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ABSTRACT Multistability and natural biological variability can result in significant heterogeneity within a cell population, lead-
ing to challenges in understanding and modulating cell behavior. Energy landscapes can offer qualitatively intuitive visualiza-
tions of cell phenotype and facilitate a more quantitative understanding of cellular dynamics, but current methods for
landscape generation are mathematically involved and often require specific system properties (e.g., ergodicity or independent
gene/protein probability distributions) that do not always hold. Here, we present a simple kinetic Monte Carlo-based method for
landscape generation from a system of ordinary differential equations using only simulation trajectories initialized throughout the
phase space of interest. The resulting landscape produces three quantitative features relevant to understanding cell behavior:
stability (reflected by the depth or potential of landscape valleys), velocity (representing average directional movement on the
landscape), and variance in velocity (indicative of landscape positions with heterogeneous movements). We applied this method
to a genetic toggle switch, a core decision-making network in binary cellular responses, to elucidate effects of biologically rele-
vant intrinsic and extrinsic cues. Intrinsic noise, such as stochasticity in transcription-translation and differences in cell cycle po-
sition, manifests through changes in valley width and position, reflecting increased population heterogeneity and more
probabilistic cell fate transitions. The landscapes also capture the effect of an external inducer, revealing a quantitative corre-
lation between the rate of cell fate transition and the energy barrier above a threshold inducer concentration determined by the
permissivity of the valley. Further, in tracking dynamically changing landscapes under time-varying external cues, we unexpect-
edly found that an oscillatory inducer input can modulate cell fate heterogeneity and lead to periodic cell fate transitions entrained
to the input frequency, depending on the intrinsic degradation rate of the switch. The landscape generation approach outlined
herein is generalizable to other network topologies and may provide new quantitative insights into their dynamics.
SIGNIFICANCE Cellular noise is essential for adaptation and survival in dynamic environments, but this heterogeneity
can also hinder therapeutic efficacy (e.g., in cancer) and robust cell engineering (e.g., in stem cell differentiation). Here, we
present a simple method for energy landscape generation that requires only trajectories generated from an ordinary
differential equation model. We use this approach to visualize and quantify the effects of key sources of noise on a gene
regulatory network, generating, to our knowledge, new insights into the propagated effects of such heterogeneity on cell
behavior. We further quantify how landscape dynamics change in the presence of an external cue and identify a strategy
for achieving more uniform behaviors in an inherently nonoscillatory system: response entrainment using an oscillatory
cue.
INTRODUCTION

Biological systems can be manipulated by different extrinsic
cues, such as growth factors, cytokines, and mechanical
stresses (1), but individual cells can show significant hetero-
geneity in their response to the same external cue (2)
because of intrinsic variability (e.g., cell cycle position
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(3,4), differences in protein levels (5,6), and stochasticity
in transcription-translation (7,8)). This phenomenon is often
exacerbated by the presence of multiple steady states, lead-
ing to divergent cell fates. Conventional systems analysis
techniques, such as bifurcation diagrams, can only capture
multiple steady states in the context of deterministic multi-
stability and are not designed to capture intrinsic variability
and biological noise. Similarly, whereas stochastic simula-
tions from an initial state can account for noise and multi-
modality (9), analysis of the resulting trajectories only
provides local details in the neighborhood of the simulation
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trajectory and steady state. Such narrowly focused informa-
tion is typically insufficient for biological systems, particu-
larly when there are multiple stable steady states that are
distributed across phase space; thus, a global picture is
required to infer system characteristics such as the presence
and robustness of all possible cell fates. Using these ana-
lyses can lead to omission of key features that determine
cell behavior, posing a significant challenge in understand-
ing biological systems, particularly in the context of noise
and variability.

Energy landscapes offer an intuitive way of understand-
ing the global behavior of systems with multiple steady
states and different types of noise (10). This approach has
been used in several biological contexts to understand cell
decision making, most famously in the form of Wadding-
ton’s epigenetic landscape in visualizing embryonic devel-
opment (11). In this qualitative depiction, undifferentiated
cells can be thought of as a collection of balls that gravitate
toward valleys with low potential (differentiated states),
with their movements being dictated by the topography of
the landscape and the noisiness of the system. The path of
each individual cell can vary, depending on its initial state
and inherent noise within the system, mirroring the hetero-
geneity in cell response and fate under the same external
cue, as is often observed experimentally. Landscape formal-
isms have been used to understand several biological sys-
tems, including genetic switches (12–14), cell cycle
progression (15), and cell differentiation processes
(16,17). Initial approaches were based on stochastic simula-
tions of systems that probabilistically transition between
steady states, sampling the trajectories over long periods
of time; although narrowly applicable, this method allowed
the generation of a system landscape using the probabilities
of the occurrence of each state in the phase space (18,19).
Unfortunately, this approach requires the system to have
ergodicity (i.e., the system has to be able to sample the
entire phase space, given enough time, through noise-driven
fluctuations). This can be unrealistic for faithfully represent-
ing biologically relevant systems. For example, cell differ-
entiation processes often lead to one stable cell type and
do not stochastically transition between different pheno-
types. Subsequent approaches solving for the steady-state
probability distributions (16,20) are more broadly generaliz-
able but can be mathematically involved; formulating the
chemical master equations or, alternatively, equations for
mean and variance of each species to obtain the correspond-
ing probability distributions is challenging, particularly for
high-dimensional systems and different types of noise.
This approach tends to be highly system specific and re-
quires recalculation for any change in the system interac-
tions. Because steady-state probability distributions are
used, the resulting system landscape only shows dynamics
in terms of perturbations from the steady state, which
need not be the same as the dynamics of approaching steady
state in higher-dimensional systems. Furthermore, these so-
688 Biophysical Journal 120, 687–698, February 16, 2021
lutions assume and solve for independent probability distri-
butions for all model variables (e.g., genes and proteins),
even when analyzing highly interconnected and thus inter-
dependent gene regulatory networks; although this allows
for a mathematically simpler analysis, the approximation
does not always accurately reflect the underlying biology.

Here, we present a simple kinetic Monte Carlo-based
landscape generation methodology that captures both
steady-state and intermediate dynamics of a biological sys-
tem. From a system of ordinary differential equations
(ODEs), the method initializes stochastic simulations at
multiple randomly sampled starting conditions and tracks
each cell throughout these simulations. The recorded trajec-
tories are then used to generate the underlying landscape po-
tential and flux without requiring ergodicity. The simplicity
and extensibility of this method make it trivial to study
model variations, such as additional species or time-varying
cues, which would require significant reformulation of the
chemical master equation or mean/variance-based equa-
tions. We applied our method to produce quantitative land-
scapes of a genetic toggle switch, a useful test bed because it
is at the core of several important biological decision-mak-
ing circuits involving cell fate decisions (21–23) and cell cy-
cle regulation (5,24). For example, during cell cycle
progression, both G1/S and G2/M transitions are each gov-
erned by a bistable toggle switch. In particular, the G1/S
transition is modulated by a toggle switch involving the cy-
clin-dependent kinase CDK2 and its inhibitor p21. Studies
involving this network have significantly advanced the un-
derstanding of heterogeneity in the quiescence-proliferation
decision (i.e., whether a cell will divide or not), as well as
factors affecting the duration of the G1 phase (5). The toggle
switch is also a core topology during multiple stages of the
stem cell developmental trajectory. Trophectoderm lineage
determination, one of the first decisions made during fetal
development, is governed by a toggle switch involving
OCT4 and CDX2. Similarly, endoderm lineage determina-
tion is dictated by a Nanog-GATA6 toggle switch. Under-
standing the behavior of these core topologies has
elucidated stem cell behavior in both in vivo development
and in vitro differentiation (25).

For a minimal synthetic genetic toggle switch (26), the
landscape shows steady-state details of the system, as pre-
dicted by the deterministic model; in addition, the effect
of noise on system stability, as well as features of interme-
diate system dynamics, such as relative time to steady state,
can be elucidated. Our methodology further allowed us to
investigate the role of intrinsic variability among cells
such as differing initial protein abundances, transcriptional
bursting, and cell cycle position. We then studied the effect
of extrinsic cues on the system, showing how both constant
and time-dependent applications of an inducer influence the
landscape. A constant input destabilizes the noninduced
state while simultaneously reducing the potential barrier
for transition to the induced state, eventually leading to
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cell transitions. This threshold is predicted by the velocity
vectors in the noninduced valley corresponding to the per-
missivity of the valley. Further, the cell transition rate can
be predicted from the corresponding potential barrier
through transition-state theory. In contrast, oscillatory in-
puts cause the underlying system landscape to dynamically
change and, at certain frequencies, entrain a toggle switch to
have concerted periodic transitions tuned to the input fre-
quency. This characteristic frequency is dependent on the
system timescale, which in this case is the intrinsic degrada-
tion rate of the proteins. Overall, this study presents a simple
and generalizable method for landscape generation to eluci-
date key biologically relevant effects of typical intrinsic and
extrinsic cues on a gene regulatory network.
MATERIALS AND METHODS

Software

The ODE-based deterministic mathematical model was solved using the

numerical stiff solver ode23s in MATLAB (The MathWorks, Natick,

MA). The Gillespie algorithm for the stochastic model was programmed

in Cþþ. Histograms, videos, graphs, trajectories, and pseudoenergy land-

scapes were visualized using MATLAB. Additional graphs were generated

using Microsoft Excel (Microsoft, Redmond, WA).
Energy landscape generation

We sampled initial conditions randomly from the entire phase space of in-

terest and tracked the simulation until steady-state potentials converged;

this time was determined by a deterministic simulation of our system for

one parameter set and remained unchanged to allow reasonable compari-

sons across different parameter sets. We used the protein abundances

sampled from these trajectories to construct a probability distribution (P)

that was then converted into a pseudopotential energy surface (U ¼
�ln(P)), which is plotted as a function of the variables of interest to obtain

a potential energy surface. Further details are provided in the Supporting

materials and methods.
Velocity calculation

We calculated the velocities of each trajectory by a finite time difference

formula or by using the ODE expression dx=dt ¼ f ðxÞ. In a given discre-

tized area of the phase space, we averaged the velocity of all trajectories

that pass through the area and assigned this as the velocity at the center

of the discretized area within the landscape, denoted by an arrow, the length

of which is proportional to the logarithm of the magnitude of the velocity,

and a circle, the radius of which is proportional to the logarithm of the asso-

ciated coefficient of variation. Using a logarithmic scale for these compo-

nents allows a better comparison between different points in the

landscape that have disparate velocity magnitudes. Linear scales also

tend to deemphasize details in regions with low velocities, particularly

near unstable steady states, leading to a less informative visualization.

Further details are provided in the Supporting materials and methods.
Stochastic gene expression

During each time step in the simulation, we sampled the state of each gene,

checking whether it was bound or unbound by using the concentration of

the inhibitory molecule. If the gene could produce protein (i.e., was un-
bound) and the Gillespie algorithm selected the protein production step,

we then increased the number of proteins by a number sampled from a Pois-

son distribution, the mean of which corresponded to the mean burst size. If

the gene was bound, then no proteins were produced. When there were mul-

tiple genes for the same protein (e.g., after DNA replication), we checked

the binding state for both genes and updated the reaction propensities

accordingly. MATLAB and Cþþ code used to generate landscapes for

each case are provided in Data S1 (TrajectoryBasedLandscapes.zip).
RESULTS AND DISCUSSION

Generation of potential and velocity for an energy
landscape

In molecular dynamics, the potential energy surface reflects
the corresponding probability distribution of system states; a
lower potential energy implies that the system has a higher
probability of existing in that state during a simulation. Us-
ing this principle, we designed a set of simulations that cap-
ture the relative probabilities of the existence of a cell with a
specified concentration of state variables (e.g., protein abun-
dances). We sample initial conditions randomly from the
entire phase space of interest (Fig. 1 A), thereby bypassing
the requirement for ergodicity. The number of initial condi-
tions is determined by a quantitative convergence analysis
(27). We track the simulation and use the protein abun-
dances sampled from these trajectories to construct a prob-
ability distribution (P) that is then converted into a
pseudopotential energy, U ¼ �ln(P) (Fig. 1, B and C).
This allows us to generate a potential energy surface that
is reflective of the corresponding probability distribution
of system states.

Avalley on the landscape represents a region with low po-
tential energy, where cells remain for a large amount of
simulation time. Typically, this would correspond to a
steady state, especially for systems in which the direction
of motion can be inferred from the slope of the potential en-
ergy surface. However, some systems might have a tempo-
rary transition state that the system traverses before
reaching a steady state. For example, lineage commitment
for hematopoietic progenitors can pass through a temporary
bipotent transition state before committing to a final cell fate
(28). In a more extreme case, the cell cycle, which shows
oscillatory behavior at steady state, requires the system to
not stay at a fixed potential energy minimum within the
generated landscape, but rather compels movement, de-
pending on the velocity at each point on the landscape
(15). Thus, potential energy alone does not provide a com-
plete picture of the system; we require the velocity along the
potential surface to make accurate conclusions about system
behavior.

For a two-dimensional system, velocities on the landscape
would simply be the time derivative calculated from the dy-
namic equations. However, for higher-dimensional systems,
this becomes nontrivial because we do not necessarily
possess (or cannot accurately represent) information about
Biophysical Journal 120, 687–698, February 16, 2021 689



FIGURE 1 Generation of a potential energy landscape with velocities. (A) Schematic showing the generation of cell trajectories to obtain position and

velocity within the phase space of interest is shown. (B) The scatter plots at different times show the abundances of A and B, as well as the velocities

for 250 out of 10,000 cells used for the simulation. The plots are also shown as an overlay. (C) Conversion of the scatter plot to a potential energy landscape

with velocities is shown. The combined scatter plot of A and B abundances and velocities sampled at different times is shown. The abundances are used to

generate a 2D histogram that is then converted into a potential energy surface. The phase space is discretized, and the velocities within each gridded region are

averaged to obtain the mean velocity and variance for that region. (D) Combined landscape with potential and flux for a genetic toggle switch is shown.
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variables that are not the axes of the generated landscape. The
time derivatives could be integrated out of the N-dimensional
system to convert it into a two-dimensional system (15),
particularly if the variable distributions are independent of
each other, but this process tends to be nontrivial. Instead,
we use a simpler method that involves determining the veloc-
ities of each cell at each point along the trajectory, either by
calculating dx=dt ¼ f ðxÞ or by using a simple finite time dif-
ference, x t þ Dtð Þ � x tð Þð Þ=Dt. Using this, we obtain the
average velocity and coefficient of variation at each point
within the phase space, shown as arrows (vectors) and circles
at the base of each arrow, respectively (Fig. 1 C). The gener-
ated average velocities have good agreement with the deter-
ministic velocities calculated using the rate equations,
indicating that this method can be used to describe system ve-
locity and direction of motion within a landscape (Fig. S1).
Overall, this energy landscape with velocity overlays
(Fig. 1 D) provides an intuitive visualization and quantitative
understanding of biological systems, particularly those with
nonlinearities, multistability, and stochasticity.

This technique is also applicable to higher dimensions.
Given the use of simulation trajectories, the calculation of
690 Biophysical Journal 120, 687–698, February 16, 2021
the potential energy function remains straightforward; how-
ever, the challenge is in depicting the result in an intuitive
and meaningful manner. For a three-species system, the
result can be visualized as a ‘‘potential object,’’ where the
color at different coordinate positions represents the under-
lying potential energy (Fig. S2, A and B). For a more intui-
tive representation, dimension reduction techniques, such as
principal component analysis, can be used to simplify N-
dimensional trajectories (N > 2) into two-dimensional
(2D) trajectories, which can then generate a traditional po-
tential energy surface (Fig. S2 C).

Although we have used the Gillespie algorithm to account
for the inherent noisiness and to generate cell trajectories,
other simulation approaches, such as stochastic differential
equations with a noise term or even deterministic methods,
could be used to obtain a similar visualization. However,
each method has limitations in terms of how accurately it
would capture necessary system characteristics. For
example, deterministically generated landscapes would
only be able to account for differences in trajectories along
the landscape due to initial protein abundances and would
be unable to represent molecular, transcriptional, and other



FIGURE 2 Energy landscapes of a genetic toggle switch showcasing both steady-state behavior and intermediate dynamics. (A) Schematic of the genetic

toggle switch is shown. (B) One-dimensional (1D) representations of the system landscape for different cooperativities of repression (top) with temporal

trajectories of each cell for b ¼ 2 and b ¼ 3 (bottom) are shown. (C) Pseudoenergy landscapes are shown for different rates of production of A and B:

(i) aA ¼ 1, aB ¼ 1, (ii) aA ¼ 3, aB ¼ 1, (iii) aA ¼ 1, aB ¼ 3, (iv) aA ¼ 3, aB ¼ 3. Color bar indicates system potential.

Trajectory-based GRN energy landscapes
cellular noise usually present in these systems. Appropriate
modeling choices can be made in generating the landscape
to further simplify trajectory generation, depending on the
biological features necessary for understanding system
behavior.
Effect of intrinsic parameters on the landscape

We chose to apply this method to a genetic toggle switch
with two cross-antagonistic proteins, A and B, that bind to
each other’s DNA and repress corresponding protein pro-
duction. The simple toggle switch topology (Fig. 2 A) con-
sists of two key parameters: a, the intrinsic production rate,
and b, the cooperativity of repression. By increasing the
latter, we observe that the system goes from being monosta-
ble to robustly bistable, as predicted from deterministic sim-
ulations of this toggle switch (Fig. 2 B, top; (26)). In
addition, the generated landscapes provide details of the
steady state and intermediate system dynamics. At b ¼ 2,
we observe that the system can stochastically switch be-
tween the two steady states (Fig. 2 B, bottom left). This is
indicated by the presence of near-zero average velocities
with high variances between the two basins, which implies
that the individual cell velocities are nonzero and in oppo-
site directions, facilitating cell transitions between the two
valleys, even at steady state. As we go from b ¼ 2 to b ¼
3, the system reaches steady state faster (indicated by the
steeper gradient descent into the valleys) and has less vari-
ability associated with the stable steady states (indicated
by the narrower width of the valleys); these phenomena
are confirmed by the time series of the two conditions
(Fig. 2 B, bottom).

By varying the intrinsic protein production rates (a), we
obtain four qualitative states: 1) both OFF, 2) A ON, B
OFF, 3) AOFF, B ON, and 4) both ON (Fig. 2 C). The fourth
condition shows the existence of a bistable landscape. The
two valleys, with velocity vectors converging into them,
represent the stable steady states of the system; the point
of zero average velocity with divergent velocity vectors in
the region between the two valleys, represents the unstable
steady state. The velocity vectors also indicate that the un-
stable steady state is a saddle node, as expected from deter-
ministic stability analysis. In addition, the velocity vectors
support the fact that the system is indeed bistable and
does not have two states due to noise-induced bimodality.
The latter would arise from stochastic switching between
the two states, leading to the presence of a large number
of zero average velocity vectors, with high variance in the
region between the states, which is not the case here. Addi-
tionally, both steady-state valleys persist under a more
Biophysical Journal 120, 687–698, February 16, 2021 691
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deterministic regime, with an increased number of mole-
cules in the system (Supporting materials and methods;
Fig. S8). Taken together, these results show that our method-
ology can capture steady-state details (e.g., stability, vari-
ance, and stochastic switching), as well as intermediate
dynamics (e.g., time to steady state), features that are typi-
cally missing from deterministic analyses as well as other
methods of landscape generation.
Integration of intrinsic biological variability into
the landscape

Biological systems often exhibit intrinsic variability due to
noise in protein expression, potentially leading to heteroge-
neous responses under the same external cue (7). A major
contributor to this intrinsic noise is transcriptional bursting,
the rapid, stochastic generation of multiple mRNA mole-
cules from a single DNA molecule (Fig. 3 A; (29)). In this
process, a DNA molecule is thought to switch stochastically
between two states: accessible (ON) or inaccessible (OFF)
by the transcription machinery. When the DNA is ON, mul-
tiple transcripts are rapidly produced, depending on how
long the gene is accessible and the probability of transcrip-
tion machinery binding to the gene. In our simulations, we
assume that this number of transcripts is given by a Poisson
FIGURE 3 Energy landscape of a genetic toggle switch showing the effect of

deterministic expression compared with stochastic bursty expression is shown. (B

burst size ¼ 5 mRNA/protein per transcription-translation cycle) while keeping

ficient of variation at steady state for different mean burst sizes is shown. (D) L

shown alongside the single cell trajectories are shown. (E) Schematic showing

S/G2/M phases is shown. (F) Distributions are shown for the repressed protei

two distributions are statistically distinct, as assessed by the Kolmogorov-Smir
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distribution (30), defined by the mean number of transcripts
produced per burst or mean burst size (mburst). To provide a
commensurate comparison, we scale the DNA ON time by
mburst; this scaling ensures that the mean expression levels
of the proteins remain the same, regardless of the mean burst
size. Accounting for this additional process in our simula-
tion, we observe an increase in the widths of both the stable
valleys and the intermediate region, indicating that the sys-
tem has more observed heterogeneity in protein levels
throughout the simulation, even though the mean expression
levels are unchanged (Fig. 3 B). This heterogeneity also in-
creases with increasing mean burst size (Fig. 3 C). Bursti-
ness can also decrease system stability by promoting
stochastic switching between two steady states, particularly
for genes with larger mean burst sizes (Fig. 3 D). This im-
plies that systems with similar mean protein expression
can still exhibit different biological behavior if they have
different intrinsic noise in protein production, resulting in
an irreversible decision when mburst is low and a more plastic
outcome when mburst is high. Our analysis here has assumed
Poissonian synthesis, but mRNA production is not always
Poissonian and can change, depending on the promoter
and gene (30,31). This can lead to differently shaped val-
leys, depending on the shape of the underlying distribution
(Fig. S3). Nonetheless, the increase in variability due to
bursty expression and cell cycle progression. (A) Schematic of conventional

) Landscapes are shown of normal expression and bursty expression (mean

the net protein production rate constant. (C) Scatter plot showing the coef-

andscapes for genes with equal mean expression and different burst sizes

the differences between transcription in G1 phase versus transcription in

n at steady state when the cell is in the G1 phase or S/G2/M phases. The

nov test (p < 10�6).
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burstiness and the subsequent consequences are likely to
remain qualitatively applicable to other cases.

An additional source of heterogeneity in genetically iden-
tical cells arises from the cell cycle position. After DNA
replication (S/G2/M phases), cells halve their total tran-
scription rate to maintain the same rate of protein synthesis
compared with cells with a single copy of DNA (G1 phase).
This has been shown in previous studies to be due to reduc-
tion in the time that each DNA copy spends in a transcrip-
tionally accessible state (Fig. 3 E; (29)). This phenomenon
leads to an increase in variance of the OFF protein and
more leakiness of the system at steady state because of
higher concentrations of the repressed protein (Fig. 3 F).
The increased variance results in greater population hetero-
geneity and therefore heterogeneity in response to an
external cue, even when considering a uniform population
of cells in S/G2/M. Additionally, increased leakiness during
S/G2/M in these cells makes them more susceptible to leav-
ing the steady state under the same external cue. This could
potentially be used to selectively target cells in the S/G2/M
phase, as is generally preferred in cancer treatment to selec-
tively kill actively dividing tumor cells while leaving nondi-
viding normal cells unaffected.

Overall, these intrinsic factors can lead to significant vari-
ability, even within a genetically identical population, and
potentially lead to incorrect biological interpretations,
both qualitatively and quantitatively, when applied in an
experimental setting. Thus, accounting for these intrinsic
factors is important in establishing an accurate mechanistic
understanding of the system and subsequently being able to
engineer desired behaviors.
Effect of a constant external cue on the landscape

External cues, ranging from cytokine signals to mechanical
forces to osmotic stress, can markedly influence the
behavior of biological systems. These cues are generally
experimentally tunable and can significantly change key
features of the system landscape, including the number of
valleys, depth of the valleys, and the paths accessible by
cells. This can lead to dramatically different cell behaviors.
Qualitative and quantitative insights into the effect of these
cues, particularly in the context of biological variability, can
help design better strategies for manipulating biological sys-
tems to produce desired behaviors, for example in designing
more robust stem cell differentiation protocols.

Chemical inducers are a class of external cues that
commonly serve as inputs to synthetic biological circuits
to produce the desired output. Many of these molecules
regulate gene expression of a protein by disabling its
repressor, usually by binding to the repressor and decreasing
its affinity for its DNA binding site (Fig. 4 A). Increasing the
effective inducer concentration biases the bistable system
landscape toward the induced state by destabilization of
the opposing node. This initially manifests as a reduction
in valley depth and increased leakiness for the noninduced
state, as well as a reduction in the transition barrier from
the noninduced state to the induced state. This eventually
leads to the disappearance of both the noninduced valley
and the intermediate region, resulting in a monostable land-
scape with a single valley corresponding to the induced state
(Fig. 4 B). This change in landscape is reversible with
removal of the inducer; however, the reversibility in cell
phenotype is dependent on whether the system can stochas-
tically transition at steady state (Figs. S4 and S5).

In a deterministic toggle switch, transitions to the induced
state happen abruptly above a certain inducer concentration
when the energy barrier for transition suddenly and dramat-
ically decreases (Fig. 4 C). This threshold concentration also
corresponds to the point in the stability diagram where the
system undergoes a saddle node bifurcation, going from
three steady states (two stable, one unstable) to one stable
steady state (Fig. 4D). However, when stochasticity is intro-
duced within the system, the energy barrier for the transition
process begins to decrease at a slightly lower inducer con-
centration and changes less abruptly compared with the
deterministic case. This leads to a region within the phase
space where there are noise-driven transitions that occur at
lower inducer concentrations than the deterministic
threshold. The presence of these transitions is better under-
stood from the stability diagram and the variability due to
stochastic noise at steady state, here referred to as valley
permissivity. On the landscape, this is defined as the positive
difference between the concentration at the valley minimum
and the maximal achievable concentration away from the
valley minimum at steady state due to stochastic variability
without undergoing a transition. Specifically, transitions
occur when the valley permissivity overlaps the saddle point
(unstable steady state), allowing cells to transition to the
induced state once they probabilistically cross this point
(Fig. 4 D).

The presence of these noise-driven transitions has a
twofold effect on cell behavior. First, there are induced
transitions at lower inducer concentrations than predicted
by the deterministic analysis, which could lead to incor-
rect inference of key biological parameters. Second,
because of the probabilistic nature of these crossings,
only a fraction of the cells can reach the induced state
at these low inducer concentrations within a given time
period, thus leading to a heterogeneous population, unless
the time frame is long enough to allow all cells to transi-
tion. Cells that do not respond to a cue within the time
frame of an experiment, because of stochasticity as
described here, could be incorrectly perceived as a distinct
phenotype. For example, this could be problematic in can-
cer chemotherapy or antibiotic treatment, in which con-
straints on drug dosing may lead to the incorrect
conclusion that cells are drug resistant instead of stochas-
tically nonresponsive but potentially treatable with a
different treatment regimen.
Biophysical Journal 120, 687–698, February 16, 2021 693



FIGURE 4 Effect of inducer on the toggle switch landscape. (A) Schematic shows the effect of inducer on the toggle switch. (B) Potential landscape as a

function of the concentration difference between A and B for different inducer concentrations is shown. Concentration [X] of a component X is given by the

number of molecules of X divided by the system Avogadro number (NA ¼ 100 in this case). (C) Effect of inducer on barrier height (activation energy) in the

stochastic case compared with the deterministic case is shown. (D) Stability diagram of the toggle switch system with respect to inducer concentration over-

layed with the valley minima and valley permissivity calculated from stochastic simulations, showcasing the ability of the stochastic system to transition at

lower inducer concentrations, is shown. (E) Correlation between activation energy and transition rates for different inducer concentrations for normal expres-

sion (black circles) and bursty expression (gray diamonds) with linear fits to each (black dots and red dashes, respectively) is shown. The red circle and

orange diamond are cases in which the correlation fails (overpredicts transition rate) for normal and bursty expression, respectively; these are for inducer

concentrations of 0.45 and 0.3 for normal and bursty expression, respectively. The lowest simulated inducer concentrations that follow the correlation

are 0.5 and 0.4 for normal and bursty expression, respectively, with the next points increasing in intervals of 0.1 up to a maximal inducer concentration

of 1.3. (F) Graphs show the valley minima with valley permissivity and the saddle point for the normal and bursty expression cases showing failure of

the Arrhenius correlation when the saddle point does not lie within the range of valley permissivity in the red boxes.
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In addition to quantitative insight on the presence or
absence of transitions, these landscapes also provide infor-
mation about the dynamics of transition. As per transition
state theory, the natural logarithm of the transition rate is
proportional to the energy barrier height as measured from
the initial state (also referred to as activation energy, Ea).
Specifically, this Arrhenius equation is ln kð Þ ¼ �Ea=RT,
where k is the rate constant for a process, R is the gas con-
stant, and T is absolute temperature. Indeed, we observe a
strong correlation between the mean transition rate (i.e., in-
verse of the mean transition time as measured through sto-
chastic simulations) and the energy barrier (Fig. 4 E).
Notably, this relationship fails below a threshold inducer
concentration, overpredicting the expected rates. By
analyzing the landscapes, we found that this failure occurs
when the saddle point is not within a certain relative concen-
tration, here referred to as Arrhenius permissivity (Fig. 4 F),
meaning that cells do not reach the saddle point at a suffi-
ciently high frequency. On the landscape, the Arrhenius per-
missivity refers to the positive difference between the
concentration at the valley minimum, [X]min, and the con-
centration [X], whose steady-state probability relative to
694 Biophysical Journal 120, 687–698, February 16, 2021
the valley minimum is given by the exponent of the negative
of the transition energy barrier; in other words, [X] is
defined by Pssð½X�Þ=Pssð½X�minÞ ¼ e�Ea, where Pss refers to
steady-state probability. In our simulations, steady state re-
fers to the time after the transient approach to the stable
steady states has been completed. Additionally, within this
toggle switch system, [X] corresponded to the concentration
for which the potential is �80% of the transition barrier en-
ergy. We also note that, by definition, the valley permissivity
is greater than the Arrhenius permissivity. The former indi-
cates whether stochastic transitions are possible, and the
latter determines whether the transition rates follow the Ar-
rhenius relationship.

The Arrhenius equation requires that, given sufficient
time, the system must sample the entire phase space (or in
the case of unidirectional reactions, the region between
the initial state and the transition state) at a frequency
inversely proportional to the exponent of the energy at
each point. However, in our system, because of decreased
Arrhenius permissivity at lower inducer concentrations,
this does not remain true and thus leads to slower transi-
tions. This is further validated by increasing Arrhenius
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permissivity by adding transcriptional bursting to the system
(Fig. 4 E). We observe that the threshold inducer concentra-
tion in which the relationship fails now decreases and still
corresponds to the case wherein the saddle point does not
lie within the Arrhenius permissivity (Fig. 4 F).

Quantitative prediction of transition times and determining
the point of failure can help design better experimental stra-
tegies with dynamic inputs to achieve desired cellular
behavior. Stem cell differentiation strategies often involve
treating cells with a series of different cues that direct them
toward a particular fate. Determining the optimal exposure
times for each cue is critical for specifying the differentiation
trajectory and subsequently the final cell fate. Errors in this
timing can lead to undesired excursions on the landscape
and consequently undesired cell types. Given a functionally
accurate model, this type of analysis can be used to suggest
optimal time points for each cue while taking into consider-
ation natural biological variability and stochasticity.
Effect of a time-dependent external cue on the
landscape

Biological circuits are often exposed to time-varying input
signals. In many cases, these are oscillatory inputs with a
FIGURE 5 Effect of sinusoidal inducer inputs on the toggle switch landscape.

scape along with a description of the input sinusoidal inducer concentration is s

(B) 2D landscape of a toggle switch with IA ¼ 0.2 followed by the waterfall

(C) Waterfall landscapes depicting the effect of different frequencies of induc

the effect of system parameters a (i–iii), b (iv–vi), and kscale (the time constant o

at f ¼ 0.05 (D) and f ¼ 0.5 (E).
characteristic amplitude and frequency, as seen in circuits
regulated by the cell cycle (32), circadian rhythm (33),
p53 signaling (34), and NF-kB signaling (35). To simulate
this in our system, we used a sinusoidal inducer concentra-
tion IAðtÞ ¼ IA0

ð1þsinð2pftÞÞ with a characteristic ampli-
tude IA0

and frequency f (Fig. 5 A). However, because of
the highly dynamic nature of the inputs, the landscapes
are not constant and instead change shape, depending on
the instantaneous inducer concentration (Video S1). This
makes interpreting the landscape using a simple 2D picture
challenging and can lead to inaccurate conclusions about
system behavior if done without representing the dynamic
nature of these landscapes.

To visually encode this information, we generate ‘‘water-
fall landscapes’’ that showcase snapshots of the one-dimen-
sional (1D) landscape at each instant as a function of time
(Fig. 5 B). In this depiction, each cell can be thought of as
a ball starting at an initial condition from the top of the land-
scape and preferentially moving toward regions of lower po-
tential while simultaneously rolling down the plot (much
like an actual ball moving along a rivulet or waterfall).
Although we lose some information by transforming a 2D
(A,B) system to a 1D (A-B) system, this allows us to under-
stand cellular decision making in the face of dynamically
(A) Schematic showing the effect of inducer on a simple toggle switch land-

hown. Parameters used to generate the simulations are shown in the table.

landscape depiction and time trajectories of the same system is shown.

er sine wave oscillation are shown. (D and E) Waterfall landscapes show

f the system; vii–ix) in inducing concerted transitions within the landscape
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changing landscapes while still providing information about
cell fate distributions, intrinsic noise, and differences in
starting conditions, features that are not captured in a static
landscape or the time trajectories of the system.

Interestingly, we observe that frequency of the oscillatory
input can significantly change system response, even under
constant amplitude of input (Fig. 5 C). For a fixed amplitude
of IA0

¼ 0:5, we broadly observe three regimes of system
behavior, depending on input frequency. At low but nonzero
frequencies, the system is completely induced to a single
stable steady state. At intermediate frequencies, the system
exhibits periodic concerted transitions to the induced stable
steady state corresponding to the frequency of inducer input.
In this regime, a toggle switch system can be made to
behave similar to an oscillatory system with a characteristic
frequency. However, at higher frequencies, the system
behavior is similar to a nonoscillatory input, and there do
not appear to be concerted transitions. Biologically, these
findings indicate that a toggle switch, a characteristically bi-
nary system, can be modulated to show different responses,
depending on the frequency of an input signal. To our
knowledge, this has not been reported in literature and pre-
sents interesting implications for biological systems gov-
erned by the toggle switch. For example, regulation of the
p21-CDK2 biological switch by the oscillatory p53 signal
(36) could lead to significant heterogeneity within a popula-
tion, depending on the characteristic frequency of oscilla-
tion, with more uniformity at lower frequencies and more
heterogeneity at higher frequencies, even when the ampli-
tude remains the same. Additionally, this strategy of peri-
odic inducer application may be useful in stem cell
differentiation to produce a more homogeneous population
in cases for which a desired inducer is cytotoxic at high, sus-
tained concentrations (e.g., CHIR in cardiomyocyte differ-
entiation (37)), but better tolerated in high-concentration
pulses.

To better understand the dependence of system behavior
on input frequency, we perform a parameter sensitivity anal-
ysis on f ¼ 0.05 (Fig. 5 D), a frequency too low to elicit
concerted transitions in the original simulations, and f ¼
0.5 (Fig. 5 E), a frequency too high to elicit concerted tran-
sitions. In the former case, we observe that increasing a and
b by a small amount can restore concerted transitions to the
system, whereas in the latter, changes in both parameters are
unable to produce concerted transitions. An additional
parameter is the characteristic time constant of the system
that has been used in the scaling analysis for obtaining
nondimensional ODEs, kscale, which here is the intrinsic
degradation rate constant of the proteins in the system.
Decreasing this parameter (i.e., slowing down the kinetics
of the system) results in concerted transitions for f ¼ 0.05,
whereas increasing this parameter (i.e., speeding up the sys-
tem) does the same for f¼ 0.5. These results provide insight
into the key requirements for these transitions to occur in a
periodic manner. When the frequency is too low (f ¼ 0.05),
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the amount of inducer in the system increases and stays
greater than the mean for long periods of time (t¼ 20), lead-
ing the cells to be completely induced (Video S2). This can
be counteracted by increasing the intrinsic production rate a
within the system, which would then require longer time pe-
riods of high inducer concentration for complete induction.
Similarly, increases in the cooperativity of repression b

make the potential barrier between the two states higher,
which again requires longer periods of high inducer for in-
duction. These changes allow the system to have concerted
transitions under low-frequency oscillatory inputs.

When the frequency is too high, the system is unable to
react fast enough to the rapidly changing landscape and
thus behaves similarly to a system with a constant inducer
concentration (Video S3). This can be modified by
increasing kscale, which allows the system to react more
quickly to the rapidly changing landscape, resulting in
concerted transitions. This behavior is also seen at low fre-
quencies if the system is slowed down by decreasing kscale.
Specifically, these concerted transitions are observed when
the input frequency is such that it can periodically induce
a subpopulation of cells from the opposing state and does
not change significantly before at least part of the subpopu-
lation of induced cells reaches the separatrix (Videos S4 and
S5). In conclusion, there is a ‘‘Goldilocks’’ frequency range
that is dependent on the system parameters that allows the
system to respond with less heterogeneity.
CONCLUSIONS

This study presents a simple method for landscape genera-
tion to facilitate intuitive visualization and quantitative anal-
ysis of a gene regulatory network within the context of
biologically relevant variability. Through this approach,
we are able to identify, quantify, and better understand sys-
tem dynamics; here, we used a well-studied genetic toggle
switch as an exemplar for testing and validating our method,
and we discovered unexpected behaviors such as system
entrainment. The approach can be readily extended to
analyze and visualize more complex two-dimensional sys-
tems, such as a self-activating toggle switch (Figs. S6 and
S7), and even higher-dimensional systems using data reduc-
tion techniques (Fig. S2 C), potentially including compre-
hensive models parametrized with multiomics data to
supplement purely data-driven approaches (38,39). Addi-
tionally, this type of analysis can be particularly useful in
systems for which noise and heterogeneity within a given
population create a barrier to forming an accurate under-
standing, posing significant challenges in modulation and
prediction of behavior. For example, heterogeneity within
a patient tumor underpins the presence of dormant cancer
cells and drug-resistant subpopulations (40); these lead
to significant difficulty in designing effective treatment
regimens and predicting patient outcome. Similarly, hetero-
geneity within a cell population can lead to unintended
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variability in cell fate under an external cue, leading to dif-
ficulty in generating populations of a single cell type
through differentiation or dedifferentiation without addi-
tional processing steps (41,42). Utilizing the framework
developed herein can aid in including such effects more
easily and facilitate the development of strategies to better
predict and modulate cellular response.
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