HG (Xu et al., 2011). Also,
natural Ni2+ ion can displace Fe2+, the cofactor of TET2, thus
inhibiting TET2 enzymatic activity (Yin et al., 2017). Besides,
retinol acid, retinol (vitamin A) and ascorbate (vitamin C) are
proved to regulate TET2 activity or expression. Ascorbate is
likely to act as a cofactor of TET2 (Minor et al., 2013), which
enhances TET2 enzymatic activity and alter DNA methyla-
tion so as to regulate the expression of germline genes in ES
cells (Blaschke et al., 2013). Another study proposed that
ascorbate enhances the catalytic activity of TET2 and the
production of 5hmC by reducing Fe3+ to Fe2+ that partici-
pates in the catalytic center of TET2 (Hore et al., 2016).
Without affecting TET2 protein stability or catalytic efficiency,

retinol acid or retinol (vitamin A) activates TET2 expression
probably through affecting TET2 transcription, and thereby
enhances 5hmC production in naive embryonic stem cells
(Hore et al., 2016).

RECRUITMENT OF TET2

As to the structural characteristic of TET proteins, both full-
length TET1 and TET3 contain a CXXC domain at the amino
terminus that helps them bind DNA, whereas TET2 does not
(Pastor et al., 2013). Various proteins are reported to be
involved in the recruitment of TET2 to target chromatin in
different biological processes. Transcription factors, includ-
ing IкBζ (Zhang et al., 2015), WT1 (Wang et al., 2015), and
SNIP1 (Chen et al., 2018), mediate the recruitment of TET2
to specific gene loci to regulate gene transcription. IDAX
preferentially binds to CpG-rich regions containing unmodi-
fied cytosines in gene promoter regions and CpG islands
through its CXXC domain in a DNA sequence-independent
manner. IDAX interacts with TET2 catalytic domain and
recruits TET2 to DNA (Ko et al., 2013). Besides, activation-
induced cytidine deaminase (AID) can recruit TET2 to
FANCA promoter to induce demethylation for oncogene
activation in diffuse large B cell lymphoma (Jiao et al., 2019).

Furthermore, TET2 can potentially be recruited by some
RNA-binding proteins, which may lead to a broader regula-
tory role of TET2, on regulating RNA splicing, stability,
localization and degradation. RNA-binding protein Para-
speckle component 1 (PSPC1) recruits TET2 to transcrip-
tionally active loci in an RNA-dependent manner, leading to
the RNA 5hmC modification and the destabilization of
MERVL RNAs through unidentified mechanism. PSPC1-
TET2 complex can also recruit HDAC1/2 for transcriptional
silencing of MERVL transcripts via histone deacetylation
(Guallar et al., 2018). A previous study identified a nine-
residue peptide adjacent to the catalytic domain of TET2 as
the most likely RNA binding site (He et al., 2016), suggesting
that TET2 itself acts as a RNA-binding protein and is
involved in the post-transcriptional regulation of gene
expression. Further study also proved the RNA-binding
capacity of TET2 through enhanced crosslinking and
immunoprecipitation followed by high-throughput sequenc-
ing (eCLIP-seq) (Shen et al., 2018).

TET2 AND INFLAMMATORY DISEASES

Atherosclerosis

As described above, inhibition of TET2 upregulates the
production of mature proinflammatory cytokines including IL-
1β and IL-18, which activates the inflammation response and
subsequently contributes to and accelerates atherosclerosis
(Fuster et al., 2017; Zhaolin et al., 2019). TET2 has been
identified as a key epigenetic regulator of SMC differentiation
and phenotype switch of vascular SMC to a pro-proliferation
and migration phenotype (Liu et al., 2013; Li et al., 2020).
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TET2 facilitates the expression of key procontractile genes in
SMCs inducing the contractile phenotype of SMCs, thus
attenuates vascular injury in human atherosclerotic disease
(Liu et al., 2013). Additionally, coiled-coil domain-containing
80 (CCDC80) inhibits the phosphorylation of ERK1/2 and
decreases the expression of TET2, which upregulates the
methylation level of lipoprotein lipase (LPL) promoter region,
and impairs the interaction of TET2 with the transcription
factor FOXO3a, causing a reduction of LPL expression and
finally the acceleration of atherosclerosis (Gong et al., 2019).

Type I diabetes

Type I diabetes (T1D) is caused by autoimmune damage of
pancreatic β cells, and epigenetic regulation has been pro-
posed to involve in the progression of T1D (MacFarlane
et al., 2009). As mentioned above, a study revealed a reg-
ulatory pathway that links glucose and AMPK to TET2 and
5hmC (Wu et al., 2018). Expression of IFN-α in pancreatic
islets during acute or chronic infections, post-transcription-
ally increases expression of TET2 through targeting miR-26a
for degradation, which in turn increases global 5hmC level of
pancreatic β cells, resulting in the initiation of islet autoim-
munity in T1D (Stefan-Lifshitz et al., 2019). Moreover, TET2
mediates the demethylation of two intronic enhancers CNS1
and CNS2 and stabilizes FOXP3 expression in Treg (Yang
et al., 2015; Yue et al., 2016, 2019). The decreased
expression of TET2 was demonstrated in Tregs from both
mice T1D model and human T1D patients, which impairs
Treg stability and function and results in islet autoimmune
response (Scherm et al., 2019). In addition, TET2 also plays
a role in the pathogenesis of diabetic nephropathy (DN) by
activating TGF-β1 expression through demethylation of CpG
islands in the TGF-β1 regulatory region (Yang et al., 2018).

Autoimmune diseases

A decreased state of global DNA methylation is verified in
patients with rheumatoid arthritis (RA). Correspondingly, the
expression of TET2 is increased in the monocytes and T
cells of RA patients, which supports that DNA hypomethy-
lation and TET2 enzymes are associated with RA (de
Andres et al., 2015). TET2 expression is also a potential
prognostic and predictive biomarker in cytogenetically nor-
mal acute myeloid leukemia (Zhang et al., 2018). HIV-1 Vpr
protein promotes degradation of TET2, thereby attenuating
its binding to Il-6 promoter region, which causes excessive
IL-6 expression during resolution phase of inflammation (Lv
et al., 2018). A recent study found that loss of TET2 and
TET3 upregulates CD86 expression through relieving the
gene-specific transcription repression by HDAC1/2, thus
leads to hyperactivation of B cells and T cells in mice
(Tanaka et al., 2020). Consequently, these mice are prone to
develop systemic autoimmunity, which implies the function of
TET2 in lupus-like diseases.

CONCLUSIONS AND PERSPECTIVES

Epigenetic regulation plays an important role in modulating
immune responses against infection or injury. Numerous
studies have well-indicated the significance of TET2 proteins
and 5hmC in epigenetic regulation, hematopoietic stem cell
development and myelopoiesis. The studies discussed in
this review demonstrate the emerging roles of TET2,
depending on its enzymatic activity or acting as a scaffold
protein, in the homeostatic regulation of immune responses
and pathogenesis of inflammatory diseases. We also dis-
cuss how TET2 is regulated and recruited, which provides a
promising thought to potentially alter the process of immune
responses. Despite so many discovered functions of TET2 in
immune responses and inflammation, there are still many
questions that need to be answered. Are there any other
specific mechanisms of TET2 involved in the onset and
resolution of inflammation? Can TET2 mutations be detected
in other inflammatory diseases? Over the past decades,
remarkable progress has been made in exploring the func-
tion of TET2 in regulating DNA methylation/demethylation by
mediating the oxidation of 5mC. However, can oxidative
modifications catalyzed by TET2 directly regulate gene
expression as an independent type of epigenetic modifica-
tions, not just as the intermediate step of active DNA
demethylation process? Besides, because of the distinct
structure of TET2 compared to TET1 and TET3, the mech-
anism of RNA-dependent chromatin targeting of TET2 is still
to be further studied. Is there a general regulation mecha-
nism rather than a specific one of how TET2 is recruited to
chromatin? Thus, more partner proteins of TET2 need to be
identified. On the other hand, the mechanisms of how TET2
regulates gene expression by directly binding RNA are
researchable. Combining with multiple epigenomic methods,
many novel technologies have been developed and applied
to screen the genomic distribution of TET2 catalyzing oxi-
dation modifications and investigate more probable functions
of TET2. Most importantly, further studies are required to
illuminate the potential therapeutic role of targeting TET2 for
the modulation of immune responses and the treatment of
relevant inflammatory diseases.
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like receptor; OGT, O-linked GlcNAc transferase; PAMP, pathogen-

associated molecular pattern; pDC, plasmacytoid dendritic cells;

PRR, pattern-recognition receptor; RA, rheumatoid arthritis; RLR,
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