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ABSTRACT Adeno-associated virus (AAV) is a promising gene therapy vector because of its efficient gene delivery and rela-
tively mild immunogenicity. To improve delivery target specificity, researchers use combinatorial and rational library design stra-
tegies to generate novel AAV capsid variants. These approaches frequently propose high proportions of nonforming or
noninfective capsid protein sequences that reduce the effective depth of synthesized vector DNA libraries, thereby raising
the discovery cost of novel vectors. We evaluated two computational techniques for their ability to estimate the impact of residue
mutations on AAV capsid protein-protein interactions and thus predict changes in vector fitness, reasoning that these ap-
proaches might inform the design of functionally enriched AAV libraries and accelerate therapeutic candidate identification.
The Frustratometer computes an energy function derived from the energy landscape theory of protein folding. Direct-coupling
analysis (DCA) is a statistical framework that captures residue coevolution within proteins. We applied the Frustratometer to
select candidate protein residues predicted to favor assembled or disassembled capsid states, then predicted mutation effects
at these sites using the Frustratometer and DCA. Capsid mutants were experimentally assessed for changes in virus formation,
stability, and transduction ability. The Frustratometer-based metric showed a counterintuitive correlation with viral stability,
whereas a DCA-derived metric was highly correlated with virus transduction ability in the small population of residues studied.
Our results suggest that coevolutionary models may be able to elucidate complex capsid residue-residue interaction networks
essential for viral function, but further study is needed to understand the relationship between protein energy simulations and
viral capsid metastability.
SIGNIFICANCE Adeno-associated virus is one of the most promising gene delivery vectors today and has been
approved by the U.S. Food and Drug Administration for gene replacement therapies. Despite clinical advances,
improvements to vector design are sorely needed to address many other unmet medical needs. Inspired by adjacent fields
of research, in which models of protein fitness derived from molecular dynamics approaches and from sequence family
modeling have been used to design protein variants, we explored the potential of these models for predicting virus
formation and function. A reliable and predictive computational tool would be a tremendous addition to the vector
development process, enabling the generation of functional adeno-associated virus variant panels at a faster pace and at
lower cost.
INTRODUCTION

Adeno-associated virus (AAV) is widely favored as a gene
therapy vector and, to date, has been tested in over
200 human clinical trials internationally. AAV was recently
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approved by the U.S. Food and Drug Administration as the
first gene replacement therapy for an inherited genetic disor-
der, in part because of the vector’s nonpathogenicity and
generally benign safety profile (1,2). AAV is an efficient de-
livery vector, capable of transducing both dividing and
nondividing cells to produce sustained gene expression
(3,4). However, further improvements to the vector are
highly sought after to enhance delivery efficiency in tar-
geted cell populations, which would minimize the vector
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doses required and reduce vector production costs as well as
safety concerns because of dose-dependent immune re-
sponses to the vector (5–8).

As a result of successful AAV biomining efforts (9–11),
gene therapy developers have had access to hundreds of
isolated AAV variants. Researchers have then employed a
variety of design strategies to further engineer these
AAV vectors for enhanced gene delivery. The three main
approaches that have emerged are 1) rational design,
2) directed evolution, and 3) computationally driven design.
Rational design approaches use current knowledge of vector
biology to make targeted modifications to the capsid,
whereas directed evolution conducts rounds of mutation
and selection to explore the capsid functional space
(12,13). Bioinformatics-driven strategies have recently
emerged as a method, drawing upon large data sets of
AAV capsid information and applying computational
models to accelerate exploration of the viral fitness land-
scape (14). Initial studies in this space have yielded prom-
ising results, including AAV chimera populations designed
using the SCHEMA algorithm to minimize structural
disruption (15,16), mapping of AAV capsid amino acids
important for structure and function using high-throughput
studies (17,18), and the development of ancestral AAV
vectors (19). Here, we explore data-driven computational
approaches with varying degrees of complexity for predict-
ing the fitness of capsid mutants, with the future goal of
incorporating these in silico approaches into the AAV vector
design pipeline.

The Frustratometer approach described in Ferreiro et al.
(20), the first of the two computational approaches that we
applied, is based on the energy landscape theory of protein
folding (21). Naturally occurring proteins generally have a
smooth, funnel-like energy landscape with minimal ki-
netic traps, promoting robust and rapid folding into a
single native structure. The shape of the landscape arose
and is maintained through evolutionary optimization by
strengthening residue-residue contacts in the native struc-
ture and reducing the number of energetically favorable
contacts outside of the native structure. The phenomenon
of the evolutionary optimization of protein energy land-
scapes is known as the ‘‘principle of minimal frustration’’
(22,23). Residual localized frustration within protein
structures may be retained during evolution to facilitate
protein allostery and multimeric interactions (24). Previ-
ous studies have shown that the Frustratometer, which
can be used to identify these localized patches of frustra-
tion, can provide insight into protein conformational
changes and association. Frustration analysis of proteins
that exhibit allostery indicates that known regions
of conformational cracking are highly frustrated (23).
The associative memory, water-mediated, structure and
energy model (AWSEM), the optimized coarse-grained
model that underlies the Frustratometer, has accurately
predicted homodimer and heterodimer docking sites
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(25). Frustration analysis has also been applied fruitfully
to the problem of mapping out structural reaction mecha-
nisms (26). Here, we apply the Frustratometer to evaluate
the change upon binding of the frustration level of resi-
due-residue interactions that are formed during AAV
capsid assembly.

Coevolutionary modeling, alternatively, seeks to identify
residues with a structural or functional relationship in a pro-
tein or pair of proteins through analysis of the protein
sequence family, which contains a record of the evolu-
tionary constraints on protein function. Direct-coupling
analysis (DCA) has emerged as a prominent statistical
framework for identifying direct interactions of protein res-
idues from genomic data (27,28). When applied to a family
of protein sequences, this model can predict crucial pairs of
interactions for protein structure and function and identify
the effect of mutations by inferring the probability that a
mutated sequence belongs to the family (29,30). DCA has
accurately recapitulated known structural contacts in a
variety of proteins and intermediate protein structures
(27,28,31). DCA approaches were initially applied to the
characterization of bacterial two-component system
signaling networks and the design of libraries predicted to
enhance signaling (32–34). More recently, DCA approaches
have shown promise in identifying interacting residues
in protein oligomers (35–37). Coevolutionary approaches
previously applied to viruses have correctly identified inter-
actions between viral proteins, but these models have not
been evaluated for their ability to predict mutant AAV func-
tionality (38–40). We aimed to evaluate DCA’s ability to
capture patterns that identify functional members of the
parvovirus family by predicting the formation and function
of AAV mutants.

Here, we applied the Frustratometer to AAV2 monomer
and assembled capsid structures to identify residues with
large shifts in frustration index between these two states.
We then mutated these residues to alanine and experimen-
tally evaluated capsid assembly, thermal stability, and trans-
duction efficiency. We compared these experimental results
to predictions from the Frustratometer and DCA models.
The frustration approach shows limited promise for predict-
ing aspects of viral capsid structure and produced counterin-
tuitive results with regards to stability. DCA supports the
possibility of predicting capsid transduction ability in this
small study.
MATERIALS AND METHODS

Identifying residue contacts within and between
AAV2 capsid subunits

The high-resolution crystal structure of AAV2 (Protein Data Bank, PDB:

1LP3) was visualized and analyzed in PyMol 2.2.0. Inter-residue contacts

were identified as any pair of residues containing atoms within 4.5 Å of

each other. Intrasubunit contacts were identified within an AAV2 subunit,

and extrasubunit contacts were identified between AAV2 subunits.



Frustration Analysis versus DCA of AAV
Sequence conservation in the parvovirus
sequence family

We used the hidden Markov model (HMM) from Pfam parvovirus coat pro-

tein VP2 family (PF00740) (Data S1) to search the UniProt database and

obtained a multiple sequence alignment (MSA) with 8904 protein se-

quences (Data S2). Sequences with gaps greater than 50 amino acids

were removed, leading to an MSA of 2569 sequences, and sequences

with greater than 90% identity were reweighted as described previously

(28), leaving 129.77 effective sequences. Conservation was then computed

for all positions modeled in the Pfam HMM using Shannon entropy and re-

weighted from 0 to 1 so that a value of 1 indicates full conservation (41).
Frustratometer analysis of AAV capsid subunits

Using the crystal structure of AAV2, two types of constructs were created

for analysis: a monomer form, consisting of a single AAV2 capsid subunit,

and an assembly form, consisting of a central monomer and each monomer

containing a residue with any atom within a radius of 4.5 Å around any of

the central monomer residues. The AWSEM-MD Frustratometer Server

with default parameters (sequence separation ¼ 12 and no electrostatics)

was used to calculate the single-residue frustration index (F) of the mono-

mer and assembly structures (42). The D-frustration index was then calcu-

lated for each residue as Fassembly�Fmonomer (20).
Computational alanine mutagenesis using
AWSEM

To calculate the predicted change in energy between the monomer and mul-

timer states for alanine mutants, we applied the AWSEM, a predictive pro-

tein coarse-grained model that combines terms from energy landscape

theory and information from a database of known protein structures. The

physical portion of the model focuses on hydrogen bonding, hydrophobic

interactions, and water-mediated interactions between hydrophilic residues.

Bioinformatic data are used to bias the structure of sequence fragments

(nine residues or less) toward the structure of similar sequence fragments

found in other proteins. The energy function of this model is described in

Eq. 1 (43).

VAWSEM ¼ Vbackbone þ Vcontact þ Vburial þ Vhelical þ VFM (1)

Then, the change in energy between alanine mutants and wild type (WT)

was computed for monomer and multimer structures as described in Eq. 2.

DE ¼ VAWSEMAla � VAWSEMWT (2)

The DDE of alanine substitution was then computed as described in

Eq. 3.

DDE ¼ DEMultimer � DEMonomer (3)

Alanine frequency in the parvovirus sequence
family

The parvovirus sequence family was processed and reweighted as described

for the sequence conservation calculation. The frequency of alanine at each

position represented in the Pfam HMM was then calculated.
DCA of AAV2 capsid

DCAwas applied to the preprocessed alignment of the parvovirus sequence

family described in the sequence conservation calculation to infer a global
statistical model of coevolved residue interactions. DCA infers a joint prob-

ability distribution to satisfy the statistical observations of protein family

sequence, with parameters that include pairwise couplings eij(xi, xj) and

local biases (fields) hi(xi) (28). Pairwise couplings may be restricted to

occur within a certain spatial residue distance based on the structure of a

given member of the sequence family (29). From this distribution, direct in-

formation values may be computed to quantify how two sites in the protein

are directly coupled (28). The top 300 pairs by direct information score

were plotted against measured residue-residue contacts from the AAV2

structure to assess this approach’s ability to identify residue interactions

(although only 300 pairs were plotted, all contacts were considered in sub-

sequent calculations). This joint probability distribution was also used to

calculate the probability PDCA(seq) that a given sequence is a member of

the characterized sequence family, and this probability was converted

into a unitless energy Hamiltonian HDCA(seq) �logPDCA(seq) (29,33,44).

This Hamiltonian term was computed for AAV2 sequences with each res-

idue position mutated to alanine. The Hamiltonian score of alanine mutants

was compared to WT using the DHDCA(Ala) metric described in Eq. 4.

DHDCAðAlaÞ ¼ HDCAAla � HDCAWT (4)

Site-directed mutagenesis of AAV2 cap gene

Site-directed mutagenesis of the AAV2 cap gene was performed to substi-

tute selected residues with alanines. The pXX2 plasmid containing the

wtAAV2 rep and cap genes was used as the template (45). Primers contain-

ing the desired alanine mutations were purchased from Integrated DNA

Technologies. 18 cycles of PCR amplification were conducted according

to the QuikChange protocol using Pfu Ultra polymerase (Agilent Technol-

ogies, Santa Clara, CA). After cycling was complete, template DNA was

removed by digesting with DpnI (New England Biolabs, Ipswich, MA). Re-

sulting plasmids were sequence verified through an external vendor (Gen-

ewiz, Morrisville, NC).
Virus production

Viruses containing the desired capsid mutations were prepared through a

triple plasmid transfection of human embryonic kidney 293T (HEK293T)

cells with the rep-cap encoding plasmid (pXX2 or pXX2-derived mutants),

pSC-GFP (encodes a self-complementary GFP transgene flanked by in-

verted terminal repeats), and pXX6-80 (encodes adenoviral helper genes)

using polyethylenimine. Cells were harvested 48 h post-transfection and

lysed by three freeze-thaw cycles. 50 U/mL of benzonase (Sigma-Aldrich,

St. Louis, MO) was added to the cell lysate to degrade free nucleic acids and

the mixture was centrifuged to remove cell debris. The supernatant was then

loaded into Quick-Seal Ultra Clear 25� 89 mm centrifuge tubes (Beckman

Coulter, Crea, CA) containing a 15–54% iodixanol step gradient. Tubes

were sealed and spun in a Beckman Type 70Ti rotor at 48,000 rpm for

1 h 45 min at 18�C, and virus was extracted from the 40% iodixanol layer.

For the differential scanning fluorescence assay, viruses were concentrated

into gradient buffer (10 mM Tris (pH 7.6), 10 mM MgCl2, 150 mM NaCl)

using Amicon Ultra 100 kDa centrifugal filters (EMD Millipore, Burling-

ton, MA).
Quantification of viral particles

Viral titers were quantified using quantitative polymerase chain reaction

(qPCR). Briefly, viral capsids were denatured to release their genomes us-

ing incubation in 2 M NaOH at 56�C followed by neutralization with 2 M

HCl. SYBR Green Power PCRMaster Mix (Thermo Fisher Scientific, Wal-

tham, MA) along with primers against the cytomegalovirus promoter (for-

ward, 50-TCACGGGGATTTCCAAGTCTC-30 and reverse, 50- AATGGGG
CGGAGTTGTTACGA-30) were used to detect viral genomes. Samples
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were analyzed on the Bio-Rad CFX96 qPCR machine (Hercules, CA) to

obtain absolute titer values against a standard curve. Raw data are provided

(Data S3).
Genome protection assay

Viruses were diluted 1:10 in endo buffer (1.5 mM MgCl2, 0.5 mg/mL

bovine serum albumin, 50 mM Tris (pH 8.0)) and incubated at the indicated

temperature for 30 min. Samples were then split into 20 mL treatment frac-

tions and treated with either 0.5 mL benzonase (1:10 dilution, 250 U/mL;

Sigma-Aldrich), or sham buffer (50% glycerol, 50 mM Tris-HCl, 20 mM

NaCl, 2 mM MgCl2 (pH 8.0)). Samples were incubated at 37�C for

30 min, and then the benzonase was inactivated through the addition of

0.5 mL of 0.5 M EDTA. The number of viral genomes in benzonase and

sham-treated fractions was then quantified using qPCR and genome protec-

tion calculated as the ratio of genomes in the benzonase-treated fraction to

the sham-treated fraction. Raw data are provided (Data S3).
A

Differential scanning fluorescence assay

The differential scanning fluorescence assay was adapted from previous

reports (46). Viruses were diluted to a concentration of 1012 viral ge-

nomes/mL in gradient buffer (10 mM Tris (pH 7.6), 10 mM MgCl2,

150 mM NaCl), and 45 mL virus sample was mixed with 5 mL 50� sypro

orange (Thermo Fisher Scientific). Assays were conducted in a Bio-Rad

CFX96 qPCR instrument using a melt curve protocol ramping from 25 to

95�C at a rate of 1� per min, with fluorescence reads every 0.2�. Lysozyme

enzyme was analyzed as a control.
B

Quantification of virus transduction

HEK293T cells were seeded on 48-well tissue-culture-treated poly-L-

lysine coated plates �24 h pre-transduction. At 95% confluency, cells

were transduced with virus in media with serum at 1000 multiplicity of

infection. 24 h after transduction, media was changed. 48 h after transduc-

tion, cells were harvested for flow cytometry analysis on a BD FacsCanto II

(BD Biosciences, San Jose, CA). Virus transduction ability was quantified

using the transduction index (TI), which is the product of the percentage of

GFPþ cells and geometric mean fluorescence intensity. The transduction

index is a linear indicator of viral transduction efficiency (47). Counts

and gating thresholds are provided (Data S4).
FIGURE 1 Analysis of AAV capsid using mutational frustration. Muta-

tional frustration of all possible residue interactions was computed using

the Frustratometer for the AAV2 monomer and multimer. Minimally and

highly frustrated interactions were plotted on crystal structures of AAV2.

(A) Capsid residue interactions that are minimally (green) or highly (red)

frustrated within the AAV2 monomer are indicated by connecting lines

with the protein backbone in dark gray. (B) Capsid residue interactions

that are minimally (green) or highly (red) frustrated within the AAV2

monomer and between the AAV2 monomer and the other subunits in

the AAV2 multimer are indicated by connecting lines with the protein

backbone in dark gray and other subunits in light gray. The icosahedral

(T¼ 1) capsid fivefold (pentagon), threefold (triangle), and twofold (circle)

axes of symmetry are indicated. Variable regions IV and VIII and the HI

loop are labeled.
RESULTS AND DISCUSSION

Frustratometer analysis of AAV capsid

Frustration can be computationally quantified using the
Frustratometer, which draws upon an optimized coarse-
grained modeling that has been used to analyze protein en-
ergy landscapes (42). We applied the Frustratometer to
AAV2 to predict residues that favor either the assembled
capsid structure or the monomeric capsid protein. The
AAV capsid consists of three capsid proteins, VP1, VP2,
and VP3, that assemble in a 1:1:10 ratio to form a 60-mer
capsid. Cryo-electron-microscopy-resolved structures of
AAV2 do not include the unstructured VP1 and VP2 N-ter-
minal domains, so this analysis focuses on the VP3 domain
shared by all three VPs that forms the exterior capsid struc-
ture. Because it would be too computationally intensive to
analyze the entire 60-mer capsid structure, we generated a
492 Biophysical Journal 120, 489–503, February 2, 2021
multimer assembly substructure from the 60-mer capsid
structure by selecting the seven VP3 subunits within 4.5 Å
of a central monomer (Fig. S1). Then, mutational frustration
was calculated for every residue-residue contact in the
monomer and multimer structures (Fig. 1). Because the
monomer structure is derived from cryo-electron micro-
scopy conducted on the intact capsid, any differences in
frustration index between the monomer and multimer are
due to multimeric residue interactions and not structural
changes in the monomer. The multimer structure contains
more minimally frustrated residue pairs than the monomer,
particularly at capsid subunit-subunit binding interfaces.
This reduction in frustration is consistent with previously
observed shifts in frustration at protein binding interfaces
related to the burial of hydrophobic surfaces (20).

Single-residue mutational frustration indices (looking at
the frustration of each residue as opposed to residue pairs)
were also computed for the monomer and the multimer
assembly. The AAV2 monomer has 30.6% minimally frus-
trated residues and 8.1% highly frustrated residues, whereas
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FIGURE 2 AAV2 D-frustration index and capsid residues selected for

experimental analysis. AAV2 D-frustration index was computed as the dif-

ference between monomer and multimer single-residue frustration indices.

Residues with a positive D-frustration index are predicted to favor the mul-

timer, whereas residues with a negative D-frustration index are predicted to

favor the monomer. (A) AAV2 60-mer capsid crystal structure colored ac-

cording to D-frustration index is given. Views of the capsid from exterior

and interior are shown. (B) Residues selected for experimental analysis

are shown. Residues favoring the multimer state (blue, D-frustration

index >1.5), residues favoring the monomer state (yellow, D-frustration

index <�1.5), and neutral residues (gray, D-frustration index >�0.1

and <0.1) were selected for further study. The capsid fivefold (pentagon),

threefold (triangle), and twofold (circle) axes of symmetry are indicated.

Top view shows interior face of the VP3 subunit, and middle and bottom

views show exterior face. D-frustration index for AAV2 capsid residues

was plotted against (C) sequence conservation in the parvovirus family

computed using Shannon entropy of reweighted sequences normalized

from 0 to 1 (1 indicates full conservation), (D) residue distance from center

of AAV2 capsid (Å), and (E) number of residue-residue contacts according

to a 4.5 Å heavy-atom distance threshold. Residues selected for mutation

are large colored circles, and residues not selected are small gray dots.

Frustration Analysis versus DCA of AAV
the AAV2 multimer has 30.3% minimally frustrated resi-
dues and 6.6% highly frustrated residues. Both configura-
tions have more neutral residues than a set of 314
monomeric proteins previously curated and analyzed from
the PDB, which have on average �40% minimally frus-
trated residues and >10% highly frustrated residues (20).
Single-residue mutational frustration indices were then
combined to generate a D-frustration index. This change
in frustration upon protein-protein binding was previously
computed for a benchmark of assemblies of homodimers
and their subunits curated from the PDB (48). In a previous
study employing the Frustratometer, 25% of residues found
in protein-protein interaction domains exhibited an increase
of �1.5 single-residue mutational frustration index units
(i.e., a D-frustration index of 1.5) in the bound state,
whereas 7% of residues exhibited a decrease in the single-
residue mutational frustration index (i.e., a negative D-frus-
tration index) (20). In AAV2, �6.0% of residues exhibit an
increase in single-residue mutational frustration index in
the multimer state greater than one unit (D-frustration
index >1), whereas 3.7% of residues exhibit a decrease in
single-residue mutational frustration index by more than
one unit (D-frustration index <1) (Fig. S2). Molecular dy-
namics models of virus assembly have previously shown
that interactions between viral subunits must be relatively
weak to permit viral assembly while avoiding kinetic traps
due to malformed structures; this property may result in a
less dramatic shift toward minimal frustration upon binding
than in smaller protein assemblies (49,50).

We hypothesized that this D-frustration index metric may
highlight AAV capsid residues that shift in frustration upon
subunit-subunit interaction, indicating they play key roles in
stability of either the monomer or the multimer assembly.
By this logic, positive values of the D-frustration index
would identify residues that favor the multimer assembly
state, whereas negative values identify residues that favor
the monomer state.

We also compared the D-frustration index to other resi-
due-level parameters. There was no correlation of the
change in frustration upon capsid assembly with sequence
conservation in the parvovirus family (Fig. 2 C) or distance
from the capsid center (Fig. 2 D). There is a slight positive
correlation (R2¼ 0.018, p¼ 0.0025) between the number of
inter-residue contacts, defined as two residues having a pair
of atoms with a distance of<4.5 Å, and the D-frustration in-
dex (Fig. 2 E). Residues with lower frustration in the multi-
mer state tend to have more contacts with other residues,
suggesting that essential capsid interactions take place in
these domains that are conserved across the parvovirus fam-
ily (51). Conversely, residues with lower frustration in the
monomer state have fewer contacts with other capsid resi-
dues. These residues may play a role in capsid interactions
with other proteins on the virus’s transduction pathway as
opposed to intracapsid interactions. Indeed, mutation of
R471 has previously been shown to reduce immune system
interactions and K527 is known to be proximal to the AAV2
heparin binding pocket, although mutation does not impact
heparin binding (52).

A set of representative residues was selected based on
the D-frustration index favoring the multimer, favoring the
monomer, or neutral toward either state. Based on the
threshold identified in Ferreiro et al. (20), D-frustration
Biophysical Journal 120, 489–503, February 2, 2021 493



FIGURE 3 AAV2 capsid residue-residue couplings inference by direct-

coupling analysis (DCA). DCA was applied to a multiple sequence align-

ment of sequences identified as likely parvovirus coat proteins in Pfam.

Predicted residue-residue couplings from DCA and likely residue-residue

interactions (inter-residue distance <12 Å) identified in the AAV2 capsid

crystal structure (1LP3) are plotted on a map. DCA-predicted pairs (colored

by direct information score, with lighter colors suggesting stronger cou-

plings), structurally determined monomeric interactions (blue), and struc-

turally determined multimeric interactions (green) are plotted at the

intersection of the two contacting residues’ AAV2 capsid sequence indices

(VP1 numbering).
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index values >1.5 were labeled as favoring the multimer
and values <1.5 as favoring the monomer (20). Six residues
from the 14 residues favoring the multimer were selected
randomly, and all four residues that were predicted to favor
the monomer were selected. Five neutral residues were
selected randomly from the 229 residues with D-frustration
indices >�0.1 and <0.1. These selected residues were
experimentally mutated to alanine to evaluate their role
in capsid formation, thermal stability, and transduction
efficiency.

In addition to applying the Frustratometer, we used the
coarse-grained protein force field on which the Frustratom-
eter is based, the AWSEM (43), directly to predict the
change in energy (DE) upon mutation of the selected resi-
dues to alanine. We developed a DDE metric by subtracting
the monomer DE from the multimer DE for each alanine
mutant. Because a more negativeDE-value indicates greater
energetic stability, alanine mutants with a lower DDE score
than the WT are predicted to favor the multimer state,
whereas alanine mutants with a higher DDE score than
WT are predicted to favor the monomer state. Whereas the
Frustratometer measures the favorability of a particular
interaction or set of interactions for a particular residue
compared to a distribution of decoy interactions, the DDE
metric makes predictions about the specific change in stabil-
ity upon mutating to alanine, which is what was done exper-
imentally. Because the DDE score is highly correlated with
the D-frustration index in the studied mutants (R2 ¼ 0.79,
p << 0.001), we included comparisons of DDE and exper-
imental results in our supplemental data.
DCA of AAV capsid

We next applied DCA to make predictions about the fitness
of the selected AAV2 alanine mutants. DCA is a global sta-
tistical model derived from a multiple sequence alignment
of a protein family (28). In this case, we used the capsid se-
quences of parvoviruses drawn from Pfam (ID: PF00740) to
construct the MSA that is used as input to DCA (53). We
plotted the top 300 predicted residue-residue couplings
from DCA against likely residue-residue interactions
(including direct contacts, potential dynamic interactions,
and ligand coordination interactions) defined as inter-resi-
due distance <12 Å in the AAV2 crystal structure (Fig. 3;
Table S1). The overlap between some DCA-predicted inter-
actions and likely interactions identified in the AAV2 capsid
crystal structure (60 monomeric pairs and eight multimeric
pairs of interactions) suggests crucial pairs maintained
through evolution that play important structural roles at
the monomeric and oligomeric level. This model may also
be able to identify interacting residue pairs that are not prox-
imate in the AAV capsid but are functionally relevant, a
strength of this approach over structure-based models.

To investigate the capsid mutants with DCA, we
computed the change in DCA Hamiltonian upon alanine
494 Biophysical Journal 120, 489–503, February 2, 2021
mutation for each position in the AAV2 capsid. DCA esti-
mates a joint probability distribution that is used to generate
the family-specific DCA Hamiltonian parameters that
describe a relative probability that any given sequence is a
member of the sequence family. This probability can be
log transformed to obtain a unitless quasienergy (DCA
Hamiltonian energy HDCA(Ala)) (29,44). Lower values of
the DCA Hamiltonian energy correspond to sequences
that are more likely to belong to the sequence family under
consideration and thus more likely to be structurally and
functionally similar to the family members. The change in
the DCA Hamiltonian energy for alanine mutants as
compared with the WT (DHDCA(Ala)) was compared with
other residue-level parameters (Fig. 4).

The energy change upon mutation of the wild-type
residue to alanine, DHDCA(Ala), is correlated with sequence
conservation within the parvovirus family (R2 ¼ 0.30,
p << 0.001), indicating that locations with higher sequence
conservation are more sensitive to mutation (Fig. 4 A). DCA
generates a global model of the parvovirus sequence family
and makes predictions of mutant virus fitness based on the
prevalence of residue identities and residue interaction
coupling strength in the family. Unsurprisingly, DCA pre-
dicts that mutations of a highly conserved residue will be
detrimental to fitness. DHDCA(Ala) is negatively correlated
with residue distance from the capsid center (R2 ¼ 0.28,
p << 0.001). Residues further from the capsid center
have lower (more favorable) DHDCA(Ala) scores, suggesting
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FIGURE 4 Comparison of DCA energy changes upon mutation of the

wild-type residue to alanine, HDCA(Ala), to other residue-specific parame-

ters. Plots of the DHDCA(Ala) score against (A) sequence conservation in

the parvovirus family, (B) three-dimensional distance of residue from center

of the AAV2 capsid (Å), and (C) number of residue-residue contacts ac-

cording to a 4.5 Å heavy-atom distance threshold are given. AAV2 capsid

residues selected for mutation are plotted with large colored circles, and

residues not selected for mutation are shown as small gray dots.
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that alanine mutations of these residues are more likely to be
tolerated (Fig. 4 B).DHDCA(Ala) has a low but significant cor-
relation with the number of residue-residue contacts (R2 ¼
0.13, p << 0.001) (Fig. 4 C), suggesting that DCA is able
to identify some residues that participate in a large number
of interactions in capsid proteins. Correlations with capsid
structural features were recovered despite the paucity of
available parvoviral sequences for this analysis. The
direct-coupling analysis joint probability distribution was
inferred from an alignment of parvoviruses with 130 effec-
tive sequences (Meff), 5.06% of the 2569 starting sequences
after reweighting sequences to account for sequence homol-
ogy. Although this Meff is lower than the number that is
thought to be necessary to produce high rates of true positive
contact predictions, the inferred model nonetheless shows
some promise in identifying interactions in the AAV2 capsid
structure (28,54).

Whereas the AWSEMuses a protein force field to generate
predicted energies of protein structures, DCA uses a global
model of a sequence family to predict a quasienergy repre-
senting sequence fitness. To quantify the relationship be-
tween AWSEM energy and DCA quasienergy predictions
for the selected alanine mutants, we computed the correla-
tions betweenDEAla of the monomer and multimer,DDEAla,
and DHDCA(Ala) (Fig. S3). These metrics were previously
found to be highly positively correlated for protein mono-
mers (29). In the mutants analyzed, the AWSEM monomer
DE prediction actually has a high negative correlation with
DHDCA(Ala) (R

2 ¼ 0.66, p ¼ 0.001), whereas there is no sig-
nificant correlation between the AWSEM multimer DE and
DHDCA(Ala) (R

2 ¼ 0.24, p ¼ 0.11) or the DDE metric and
DHDCA(Ala) (R

2 ¼ 0.053, p ¼ 0.47). We also quantified the
relationship between D-frustration index and DHDCA(Ala).
In the mutants analyzed, these metrics are not significantly
correlated (R2 ¼ 0.12, p¼ 0.26). This surprising divergence
between DCA- and AWSEM-derived predictions of the
fitness of alanine mutants may be attributable to the many
roles of viral proteins in transduction. This may also be a
function of viral capsid metastability, as viruses must main-
tain stable structures to protect their genomes but also
release their genomic cargo at its intended intracellular desti-
nation (49).
Formation of AAV2 capsid alanine mutants

We mutated the selected AAV2 capsid residues to alanine
and generated genome-packaging viruses (Fig. 5 A). Among
the mutants of residues predicted to favor multimer forma-
tion, four out of six exhibit decreased genomic titers, with
the remaining mutants exhibiting titers comparable to WT
AAV2 capsid. Among the mutants of residues that were pre-
dicted to disfavor multimer formation, one (P657A) exhibits
decreased genomic titers, whereas the other three exhibit ti-
ters comparable with the WT. Among mutants of residues
predicted to be neutral with respect to multimer formation,
two out of the five exhibit decreased genomic titer, whereas
three exhibit titers comparable with the WT.

In an attempt to understand the factors that influence
genomic titers in the alanine mutation variants, we first
compared virus production titers against two simple metrics
that were derived either from structural data on the AAV2
capsid (the number of contacts made by a particular residue)
(Fig. 5 B) or from an MSA of parvovirus family sequences
(the frequency at which alanine appears at the mutated site)
(Fig. 5 C). Mutant virus production has a negative correla-
tion with the number of residue-residue contacts made by
the native residue in the capsid structure, i.e., the greater
the number of native contacts a residue has, the lower the
yield of virus formed when that residue is mutated to an
alanine (Fig. 5 B). Additionally, virus production is posi-
tively correlated with the frequency of alanine residues
observed at the native residue’s position in an MSA of
parvovirus family sequences (Fig. 5 C). In other words, if
an alanine is frequently found in a homologous capsid posi-
tion in many other parvoviruses, the alanine mutation in the
Biophysical Journal 120, 489–503, February 2, 2021 495
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FIGURE 5 Ability of alanine capsid mutants to form viruses with encap-

sidated genomes. Selected residues were mutated to alanine, and viruses

were produced. Genomic titers of one-plate virus preps were determined

through qPCR. (A) Genomic titers of alanine mutants expressed as viral ge-

nomes per mL (VG/mL) are given. N ¼ 3 independent virus preps. Error

bars are mean 5 SE. One-way ANOVA was performed with Dunnett’s

post hoc multiple comparison test to compare mutants to WT; no statisti-

cally significant differences were detected. Genomic titers are plotted

against (B) number of residue-residue contacts in the native capsid

structure, (C) alanine frequency in the parvovirus sequence family,

(D) D-frustration index, and (E) DHDCA(Ala). N ¼ 15 mutants for struc-

ture-based analyses. N ¼ 12 mutants for sequence-based analyses because

R471A, F712A, and S721A do not exist in a majority of the sequence fam-

ily (majority gaps at their alignment position). Regression lines with 95%

confidence interval are plotted for statistically significant correlations.

R2-values and significance levels are reported (*p < 0.05).
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AAV2 capsid is better tolerated and yields higher virus pro-
duction levels.

Mutant virus formation is not significantly correlated
with the native residue’s D-frustration index (Fig. 5 D)
and DCA-based DHDCA(Ala) scores (Fig. 5 E). However,
there appears to be a general trend in which mutants of res-
idues with higher D-frustration indices have reduced forma-
tion. Proline has a unique influence on secondary structure
that is not directly considered by the AWSEM Frustratome-
ter, which can often result in challenges when attempting to
predict mutational effects (55,56). If the P657A mutant is
excluded from this analysis, then virus formation is corre-
lated with the D-frustration index of native residues, but
not DHDCA(Ala) (Fig. S4). The results thus far demonstrate
that the D-frustration index computed with AWSEM-MD
496 Biophysical Journal 120, 489–503, February 2, 2021
is somewhat related to capsid formation but does not fully
predict assembly.

We also considered the impact of coding mutations intro-
duced in the assembly-activating protein (AAP) and X gene
trans-encoded elements of the AAV genome that play a role
in capsid assembly and viral DNA replication, respectively
(57,58). The W228A, R238A, R245A, and E347A muta-
tions also introduce coding mutations in AAP (Table S3).
These modifications may play a role in W228A and
R245A’s reduced viral formation because AAP is essential
for AAV2 production (59). The V611A, L647A, N656A,
P657A, W694A, and S721A mutations also introduce cod-
ing mutations in the X gene. These mutations may play a
role in reduced viral titers for some of these mutants. How-
ever, removal of the X gene reduces AAV2 genomic titers by
33%, so X gene mutations are likely only a partial factor in
L647A, P657A, and W694A’s reduced genomic titers (58).

AAV formation occurs via a multistep process involving
first capsid protein production and assembly into a 60-mer
capsid, then insertion of the viral genome into the capsid
lumen via function of other protein factors (60,61). Our find-
ings suggest that both simple structural contact information
and sequence family residue frequency information can help
to guide the design of variants with the goal of modulating
complete virion yield. From these observations, it is unclear
whether more sophisticated computational models provide
better guidance in viral variant design than do relatively
simple metrics derived from the capsid structure (residue-
residue contacts) and the parvovirus sequence family align-
ment (Fig. 5, B and C). No single model appears to capture
capsid formation (i.e., combination of capsid assembly and
genome packaging) fully, perhaps because none of these ap-
proaches explicitly take into account interactions with other
known AAV factors and helper virus proteins that are
required for capsid assembly and viral genome packaging
(57,62–64). The models may potentially perform better in
prediction of AAV2 VP monomer formation and empty
capsid assembly as opposed to complete genome-containing
virion formation because these intermediate steps require
fewer interactions with protein cofactors and viral genomic
DNA (65). Quantification of VP monomer yield, capsid
morphology, and the ratio of empty/full viral capsids would
provide some measure of these earlier stages in viral vector
production.
Thermal stability of AAV2 capsid alanine mutants

Viruses that formed with sufficient titers for further analysis
(>1010 viral genomes/mL) were screened for thermal sta-
bility through a genomic protection assay. Specifically, vi-
ruses were incubated at a range of temperatures near the
WT AAV2 capsid melting temperature, which was previ-
ously reported as 72.4�C (46). The virus samples were
then treated with a nuclease to degrade any uncoated viral
genomes. After nuclease inactivation, the samples were
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FIGURE 6 Thermal stability of alanine mutant capsids. Alanine mutants that formed at sufficient titers were exposed to various temperatures (�C) and then
assayed for genomic protection. Temperature-treated samples were incubated with benzonase or sham buffer and genomes quantified using qPCR. (A)

Genomic protection after incubation at elevated temperatures is shown. N ¼ 3 independent experiments titered in duplicate. Error bars are mean 5 SE.

Two-way ANOVA was performed with Dunnett’s post hoc multiple comparison test to compare mutants with WT at each tested temperature. Percentage

of genome protected is the fraction of genomes in the benzonase-treated sample as compared with the sham-treated sample. Genomic protection at

68�C is plotted against (B) number of residue-residue contacts in the native capsid structure, (C) alanine frequency in the parvovirus sequence family,

(legend continued on next page)
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then assayed for the number of remaining genomes (i.e.,
genomes that are protected from nuclease digestion by an
intact capsid). Most capsids exhibit thermal stability com-
parable with the WT, with the exception of the R471A
and K527A mutants (Fig. 6 A). These two mutants appear
to lose genomic protection after incubation at 66�C. To
further characterize these mutants’ reduction in thermal sta-
bility, the melting points of these mutants were determined
using a differential scanning fluorescence assay (Fig. S5 A;
(46)). R471A exhibits a 6.8�C decrease in melting temper-
ature compared with the WT, and K527A exhibits a 3.5�C
decrease in melting temperature compared with the WT
(Fig. S5 B).

Capsid thermal stability at 68�C was compared to
various computational metrics of fitness as described
above. Virus thermal stability is not correlated with the
number of residue-residue contacts made by the original
residue in the WT structure (Fig. 6 B) or with the frequency
of alanine in an alignment of parvovirus sequences
(Fig. 6 C). Thermal stability is, however, correlated with
the D-frustration index (Fig. 6, D and E). Interestingly,
alanine mutants of native residues predicted to favor the
monomer by D-frustration index have lower genomic pro-
tection at 68�C (Fig. 6 D). DHDCA(Ala) shows no correlation
with capsid thermal stability (Fig. 6 E). These results indi-
cate that metrics derived from physical energy-based
models such as the D-frustration index may capture infor-
mation about thermal stability, although elucidating the
reasons why capsid mutants predicted to favor the multimer
have lower melting temperatures will require further
studies. This relationship may be due to the stability of
the capsid monomer playing an important role in overall
capsid thermal stability. Indeed, parvovirus capsid denatur-
ation or disassembly at high temperatures is thought to
occur cooperatively as subunits lose tertiary structure and
disassemble into trimer intermediates simultaneously; this
denaturation mechanism has been demonstrated in minute
virus of mice (66,67). In future work, these ideas about
the relative importance of monomer and multimer stability
can be evaluated by testing the melting point of mutant
monomers synthesized in bacterial expression systems
without other required components for capsid assembly. It
is notable that this result is in contrast with capsid assem-
bly, in which mutants of residues predicted to favor the
multimer have generally higher genomic titers, in line
with our initial expectations. This conflict may be resolved
through a more detailed experimental examination of the
stages of mutant capsid assembly, including monomer
synthesis, trimer assembly, empty capsid formation, and
genome packaging. It is also possible that the results
(D) D-frustration index, and (E) DHDCA(Ala). N ¼ 8 mutants for structure-based a

do not exist in a majority of the sequence family (these residues are considered

with 95% confidence interval are plotted for statistically significant correlation

***p < 0.001.

498 Biophysical Journal 120, 489–503, February 2, 2021
observed in this study have some dependence on the size
of genomic cargo and the use of a self-complementary
transgene, as transgene size and self-complementarity
have previously been shown to impact virion thermosta-
bility (68). This possibility may be examined by conducting
thermostability assays on mutant virions packaging ge-
nomes of different sizes and single-stranded genomes.
Transduction efficiencies of AAV2 capsid alanine
mutants

Lastly, the WT and mutant viruses were screened for their
ability to transduce HEK293T cells. Variants with mutations
that were predicted to favor multimer formation and variants
with mutations that were predicted to disfavor multimer for-
mation show a wide range of transduction levels, with some
mutants severely deficient in transduction and others com-
parable to WT (Fig. 7 A). Mutants that were predicted to
be neutral with respect to multimer formation all show
transduction levels similar to WT. The number of residue-
residue contacts (Fig. 7 B) and the D-frustration index
(Fig. 7 D) are not correlated with virus transduction ability.
Because these metrics are derived from the viral capsid
structure and a physical energy function, they do not take
into account the interactions the AAV capsid must success-
fully make with its cellular environment to transduce cells.
The frequency of alanine at the site of the mutated residue in
an alignment of parvovirus sequences is also not correlated
with transduction (Fig. 7 C). The DHDCA(Ala) score, how-
ever, is highly correlated with virus transduction (Fig. 7
E). Capsid alanine mutants that are predicted to have higher
fitness in the DCA-derived model of parvovirus coat protein
sequence are more successful at genome delivery into host
cells.

AAV transduction is a complex, multistage process,
requiring the capsid to interact with extracellular receptors,
escape the endosome, traffic to and enter the cell nucleus,
and disassemble to release the transgene for transcription
(69). The DHDCA(Ala) score is the only metric found to be
highly correlated with transduction efficiency, although
when the number-of-contacts metric is restricted to the
same set of six residues analyzed for DHDCA(Ala), this metric
also exhibits a high correlation with transduction (Table S2).
Because the DCA approach is based on a global model
drawing on sequences from the parvovirus family, this
model may be better able to predict which mutated se-
quences are able to traverse the virus’s infectivity pathway
successfully. Although DCA is not likely to capture the
wide range of receptor interactions that AAVand other par-
voviruses undergo to initiate cell entry, this approach may
nalyses. N ¼ 6 mutants for sequence-based analyses because these residues

as insertions in the hidden Markov model of the family). Regression lines

s. R2-values and significance levels are reported. *p < 0.05, **p < 0.01,
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FIGURE 7 Transduction ability of alanine

mutant capsids. HEK293T cells were transduced

with viruses packaging scGFP transgene at a mul-

tiplicity of infection of 1000, and transgene

expression was quantified at 48 h post-transduc-

tion using flow cytometry. (A) Transduction index

(TI) of viruses. TI is the product of percentage of

GFPþ cells and the geometric mean fluorescence

intensity; metrics were obtained from flow cytom-

etry. N ¼ 3 independent experiments done in trip-

licate. Error bars are mean 5 SE. One-way

ANOVA was performed with Dunnett’s post hoc

multiple comparison test to compare mutants

with WT. TI of alanine mutants is plotted against

(B) number of residue-residue contacts in the

native capsid structure, (C) frequency of alanine

in the parvovirus sequence family at the site of

the mutated residue, (D) D-frustration index,

and (E)DHDCA(Ala) score. N¼ 8 mutants for struc-

ture-based analyses. N ¼ 6 mutants for sequence-

based analyses because R471A and S721A were

excluded from these analyses because these resi-

dues do not exist in a majority of the sequence

family (these residues are considered as insertions

in the hidden Markov model of the family).

Regression lines with 95% confidence interval

are plotted for statistically significant correlations.

R2-values and significance levels are reported.

*p < 0.05, **p < 0.01, ***p < 0.001.
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capture features of alternate capsid conformations required
for exposure of the viral endosomal escape and nuclear
localization domains. This hypothesis may be evaluated
by examining vector transduction of cell lines with different
receptors, as well as specific stages of transduction such as
cellular entry, endosomal escape, nuclear trafficking, and
genome release. Furthermore, pairwise residue-residue in-
teractions appear to be essential to this result, as the parvo-
virus family alanine frequency metric is not correlated with
transduction efficiency. However, this result is derived from
data collected on only six viral mutants. As a next step, the
DCA approach should be applied to a larger capsid single-
mutant library to validate this preliminary finding. Addition-
ally, AAV in vitro transduction often differs significantly
from in vivo gene delivery, so an assessment of the correla-
tion of DCA predictions with in vivo infectivity is crucial for
determining whether DCA has utility in informing capsid
designs for gene therapy.
Biophysical Journal 120, 489–503, February 2, 2021 499
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CONCLUSIONS

We evaluated two different computational approaches for
their abilities to predict the formation and function of
AAV capsid mutants (Fig. S7). To characterize the relation-
ship between metrics derived from these approaches and
viral formation and function, we generated a series of
AAV2 capsid mutants and experimentally evaluated their
assembly, thermal stability, and transduction (Table 1).

Viral intracapsid interactions are governed by the same
thermodynamic principles at play in all protein-protein in-
terfaces which are typically governed by weak noncovalent
interactions (70). The predominant interaction in capsid as-
sembly is the burial of hydrophobic regions between capsid
monomer binding interfaces (66,71). We sought to capture
these fundamental capsid interactions through the Frustra-
tometer energy function derived from the energy landscape
theory of protein folding. This energy function is computed
using the AWSEM, a coarse-grained molecular dynamics
force field that has been used for simulating protein folding
and protein-protein interactions. Studies drawing upon such
modeling have previously captured viral assembly path-
ways, suggesting that this approach may prove fruitful in
identifying residues crucial for virus formation (72–76).

We also explored computational approaches for trans-
lating evolutionary information about fitness constraints
from the AAV2 capsid sequence family into predictions
about viral mutant function. DCA is a global statistical
model of sequence families that infers the parameters of
an energy function with terms representing single-residue
identity and residue-residue pairwise couplings. By gener-
ating a global model of sequence families rather than a local
model of each residue-residue interaction, DCA can isolate
directly interacting pairs from indirect correlations that
appear because of the intertwined networks of primary inter-
actions (28,29).

Both the Frustratometer and DCA capture features of the
protein energy landscape; whereas the Frustratometer simu-
lates physical interactions within proteins, DCA incorpo-
rates information from the evolutionary pressures that
have shaped all members of the sequence family to fold
robustly and form functional proteins. DCA also incorpo-
TABLE 1 R2-Values of Linear Regression between

Computational Metrics and Experimental Measures

Titers

Genomic

Protection Transduction

Structural contacts 0.37*,

N ¼ 15

0.39 (n.s.),

N ¼ 8

0.48 (n.s.),

N ¼ 8

Alanine frequency 0.48*,

N ¼ 12

0.47 (n.s.),

N ¼ 6

0.014 (n.s.),

N ¼ 6

DF 0.23 (n.s.),

N ¼ 15

0.52*,

N ¼ 8

0.017 (n.s.),

N ¼ 8

DHDCA(Ala) 0.048 (n.s.),

N ¼ 12

0.057 (n.s.),

N ¼ 6

0.86**,

N ¼ 6

*p < 0.05, **p < 0.01. n.s, not significant.
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rates other constraints on evolution for protein function in
addition to folding and stability. These two computational
approaches have been shown to be correlated in their predic-
tions in prior studies on protein monomers, but when
applied to a virus capsid, they appear to capture somewhat
different information about capsid stability and function.
This may be due to the complex energy landscape of the
metastable viral capsid or the large number of protein-pro-
tein interactions AAV encounters in its infectivity pathway.

The results of this exploratory study hint at the potential
of DCA for predicting viral transduction and raise inter-
esting questions about the relationship between the Frus-
tratometer-based metric and capsid stability. Correlations
between these predictions and experimental results are com-
parable to those observed in studies evaluating modern
state-of-the-art models for mutation prediction in a variety
of proteins and experimental outcomes (77–80). However,
any conclusions are limited by the small number of mutants
studied and the high propensity of AAV capsid mutations to
reduce viral production yields, limiting further study. Anal-
ysis of the DCA approach is further limited by the need for
coverage of each mutant position in a multiple sequence
alignment. Residues that are insertions with respect to the
profile hidden Markov model used to construct the multiple
sequence alignment were not characterized because the
DCA framework cannot make predictions about the fitness
of regions that are not included in the input alignment.

This study was also limited by the selection of mutants
using only one computational approach. To better under-
stand the capacity of these models to make predictions about
the AAV capsid, larger-scale mutational studies exploring a
variety of mutation types are needed. Mutations should be
selected that span the range of DCA mutation fitness predic-
tions to ensure coverage of the 19% of possible alanine mu-
tants with DHDCA(Ala) scores more favorable than the
mutants tested and 1.4% of possible alanine mutants with
DHDCA(Ala) scores less favorable than the mutants tested.
Models should also be evaluated on a large range of random
mutations of different designs, such as single mutants to
nonalanine residues, protein chimeras, and multiresidue mu-
tations. Prior attempts to build unbiased large libraries of
AAV variants using DNA shuffling and error-prone PCR
have been limited by the virus’s intolerance to mutants
that impact capsid architecture (17,81,82). A detailed anal-
ysis of model performance on different mutation types will
clarify the value of these computational approaches for aid-
ing viral library design. Such data may also be used to
develop supervised approaches incorporating features
from DCA and the Frustratometer to predict specific exper-
imental outcomes.

Overall, the results of this study suggest that computa-
tional frameworks relying on evolutionary sequence infor-
mation and force-field-based predictions may provide
guidance for specific elements of AAV structure and func-
tion, but do not on their own provide a complete picture
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of vector fitness. Hybrid approaches using DCA to infer
likely residue-residue contacts that are given as input to
constrain energy-based models may be powerful in devel-
oping a better understanding of capsid metastability
(83,84). The performance of DCA may also be improved
through integration of the growing body of AAV variant
sequence data obtained through barcoded, directed-evolu-
tion experiments and biomining. Development and valida-
tion of these larger data-driven computational models will
ideally lead to the development of an accurate in silico
model of AAV fitness. The resulting refined model could
then be used to prescreen engineered viruses, thereby accel-
erating the development of optimized vectors for more
effective gene therapy.
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