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Widespread signatures of natural selection across
human complex traits and functional genomic
categories
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Understanding how natural selection has shaped genetic architecture of complex traits is of

importance in medical and evolutionary genetics. Bayesian methods have been developed

using individual-level GWAS data to estimate multiple genetic architecture parameters

including selection signature. Here, we present a method (SBayesS) that only requires GWAS

summary statistics. We analyse data for 155 complex traits (n = 27k–547k) and project the

estimates onto those obtained from evolutionary simulations. We estimate that, on average

across traits, about 1% of human genome sequence are mutational targets with a mean

selection coefficient of ~0.001. Common diseases, on average, show a smaller number of

mutational targets and have been under stronger selection, compared to other traits. SBayesS

analyses incorporating functional annotations reveal that selection signatures vary across

genomic regions, among which coding regions have the strongest selection signature and are

enriched for both the number of associated variants and the magnitude of effect sizes.
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The joint distribution of SNP effect size and minor allele
frequency (MAF) is an essential component of the genetic
architecture of human complex traits and is influenced by

natural selection1. A negative relationship between effect size and
MAF is a signature of negative (or purifying) selection2,3, which
prevents mutations with large deleterious effects becoming fre-
quent in the population. Understanding how natural selection has
shaped genetic variation helps researchers to improve experimental
designs of genetic association studies4 and the estimation of SNP-
based heritability (the proportion of phenotypic variance explained
by the SNPs)5–9. Inference on natural selection is also a critical step
towards the understanding of the genetic architecture of complex
traits. For instance, the theory of negative selection10 explains why
the effects of common variants identified by genome-wide asso-
ciation studies (GWAS) are unlikely to be large11,12.

We have recently developed a Bayesian method (BayesS) to
estimate the effect size–MAF relationship, which was considered
as a free parameter (S) in the model13. We detected negative Ŝ for
a number of complex traits in humans, highlighting an important
role of negative selection in shaping the genetic architecture,
consistent with the findings from other studies based on genome-
wide variance estimation approaches7,11,14,15. The BayesS model
also allows us to estimate the SNP-based heritability and poly-
genicity (the proportion of SNPs with nonzero effects) to better
describe the genetic architecture for a trait. The application of
BayesS has been restricted to GWAS samples with individual-
level genotypes but for most common complex diseases, only
summary-level data are publicly available. Moreover, despite the
implementation of a parallel computing strategy13, it remains
computationally challenging to run BayesS for biobank-scale data,
as the computing resource required increases linearly with the
number of individuals or SNPs.

In this study, we enhance the BayesS model such that the ana-
lysis only requires GWAS summary statistics and a sparse linkage
disequilibrium (LD) correlation matrix from a reference sample.
This method (referred to as Summary-data-based BayesS or
SBayesS) opens an opportunity to disentangle the genetic archi-
tecture of complex traits (including diseases) using publicly avail-
able data sets of the largest sample sizes to date, with merely a small
fraction of the computational resource required for BayesS. We
perform extensive analyses to benchmark between SBayesS and
BayesS, and apply the SBayesS methods to GWAS summary sta-
tistics from the full release of the UK Biobank16 (UKB) data and
other published studies17–25, followed by time-forward simula-
tions26 for evolutionary inference and SBayesS analyses that
incorporated functional genomic annotation data. We detect
widespread signatures of negative selection in the genetic archi-
tecture across 155 complex traits with a predicted mean selection
coefficient of ~0.001 and a predicted mean proportion of human
genome sequence being mutational targets of ~1%, among which
common diseases show a relatively higher mean selection coeffi-
cient and a relatively smaller number of mutational targets. Meta-
analysis across traits reveals differential signatures of negative
selection across functional genomic regions, among which coding
regions have the strongest selection signature and are enriched for
both trait-associated variants and those with large effect sizes.

Results
Method overview. BayesS is a method that can estimate three key
parameters to describe the genetic architecture of complex traits
by a Bayesian mixed linear model13, namely SNP-based herit-
ability (h2SNP), polygenicity (π) and the relationship between MAF
and effect size (S), all of which are defined with respect to a
certain set of SNPs (see the definition of h2SNP as an example5).
BayesS requires individual-level data. SBayesS is an extension of

BayesS, but only requires GWAS summary statistics of the SNPs
and LD information from a reference sample (see the “Methods”
section, Supplementary Note and Supplementary Fig. 1). We
compute pairwise LD correlations between SNPs located on the
same chromosome from a reference sample and remove corre-
lations that can be attributed to sampling variation by a chi-
squared test, resulting in a sparse LD matrix (see the “Methods”
section). In addition, we model analytically the sampling variance
of LD estimates as part of the residual variance and allow the
estimate of residual variance to vary across SNPs (Supplementary
Note). Compared to BayesS, SBayesS not only addresses the
barrier of data sharing as it does not require individual-level data,
but also substantially increases the computational efficiency
because of the use of sparse LD matrix and a different updating
strategy in the MCMC sampling (Supplementary Note). These
features allow SBayesS to be scalable to data with millions of
SNPs regardless of the discovery GWAS sample sizes. To examine
the convergence of MCMC, we provide a GCTB-SBayesS
implementation of the Gelman–Rubin statistic27 which com-
pares the variation between and within multiple chains with
different starting values of the model parameters (see the
“Methods” section). Convergence is only concluded if all the three
key parameters converge, which may not occur if the LD matrix
from a reference sample is too divergent from that of the GWAS
sample, or if the summary statistics are generated from a GWAS
with low power or contain uncorrected population stratification,
poor imputation or other errors such as misreported per-SNP
sample size and allele frequency.

In light of recent studies11,28, which point out a possible lack of
fit of a point–normal mixture model to some traits, we further
extended SBayesS to a multi-component mixture model (referred
to as SBayesRS), following the framework of SBayesR29. In
SBayesRS, each SNP effect is assumed to have a mixture of a point
mass at zero and three normal distributions with mean zero and
variances that differ by a factor of 10 (see the “Methods” section).
This flexible prior accounts for a more complex genetic
architecture with a spectrum of very small to very large effect
sizes. The S parameter and overall polygenicity are estimated
based on the SNPs across all nonnull mixture components.

To better understand the variability of regional genetic
architecture in different parts of the genome, we incorporate
functional genomic annotations into SBayesS to allow the three
key parameters to vary in different annotation categories, e.g.,
coding, regulatory and repressed regions. We performed the
functional partitioning SBayesS analysis (denoted SBayesS-strat)
based on a two-component model that fitted SNPs in one
annotation as the first component and the rest of the SNPs as the
second component (see the “Methods” section). During MCMC
sampling, the enrichment of a parameter in an annotation
category is computed as the ratio of the sampled value of the
parameter in the category to that for the whole genome (see the
“Methods” section).

Benchmarking SBayesS with BayesS. We ran both SBayesS and
BayesS with ~1.1 million HapMap3 SNPs with MAF ≥ 0.01 for 18
quantitative traits (n > 100k) as analysed in Zeng et al. 13. We
used the HapMap3 SNPs as they were optimised to tag common
genetic variants30 and are widely used in the literature which
improves the comparability of our results with those generated
using published GWAS summary statistics. Hence, the reported
parameters are specific to this SNP set. For ease of computation,
we used unrelated individuals of European ancestry from the
interim release of the UKB data for the BayesS analysis (max-
imum n= 120k across traits) and the same data to generate
GWAS summary statistics for the SBayesS analysis. We show in
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Fig. 1 that the correlation between the SBayesS and BayesS esti-
mates for all of the three genetic architecture parameters was
close to one across traits (Pearson correlation r= 0.998 for h2SNP,
0.985 for π and 0.965 for S).

We performed additional sensitivity analyses to investigate the
impact of the sparsity of LD matrix, the SNP panel, the choice of
reference sample and the reference sample size on the
performance of SBayesS. We found that SBayesS was robust to
different chi-squared thresholds used for LD filtering (Supple-
mentary Fig. 2) and gave consistent results with BayesS regardless
of whether using HapMap3 (Fig. 1) or UKB Axiom array panel
(Supplementary Fig. 3a). The analysis using HapMap3 SNPs
tended to give slightly lower ĥ2SNP and π̂ but stronger signals of S
for both SBayesS and BayesS (Supplementary Fig. 3b, c), possibly
due to the under-representation of low-frequency SNPs in
HapMap3 panel in comparison with the UKB Axiom array panel
(Supplementary Fig. 4). There was negligible difference in
parameter estimates when the LD reference sample size (nref)
decreased from 50k to 20k but notable inflation in ĥ2SNP and Ŝ
when nref further decreased to 4k (Supplementary Fig. 5),
suggesting that the LD reference sample size cannot be too small
relative to the GWAS sample size. Given a constant reference
sample size (nref= 50k), we ran GWAS with sample sizes ngwas=
120k and 350k and found highly consistent parameter estimates
between SBayesS and BayesS regardless of ngwas (Supplementary
Fig. 6). As expected, the π estimate from either SBayesS or BayesS
increased with larger ngwas because of the increased power to
detect small effects, consistent with the observation from an
independent prior study28. Since h2SNP and S were estimated based
on the SNPs with nonzero effects, the estimators of these
parameters were also to some extent sample size dependent (see
Supplementary Note for more discussion). Furthermore, with
both nref= 50k and ngwas= 300k held constant, we benchmarked
BayesS and SBayesS in a few different scenarios where the LD
reference was a subset of the GWAS sample, an independent
sample from the same or slightly different population, or a sample
of different ancestry. The performance of SBayesS was almost
independent of the overlap between the GWAS and LD reference
samples as long as they are from the same population but started
to deteriorate when the genetic discrepancy between GWAS and
reference samples increased (Supplementary Fig. 8). This
observation demonstrates the importance of choosing a reference

sample that is genetically as close to the GWAS sample as possible
in the analysis of summary data31.

The parameter estimates were largely consistent between
SBayesS and SBayesRS except for polygenicity, of which the
estimate from SBayesRS was higher than that from SBayesS
(Supplementary Fig. 9a). This is because, on one hand, SBayesS
has a relatively low power to detect SNPs with very small effect
sizes due to its assumption of a single normal distribution; on the
other hand, SBayesRS tends to overestimate the number of SNPs
with very small effect sizes due to the insufficient power to
distinguish very small effect sizes from zero, as suggested by
simulation (Supplementary Fig. 9c). Nevertheless, the number of
SNPs with relatively large effects estimated from SBayesS was
mostly consistent with that from SBayesRS (Supplementary
Fig. 9b).

Finally, we tested the method in application to ascertained
case-control data by simulation. The parameter estimates were
nearly unbiased regardless of whether cases were oversampled,
although the sampling variances of the estimates of polygenicity
and S were relatively large in some simulation scenarios where the
number of cases was relatively small (Supplementary Fig. 10).

Analyses of GWAS summary data from the UKB and other
published studies. We applied SBayesS to analyse the full release
of the UKB data, including 26 complex traits and 9 common
diseases (Supplementary Table 1). Although individual-level data
are available in the UKB, application of the standard BayesS to
~350k unrelated individuals with ~1.1 million HapMap3 SNPs is
computationally prohibitive. Prior to running SBayesS, we carried
out standard quality control (QC) of the data (see the “Methods”
section) and used linear regression to perform a GWAS analysis
in unrelated individuals to generate summary statistics for each
trait. We also applied SBayesS to data for 9 other complex
common diseases from published GWAS of very large sample size
where only summary statistics are available (Supplementary
Table 2). In the analysis of the UKB data, we used the sparse LD
matrix computed from a random sample of 50k unrelated indi-
viduals. For the analysis of data from published GWAS of which
nearly all the samples are of European ancestry, the GERA32

sample was used as the LD reference. To mitigate the problem
due to inconsistent LD between the GWAS and reference sam-
ples, we excluded SNPs in the major histocompatibility complex
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Fig. 1 Benchmarking SBayesS with BayesS using the same data for 18 UKB traits. Three genetic architecture parameters were compared, i.e., SNP-based
heritability, polygenicity (defined as proportion of SNPs with nonzero effects) and S (defined as relationship between MAF and effect size), based on the
unrelated individuals of European ancestry in the interim release of the UKB data (max n= 120k) and ~1.1 million HapMap3 common SNPs (MAF > 0.01).
The sparse LD matrix used in SBayesS was computed from a random sample of 50k unrelated individuals from the full UKB cohort at a chi-squared
threshold of 10 (corresponding to a LD r2 threshold of 2 × 10−4). Data are presented as posterior means ± posterior standard errors. The traits are indicated
by different colours labelled with their acronyms. BMR basal metabolic rate, BMI body mass index, BFP body fat percentage, DBP diastolic blood pressure,
FEV forced expiratory volume, FVC forced vital capacity, HGSL hand grip strength (left), HGSR hand grip strength (right), HCadjBMI hip circumference
adjusted for BMI, HT height, MTCIM mean time to correctly identify matches, NS neuroticism score, PEF peak expiratory flow, PR pulse rate, SBP systolic
blood pressure, WCadjBMI waist circumference adjusted for BMI, WHRadjBMI waist–hip ratio adjusted for BMI, WT weight.
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(MHC) region although the SBayesS results with and without the
MHC region were very similar (Supplementary Fig. 11). The
SNP-based heritability estimates for the diseases were converted
to those on the liability scale33.

On average across the 44 complex traits (including diseases),
1.8% of the 1.1 million common HapMap3 SNPs explained 18% of
the phenotypic variance (Fig. 2 and Supplementary Tables 1, 2).
The estimate of h2SNP for height was 0.545 (posterior standard
error or p.s.e.= 0.003), consistent with those in previous studies
using different approaches and data sets6,14,34–36. The most
polygenic traits (i.e., body fat percentage, educational attainment
and schizophrenia) had about 5% (~55,000) SNPs with nonzero
effects. The least polygenic traits were prostate cancer, age at
menopause and male pattern baldness, which were affected by
about 0.1–0.3% (1000–3000) common SNPs. The estimate of S
was significantly negative (P < 0.001) in all the traits analysed
(median Ŝ=−0.578, SD= 0.096), suggesting a pervasive action of
negative selection on the trait-associated variants. We also re-ran
the analysis for the 9 public GWAS data sets with the UKB
subsample as the LD reference and found that the results were
highly consistent with those using LD from the GERA
(Supplementary Fig. 12).

We used the UKB classification code to classify the 44 traits
into four categories related to disease, reproduction, physical
measures, and cognition (Supplementary Table 3). The estimates
of the genetic architecture parameters varied across traits and
appeared to have distinct patterns in different categories (Fig. 2).
Physical measures had the highest median SNP-based heritability

(0.225), followed by reproductive traits (0.197). The median
polygenicity estimate was the lowest for diseases (0.007) and
reproductive traits (0.008) and the highest for cognitive traits
(0.037). The estimates of polygenicity for psychiatric disorders
such as schizophrenia (π̂= 0.046, p.s.e.= 0.003) and bipolar
disorder (π̂= 0.034, p.s.e.= 0.009) were substantially higher than
that for other types of disease and comparable to those for the
cognitive traits, consistent with the high polygenicity for brain-
related traits reported in previous studies11,28. The absolute
median value of Ŝ was the highest for diseases, especially
cardiovascular diseases, and the lowest for cognitive traits, with a
relatively large variability in Ŝ for diseases. We observed similar
results from SBayesRS but with higher π̂ (Supplementary Fig. 13),
in line with the observations from the benchmark analysis above.

To investigate the diversity of genetic architecture in more
traits, we applied SBayesS to GWAS summary data from the
Neale Lab (http://www.nealelab.is/uk-biobank) for 274 UKB
traits, among which 130 passed the convergence test and 110 of
these were not included in the analyses above (Supplementary
Table 4). The traits that failed to converge tended to have much
smaller sample size or ĥ2SNP compared to the ones that converged
(mean n= 231k and ĥ2SNP ¼ 0:223 for the converged vs. mean n
= 73k and ĥ2SNP ¼ 0:044 for the non-converged), but we did not
filter traits by ĥ2SNP to avoid direct ascertainment bias. Figure 3
shows the distributions of the estimated genetic architecture
parameters for the total 155 traits (including 18 common
diseases) from the UKB and published GWAS. Similar to that
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Fig. 2 Estimation of the three genetic architecture parameters for 35 traits from the UKB and 9 common diseases from published GWAS. Shown are
the posterior means (dots) and standard errors (horizontal bars) of the parameters for each trait. The colour indicates the UKB trait category that the trait
belongs to. The vertical bar shows the median of the estimates across traits in each category.
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for the 44 traits analysed above, the distribution of Ŝ appeared
symmetric at about −0.6, with 79% of the estimates within the
range of −0.7 to −0.5 (median=−0.576) across traits.

Prediction of evolutionary parameters for complex traits.
Although a negative estimate of S is a signature of negative
selection, the numeric interpretation of Ŝ is still not clear. For
example, our results showed that most traits had Ŝ at about −0.6;
does it mean that negative selection acted on the associated
variants with similar selection strength among traits? To answer
this question, we performed forward simulations26 to study the
variational patterns of the genetic architecture parameters in a
variety of evolutionary scenarios. We focused on three main
evolutionary parameters: average selection coefficient (�s), pro-
portion of mutational targets (πm, i.e., the proportion of DNA
sequence at which mutations can affect the trait) and mutational
heritability (h2m ¼ σ2m=σ

2
e with σ2m being the amount of additional

additive genetic variance arising from new mutations in each
generation and σ2e being the environmental variance σ2e), and set a
large range of values for each parameter (see the “Methods”
section). The simulations were carried out based on a 100-Mb
genome with a variable effective population size inferred from a
demographic model37. The selection coefficients were sampled
from either a normal distribution or a mixture distribution of
many small and some very large values. In the last generation of
selection, we used two pleiotropic models (the Simon et al.12 and
Eyre-Walker3 model) to generate causal effects of the mutations
on the focal trait (see the “Methods” section). Based on the LD
correlation matrix computed from the unrelated individuals in
the final generation of the simulated data, we directly simulated
GWAS summary statistics with an equal sample size as in the
UKB data analysis11,38 (see the “Methods” section). The genetic
architecture parameters h2SNP, π and S were estimated by SBayesS
and SBayesRS using 36k SNPs randomly sampled from the
common sequence variants, a comparable SNP density to that of
the 1.1 million HapMap3 common SNPs used in the real trait
analysis (1.1 × 106 × 1 × 108/3 × 109= 36,000).

Repeating the simulation with different values of �s, πm and h2m
produced a landscape of the genetic architecture under different
scenarios (Fig. 4). Our results showed that Ŝ

�� ��, π̂ and ĥ2SNP increased
with the increasing levels of the corresponding evolutionary
parameters �s, πm and h2m, respectively. The results were generally
consistent regardless of the use of SNPs (36k common SNPs or the
actual common causal variants), estimation method (SBayesS or
SBayesRS), simulation model (the Simons et al. or Eyre-Walker
model), or the underlying distribution of selection coefficients
(mixture or normal distribution) (Fig. 4 and Supplementary
Figs. 14–17). In addition to the direct impact of the evolutionary
parameters on the corresponding genetic architecture parameters, �s
had negative effects on ĥ2SNP and π̂ because of causal variants with
large effect sizes were purged by negative selection. Using a linear
regression analysis of the true causal effects, we obtained the
ordinary least-squares (OLS) estimate of S and used it as a proxy of
the true value (see the “Methods” section). Regarding to the
different distributions of selection coefficients, the true values of S
were not highly correlated (Supplementary Fig. 18; r= 0.628),
suggesting the distribution of selection coefficient plays a role in
determining S. Compared to the true value of S, the SBayesS
estimate based on the causal variant genotypes tended to be more
negative when selection strength was weak and selection coefficients
followed a mixture distribution (Fig. 4). This is because SBayesS
assumes normality of the SNP effects whereas the true distribution
is a multi-component mixture, supported by our results of
maximum-likelihood estimation assuming normality (Supplemen-
tary Note and Supplementary Fig. 19). Compared to SBayesS,
SBayesRS is more robust to the distribution of causal effects in the
estimation of the S parameter (Fig. 4 and Supplementary Fig. 17).

Next, we used a polynomial regression model to associate the
evolutionary parameters (�s, πm and h2m) with ĥ2SNP, π̂ and Ŝ in the
entire simulation dataset, and leveraged this association to predict
the evolutionary parameters in real data (see the “Methods”
section). We demonstrated by a cross-validation analysis in the
simulated data that the three evolutionary parameters can be
predicted with reasonably high accuracy (Supplementary Fig. 20).
We then applied this prediction model to the 44 traits analysed
above. Overall, the real trait prediction results were robust to the
evolutionary model used for training data simulation and the
statistical method for genetic architecture parameter estimation
(Fig. 5). Here, we focus on the results from the mixture model for
selection coefficients, as similar results were observed from the
model assuming normality (Supplementary Fig. 21). The
predicted �s were mostly between 10−4 and 10−3 with a mean of
0.0007 across traits (Fig. 5), in line with the estimates from prior
work12. Cancer, stroke, and coronary artery disease showed the
highest predicted �s (Supplementary Fig. 22), albeit the per-trait �s
had a wide confidence interval which covered a range of possible
values by a factor of 10. The predicted πm was ~1% on average
across traits, meaning that ~30 million base pairs of the human
genome were mutational targets for a complex trait. The mean
predicted h2m was 0.001 with relatively small variability across
traits comparing to the other two parameters, which can be
regarded as a justification of our projection approach because h2m
is a rather conservative parameter with estimates of all ~0.001
across traits even in different species39.

While the predicted h2m was similar across traits, the predicted �s
and πm were significantly different between some trait categories
(Fig. 5 and Supplementary Fig. 22). Common diseases had a
mean �s of 0.0010, which was significantly higher than that of
0.0005 for physical measures (median P value= 0.015 among the
four groups of estimation methods and pleiotropic models).
Compared to physical measures (mean πm= 0.011), the mean πm
was significantly lower for disease (0.005, median P= 0.003) and
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0.0
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SNP−based heritability

S

0.01 0.02 0.03 0.04 0.05
Polygenicity

Fig. 3 Estimation of the genetic architecture parameters for 155 complex
traits. Shown are the results from the SBayesS analyses using summary
data for 130 traits from the Neale Lab and 25 traits from our GWAS
analyses and other published studies. The estimated S is plotted against the
estimated SNP-based heritability with the histograms showing the marginal
distributions of the estimates. Data are presented as posterior means ±
posterior standard errors. Colour indicates the estimate of polygenicity for
each trait where the scale and distribution are shown in the inset graph.
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was significantly higher for cognitive traits (0.023, median P=
0.017).

Analyses incorporating functional genomic annotations. The
functional annotation categories used in our analysis were from the
LDSC baseline model15. We excluded continuous annotations and
annotations with flanking windows, resulting in 21 annotation
categories such as the coding, regulatory, repressed and conserved
regions (Supplementary Table 5). We applied SBayesS-strat to the
35 UKB traits (including 9 diseases), and combined the parameter
estimates across traits for each functional category (see the
“Methods” section). Considering the extensive overlaps between
annotation categories (Supplementary Fig. 23), we ran SbayesS-strat
analysis with a two-component model (SNPs in an annotation
category versus the other SNPs) and computed the enrichment of
each of the genetic architecture parameters using the SNPs in the
focal annotation category in comparison to the genome-wide esti-
mate using all SNPs. The fold enrichment of per-SNP heritability
was correlated with that of polygenicity across annotation categories
(r= 0.762; Fig. 6a). The per-SNP heritability and polygenicity were

enriched in functionally important categories, such as transcription
start sites (TSS), 3′- and 5′-UTRs, and conserved, enhancer and
coding regions, but depleted in repressed regions. This result sug-
gests that a functional category that explains a greater fraction of
heritability tends to have a larger number of nonnull variants,
consistent with the findings from a recent study11. However, for
some categories, such as coding and conserved regions, the fold
enrichment of per-SNP heritability was greater than that of poly-
genicity, suggesting an enrichment of larger effect sizes in these
regions. To distinguish between the contributions of the number
and the magnitude of the nonzero effects to h2SNP, we estimated per-

NZE heritability (per-nonzero effect heritability h2NZEðcÞ ¼ h2SNPðcÞ
mNZðcÞ

where mNZ(c) is the number of SNPs with nonzero effects in
category c). While the fold enrichment of h2NZEðcÞ was close to or
smaller than one in most categories, the enrichment was the largest
in the coding and conserved regions (Fig. 6b), suggesting that the
enrichment of per-SNP heritability in these categories was not only
because of the larger number of nonnull variants but also the larger
effect sizes, confirmed by simulations (Supplementary Fig. 24). The
median value of Ŝ was −0.540, ranging from −0.739 (s.e.m.=
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0.041) in coding regions to −0.361 (s.e.m.= 0.066) in TSS (Fig. 6c).
The negative Ŝ in all functional categories suggests a widespread
negative selection across the whole genome, and the largest Ŝ

�� �� in
the coding regions among all the functional categories highlighted
the action of negative selection in the biologically most important
regions.

Our estimates of per-SNP heritability enrichment were
consistent with those from S-LDSC15,40,41 for most annotation
categories (Supplementary Fig. 25). However, S-LDSC reported a
much larger enrichment for the conserved region category,
followed by the coding region category. This may be due to the
different assumptions made in the two methods, i.e., SBayesS-
strat assumes a sparse genetic architecture whereas S-LDSC does
not explicitly assume a mixture model, as both the coding and
conserved regions categories were enriched for the number of
nonzero effects and the magnitude of effect sizes (Fig. 6b).
Another explanation could be that the SBayesS-strat estimate is
from a separate analysis of a focal category at a time conditioning
on all the other SNPs with no overlap among categories whereas
the S-LDSC estimates are from a joint analysis of all the categories
with overlaps.

Discussion
We have developed an efficient summary-data-based method to
estimate the joint distribution of effect sizes and MAF as well as
SNP-based heritability, polygenicity and joint SNP effects. By
analysing GWAS summary statistics from the public domain, we
detected pervasive signatures of negative selection in the genetic

architecture for a wide range of complex traits including common
diseases (Figs. 2 and 3). Our results support a model of negative
selection, that is, most new nonneural mutations are deleterious
to fitness such that mutations with larger effects on fitness are
more likely to be eliminated or kept at lower frequencies in the
population by selection.

Most traits had Ŝ at about −0.6 with diverse estimates of h2SNP
and polygenicity, implying that the model with S=−1 originally
used in the GREML method42 is more appropriate than the
model with S= 0 for most complex traits. Schoech et al. 7 linked
the S parameter (denoted by α in their model) to the τ parameter
in Eyre-Walker’s model3 and further drew inference on the
average genome-wide selection coefficient. However, our forward
simulations have shown that inference regarding the strength of
selection cannot be made based solely on S but should take into
account other genetic architecture parameters as well as the dis-
tribution of effect sizes. Despite the narrowly distributed Ŝ across
traits, the predicted strength of selection per trait can vary by
orders of magnitude (Fig. 5 and Supplementary Fig. 22). By
extrapolating our results based on HapMap3 common SNPs, we
estimate that, on average, ~1% of human genome sequence are
mutational targets for a complex trait with an average selection
coefficient of 0.0007, giving rise to additional additive genetic
variance of 0.001 (in the unit of environmental variance) in each
generation. The large estimates of mutational target size per trait
implicate widespread pleiotropy across the genome, consistent
with the result of a recent study that 90% of GWAS loci affect
multiple traits43. Our results suggest a relatively small mutational
target size but relatively strong selection on variants for common
diseases and relatively large mutational target size for cognitive
traits, in line with the previous finding that brain-related traits are
highly polygenic and the associated genetic variants are likely
under strong selection11.

Our polygenicity parameter π represents the proportion of SNPs
with nonzero effects; this definition has also been used
previously13,28,35,44–47. Our forward simulations showed that π is
driven by both the mutational target size and selection strength,
with increased average selection coefficient resulting in decreased π̂.
This is because negative selection removed causal variants of large
effects as well as SNPs in LD with them (a phenomenon known as
background selection). O’Connor et al.11 proposed an alternative
definition of polygenicity, the effective number of independently
associated variants or Me, which accounts for the distribution of
per-SNP heritability across the genome. Despite the difference in
definition, both π and Me estimates varied with the number of
causal variants under different scenarios (Supplementary Fig. 26).
In addition, the estimates of π and Me were highly correlated (r=
0.876) with a regression slope of π̂ on Me estimates= 3.4. This is
highly consistent with the result reported in O’Connor et al. that
their Me estimates were highly correlated with the estimates from
our previous study13 for a number of traits (r= 0.9) but 4× smaller
(Fig. S4 in O’Connor et al.).

Since we only detected signatures of negative selection in real
traits, our evolutionary simulations focused on the models of
negative selection. To investigate the impact of both negative and
positive selections, we extended our simulation scenarios by
considering two additional positive selection-related parameters:
average positive selection coefficient and proportion of beneficial
mutational targets (see the “Methods” section). When considering
both negative and positive selections in the simulations, we
observed more complicated relationships between the genetic
architecture and evolutionary parameters (Supplementary
Fig. 27), which, however, could still be used for prediction. Our
results showed that the predicted �s, πm and h2m were consistent
with those predicted above considering negative selection only
(Supplementary Fig. 28), except that the estimated strength of
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Fig. 5 Prediction of the evolutionary parameters for 44 complex traits
and diseases based on a negative selection model where selection
coefficients followed a mixture distribution. a Distribution of the predicted
evolutionary parameters under different scenarios: methods used for
estimating the genetic architecture parameters (SBayesS and SBayesRS)
and pleiotropic effect models used for simulations (the Simons et al. and
Eyre-Walker model), shown by colours. Each box plot shows the results for
44 complex traits. b Distribution of predicted evolutionary parameters for
four trait categories, shown by colours. Each box plot shows the results for
a number of traits in a category, with each trait having four results from
analyses using different estimation methods and simulation models.
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negative selection became weaker for cognitive traits, suggesting
that positive selection may also play a role in shaping the genetic
architecture of cognitive traits.

The biologically important categories, such as the TSS, con-
served, UTR and coding regions, had the highest enrichment in
per-SNP heritability, most of which also had the highest enrich-
ment in polygenicity, whereas the repressed regions were depleted
in both parameters (Fig. 6). The concordance in functional
enrichment between the two parameters reflects an uneven dis-
tribution of the number of causal variants across functional
categories, consistent with the finding from prior work11. We
further observed enrichment of per-NZE heritability in conserved
and coding regions, suggesting larger effect sizes of nonnull SNPs
in these regions compared to genome average. It is of note that
coding regions showed the largest Ŝ

�� �� among all the functional
categories (in line with Speed et al.9) with significant enrichment
of per-NZE heritability, likely because of the coding mutations by
nature having larger effect sizes and/or a mixture of negative
selection on coding mutations with detrimental effects and
positive selection on those with favourable effects. It is surprising
to observe a relatively large Ŝ

�� �� in repressed regions, which may be
a consequence of overlaps between functional annotations.
Another possible explanation could be that positive selection has
suppressed the signature of negative selection in non-repressed
(biologically important) regions, consistent with our observation
that S was closer to zero in the simulations considering both
positive and negative selections than in the simulations only
considering negative selection (Supplementary Fig. 27a versus
Fig. 4).

There are several limitations in this study. First, our inference
on negative selection is based on HapMap3 common SNPs and

therefore may not hold for the unobserved rare variants. In fact,
we found by forward simulations a weaker magnitude of S in rare
variants because the very rare variants were mostly new mutations
whose relationship between effect size and MAF had not yet been
shaped by selection, which diluted the selection signals from the
variants under selection (Supplementary Fig. 29). This suggests
that the true S parameter is allelic age dependent and subject to the
combined effect of mutation, selection and genetic drift. An
apparent change in the effect size–MAF relationship when moving
toward low MAF was also reported by Schoech et al.7. Second,
independence of chromosomes is assumed in our model. This may
not hold if there was non-random mating in the ancestral popu-
lation. For example, assortative mating would introduce positive
correlations between trait-increasing alleles located on different
chromosomes, and therefore increase heritability in the equili-
brium population, e.g., for height48. Third, our definition of
polygenicity is based on the number of SNPs with nonzero effects
(mNZ), which may not be an unbiased estimator of the number of
causal variants (mC) especially when the causal variants are not
observed. For example, mNZ will tend to be smaller than mC if
some causal variants are not well tagged by any SNP markers but
tend to be larger than mC if they are in high multi-locus LD with a
number of SNPs. Thus, our polygenicity estimate should be best
used to compare traits using the same set of SNPs, rather than an
unbiased estimate of the number of causal variants. Fourth, we did
not attempt to predict the evolutionary parameters for functional
genomic categories because it would require simulating a genome
with functional partitioning. Despite these limitations, our study
highlights the impact of negative selection on the genetic archi-
tecture across complex traits and in different functional genomic
regions. In addition to a better understanding of the genetic
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architecture, our methods can also be applied to genetic mapping
and polygenic risk prediction through the use of the joint SNP
effect estimates or the characterised underlying distributions of
effect sizes as prior knowledge for other methods49.

Methods
SBayesS. Let us consider an individual-level data-based multiple regression model
for a GWAS cohort:

y ¼ Xβþ e ð1Þ
where y is the vector of phenotypes adjusted for all fixed effects, X is the column-
centred genotype matrix, β is the vector of SNP effects, and e is the vector of
residuals with Var eð Þ ¼ Iσ2e for a cohort of unrelated individuals. Assuming
Hardy–Weinberg equilibrium (HWE), the variance of genotype dosage (0, 1, 2) of
SNP j is hj= 2pjqj, where pj is MAF and qj= 1− pj. Let D be a diagonal matrix with
Djj ¼ X0

jXj ¼ hjnj, where nj is per-SNP sample size. Multiplying both sides of the
equation by D−1X′ gives

D�1X0y ¼ D�1X0XβþD�1X0e

Note that D−1X′ y= b, the vector of least-squares estimates of SNP marginal
effects from GWAS, and D�1X0X ¼ D�1

2BD
1
2, where B ¼ D�1

2X0XD�1
2 is the LD

correlation matrix among all SNPs50. Let W ¼ D�1
2BD

1
2 and ε=D−1X′e. Then, the

above equation can be written as

b ¼ Wβþ ε ð2Þ
In contrast to the identity structure of residual variance in model (1), the residuals
in model (2) are dependent of LD, as

Var εð Þ ¼ D�1
2BD�1

2σ2e ¼ Rσ2e ð3Þ
This is a generic form of summary-data-based Bayesian regressions, which is
similar to Zhu and Stephens’s RSS model35. As in BayesS, we assume the effect size
is related to MAF through a parameter S:

βj � N 0; hSj σ
2
β

� �
π þ ϕ 1� πð Þ ð4Þ

where ϕ is a point mass at zero, and S (the relationship between MAF and effect
size), σ2β (the effect variance factor common to all SNPs) and π (the proportion of
SNPs with nonzero effects, i.e., the polygenicity) are considered as unknown, with
prior distributions of a standard normal, a scaled inverse chi-squared distribution
(Supplementary Note), and a uniform distribution between zero and one, respec-
tively. Specifying a different prior distribution to βj gives a form of other summary-
data-based Bayesian alphabet models29.

When the LD correlations are computed using all SNPs in the GWAS sample,
models (1) and (2) are equivalent in terms of posterior inference because the
GWAS estimates of SNP effects (b) and LD correlation matrix (B) are sufficient
statistics for the joint posterior distribution of β (Supplementary Note). Compared
to model (1), model (2) allows us to incorporate LD information from a different
reference sample from the GWAS sample for which the individual-level data are
often not accessible. Further, it is often not practical to compute and store the
entire LD matrix in the memory. Therefore, we used a sparse LD matrix that
ignores the small LD correlation estimates due to sampling variation, but still
accounted for the sampling variance of LD correlation in the model
(Supplementary Note). In our GCTB software13 where SBayesS is implemented, we
have developed a parallel computing strategy to facilitate the computation of the
LD matrix. Once the LD matrix is computed, it can be used repeatedly in the
GWAS summary-data analysis for different traits.

MCMC and convergence. We used MCMC algorithm to generate 50,000 posterior
samples (the first 20,000 discarded as burn-in) from the joint posterior distribution
of model parameters, based on which statistical inference was made. Details of the
MCMC sampling scheme are shown in the Supplementary Note. The posterior
mean was used as the point estimator, with the statistical uncertainty quantified by
the posterior variance or its square root (posterior standard error), as shown below.
We ran four parallel chains with different starting values of the parameters ran-
domly sampled from their prior distributions. Following the method proposed by
Gelman and Rubin27, we estimated the posterior variance by

dVar θjy� � ¼ T � 1
T

W þ 1
T
B

where T is the chain length, W is the within-chain variance, and B is the between-
chain variance.

To assess convergence in MCMC, we computed the potential scale reduction
statistic

R̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar θjyð Þ

W

s
for each of the model parameters. As suggested by Gelman and Rubin, R̂ < 1:2

generally indicates good convergence. Thus, we concluded convergence for a trait
analysis when all the three genetic architecture parameters had R̂ < 1:2.

Sparse LD matrix. For computational efficiency, we used a sparse LD matrix in the
analysis where LD due to sampling variation were set to be zero. To this end, we
tested whether LD between each pair of SNPs on the same chromosome is zero in
the population when computing the LD correlation matrix using a reference sample.
Under the null hypothesis that the true LD in the population is zero, we assume51

~B2
jk

Var ~B2
jk

� � ¼ ~njk~B
2
jk � χ21

(tilde denotes quantities computed from the reference sample) and reject the null if
the chi-squared statistic > 10 (corresponding to P < 0.0016). This is equivalent to a r2

threshold of 2 × 10−4 given a sample size of 50,000, resulting in each SNP, on
average, being in LD with ~1000 SNPs on the same chromosome. We set ~Bjk to be
zero if the null hypothesis is not rejected or if the two SNPs are on different
chromosomes, leading to a sparse LD matrix. The chi-squared threshold of 10 is
chosen in order to balance the type I and II error rates. If a type I error occurs, i.e.,
the true correlation ρjk= 0 but ~Bjk is not set to be zero, then as shown in the

Supplementary Information, s2jk ¼
~njkþnjk
~njknjk

1� ~B2
jk

� �2
, which is very likely to be larger

than the true sampling variance 1/njk. This would inflate the residual variance and
therefore deflate the heritability estimate. If a type II error occurs, i.e., ρjk ≠ 0 but ~Bjk

is set to be zero, then s2jk ¼ 1
njk
, which is very likely to be larger than the true

sampling variance
~njkþnjk
~njknjk

1� ρ2jk

� �2
. This would deflate the residual variance and

therefore inflate the heritability estimate. Since the consequence of type II errors is
worse, we use a not-too-stringent threshold to eliminate the LD due to sampling.
This also suggests that LD reference sample size cannot be too small, otherwise, type
II error rate would increase due to the loss of power. Since we only include non-zero
elements in the LD matrix, it is faster by folds to run the summary-level data
analysis with substantially less amount of memory needed.

SNP-based heritability estimation. In BayesS13, we computed the genetic var-
iance σ2g as the variance of genetic values across individuals given the sampled
values of β in each MCMC iteration. As described in Zhu and Stephens35, this is
equivalent to the following quadratic term of β given the LD correlation matrix:

σ2g ¼
Pn

i¼1 X0
iβ

� �2
n

¼ trace Xβ
� �

Xβ
� �0� 	

n
¼ β0

X0X
n

β ¼ β0Bβ

Given the right-hand-side updating strategy in MCMC (Supplementary Note), this
quadratic term can be computed efficiently as the difference of two vector-by-
vector products:

β0Bβ ¼ β0r� β0radj

where r=Db and radj is the adjusted r for β. The residual variance (σ2e ) is sampled
from a scaled inverse chi-squared distribution with the mean mainly driven by

e0e
n

¼ y0y � β0r� β0radj
n

where y′y is estimated by the median value of Djj njSE
2
j þ b2j

� �
across SNPs, where

SEj is the standard error of bj. Conditional on σ2g and σ2e , we computed h2SNP ¼ σ2g
σ2gþσ2e

in each MCMC iteration, and used the mean over MCMC samples as the point
estimator of the SNP-based heritability.

SBayesRS. Following the recently published SBayesR29 model which assumes a
mixture of a point mass at zero and multiple normal distributions with different
variances, we extended SBayesS to this flexible multi-component mixture model to
account for a more complex genetic architecture with a spectrum of very small to
very large effect sizes. For each SNP effect, we assume

βj �
X4
k¼1

πkN 0; γkh
S
j σ

2
β

� �
where γk= 0, 0.01, 0.1, 1 for k= 1, 2, 3, 4, representing four mixture components
of zero, small, medium and large effect size, respectively, with

P4
k¼1 πk ¼ 1. The

priors for S and σ2β are as defined in SBayesS. The mixing probabilities π are
assumed to have a Dirichlet distribution with hyperparameters set to one. The
polygenicity is defined as the sum of fraction of SNPs in each nonnull component,
i.e., π= π2+ π3+ π4. The sparse LD matrix above or the shrunk LD matrix29,35

used in the SBayesR study29 can be used for SBayesRS analysis.

SBayesS-strat. SBayesS-strat is a two-component SBayesS model that allows the
distributions of SNP effects in the focal annotation category, e.g., coding, regulatory
and conserved regions, to be different from that in the rest of the genome.
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Compared to other methods utilising functional annotations, such as S-LDSC52,
BayesRC53 and RSS-E54, a unique feature of the annotation-stratified SBayesS
(referred to as SBayesS-strat) is that it allows the estimation of S in a specific
functional annotation category. Compared to a recently published method, BLD-
LDAK-Alpha9, that estimates the S parameter (denoted by α in their model) based
on an infinitesimal model, our method accounts for a sparse genetic architecture.
In addition to the estimation of per-SNP heritability, polygenicity and S for each
category, we also defined per-nonzero-effect (per-NZE) heritability (h2NZE) as the
total heritability explained in a category divided by the number of nonzero effects
in the category, which is helpful to understand whether the heritability enrichment
is due to the larger number of associated variants or the larger magnitude of effect
size compared to genome average. In addition to the category-specific parameters,
we estimated the global parameters S, π, h2SNP and h2NZE empirically conditional on
the sampled value of β in each iteration of MCMC. The fold of enrichment of each

parameter for each trait was then computed as Et θtγ=θ
t

h i
over T MCMC iterations.

The estimation variation of the enrichment fold was quantified by the posterior
variance as described above.

Meta-analysis across traits. We combined the SBayesS-strat estimates across
traits by calculating the median fold enrichment for each functional category. We
reported the median instead of the mean in order to minimise the impact of
outliers, especially for the per-NZE heritability estimate for which the denominator
(i.e., the number of nonzero effects in an annotation category) is often estimated
with large sampling variance. To account for the phenotypic correlation among the
traits, we estimated the effective number of traits (ne) by performing an eigen
decomposition on the phenotypic correlation matrix55:

ne ¼
P

i λi
� �2P

i λ
2
i

where λi is the ith eigenvalue of the phenotypic correlation matrix. Then, the
posterior standard error of the mean was computed as

s:e:m: ¼
cSD θjy� �ffiffiffiffiffi

ne
p

with cSD θjy� �
being the standard deviation of the estimate across traits.

GWAS summary statistics. We performed GWAS analyses for 26 quantitative
traits and 9 common diseases in the full release of the UKB data using PLINK 1.90
beta56. We used 348,501 unrelated individuals of European ancestry (estimated
genetic relatedness from GCTA < 0.05)57 and the imputed data provided by the
UKB team16. We filtered HapMap3 SNPs30 with MAF < 0.01, HWE test P value <
1 × 10−6, missing genotype rate > 0.05, or imputation info score < 0.3. We further
excluded SNPs in the Human Major Histocompatibility Complex (MHC) region,
resulting in a total of 1,124,198 common SNPs for the analysis. The LD correlations
in the reference samples were computed based on the effect alleles in the GWAS
summary data. For quantitative traits, we standardised phenotypes to mean zero
and variance one after removing the outliers (phenotype > 7 SD) and performed
rank-based inverse normal transformation (RINT) within each sex group. Prior to
GWAS, we pre-adjusted phenotypes by age, sex and first 10 principal components
(PCs) provided by the UKB team after RINT if applied. For the publicly available
summary statistics, we downloaded the data and matched the SNPs with those in
the UKB data after excluding the strand ambiguous SNPs (i.e., A/T or C/G SNPs)
in addition to the QC procedures above. For the GWAS summary data from the
Neale Lab, we extracted 274 quantitative traits for which the GWAS was performed
based on RINT phenotypes in their analysis pipeline.

Evolutionary forward simulations. We used SLiM326 to run evolutionary forward
simulations. A large sequence of 100Mb was simulated, where a proportion of new
mutations (πm) that had pleiotropic effects on fitness and trait emerged at random
with an average selection coefficient of �s and a mutational heritability of h2m in each
generation. The values of the three input parameters were sampled from uniform
distributions at log10 scale: log10(s) ~U(10−5, 10−2), log10(πm) ~U(10−3, 10−1) and
log10ðh2mÞ � U 10�4; 10�2

� �
. The mutation rate (μm) was set to 1.65 × 10−8 per base

pair per individual per generation58, and the recombination rate was set to 1 × 10−8.
We assumed a model of negative selection (see below for a scenario with positive
selection), where all trait variants were deleterious to fitness and the other mutations
were neutral. The causal effects were assumed to have a mixture of three normal
distributions with small, medium and large variances:

βj � 0:7N 0; 0:01σ2β

� �
þ 0:25N 0; 0:1σ2β

� �
þ 0:05N 0; σ2β

� �
, where the mixing

proportions were set to the average SBayesRS estimates across 44 real traits. Thus,
the marginal variance of causal effects is

Vβ ¼ Var βj

� �
¼ 0:7 � 0:01þ 0:25 � 0:1þ 0:05ð Þσ2β . Given the input parameters

h2m and πm, the mixture distribution parameter σ2β can be computed because,

according to population genetics theory10, h2m ¼ 2LπmμmVβ in the unit of envir-
onmental variance σ2e , with L being the genome length (100Mb). For each trait

mutation, the selection coefficient was modelled by sj ¼ kβ2j , where k ¼ �s=Vβ given
the input parameter �s. Because βj followed a mixture distribution, sj also followed a
mixture distribution with small and large selection coefficients. To break up the
perfect proportionality between selection coefficients and squared effect sizes, two
pleiotropic effect models were used to remodel the trait effect of causal variant
conditional on its selection coefficient toward the end of the selection process. The
first model is the Simons et al.12 model which assumes the causal effect on the focal
trait (denoted as 1) following the distribution βj1 ~N(0, k−1sj/nt) with nt being the
number of traits on which the variant has an effect. The second model is the Eyre-

Walker’s model3: βj1 ¼ δjS
τ
j 1þ εj

� �
with δj= 1 or −1 determined at random, Sj=

4Nesj, Ne= 10,000 being the effective population size and εj ~N(0, σ2). In the Eyre-
Walker’s model, τ is the key parameter and σ2 is a nuisance parameter. For each set
of causal variants, we simulated causal effects based on either the Simons et al.
model with nt= 1, 2, 4 or 10 or the Eyre-Walker model with τ= 0.2, 0.5, 0.8, 1.0
and σ2= 0.1.

A demographic model inferred by Gravel et al.37 with population bottleneck
and expansion was used to simulate a population that had undergone selection for
58,000 generations. The simulation started with an ancestral base population of
Ne= 7310, which was expanded to 14,474 after 52,080 generations, a long period
of neutral burn-in to allow the population reach mutation-drift equilibrium
(~1.3 million years assuming 25 years per generation). In generation 55,960, 1861
individuals were split from the base population into a descendant population to
mimic the out-of-African dispersal. In generation 57,080, the population size was
further reduced to 1032 and then increased with an exponential rate of 0.0038 until
generation 58,000, reaching to a final population size of 34,039. In the last
generation of selection, we obtained the genotypes of ~2000 unrelated individuals
(genomic relationship < 0.05) and computed the LD correlation matrix for all
common causal variants and a random sample of 36k common SNPs, a comparable
density as the SNPs used in the real trait analysis (1.1 × 106 × 1 × 108/3 × 109=
36,000). Given the LD matrix and causal effects, we directly simulated the GWAS
summary statistics for all variants11,38: α̂ � N B̂β; 1N B̂

� �
, where B̂ is the LD matrix,

β is the simulated causal effects based on different evolutionary models (the Simon
et al. or Eyre-Walker model), and N= 350k is the sample size in the UKB dataset
(see the Supplementary Note for more details). Using this approach, we were able
to simulate a GWAS data set with comparable statistical power as in the real data
analysis. We then used the same methods as those used in real trait analysis (i.e.,
SBayesS and SBayesRS) to estimate the SNP-based heritability, polygenicity and S
at either common causal variants or the random set of 36,000 common SNPs
(excluding the causal variants). The true value of SNP-based heritability was
computed as σ2g=ðσ2g þ σ2eÞ, where σ2g is the genetic variance yielded from the

simulation and σ2e ¼ 1. The true value for polygenicity was represented by the
number of common causal variants in the last generation of selection. The true S
parameter was estimated using a linear regression

log β2j

� �
¼ α0 þ α1 log 2pjqj

� �
þ ϵj

where the slope α1 is an OLS estimate of S according to the BayesS model, and the
residuals ϵ are independent. When the distribution of causal effects is a mixture of
multiple normal distributions, fitting a single intercept or multiple intercepts with
respect to the mixture components has negligible impact on the OLS estimate of S
(Supplementary Fig. 30). We performed the whole simulation process 100 times
with a mixture or normal distribution for selection coefficients, respectively.

To incorporate positive selection, we specified two more input parameters, i.e.,
proportion of trait mutations being beneficial (πm,b) and average selection coefficient
for the beneficial alleles (�sb). Similar as above, we sampled their values from uniform
distributions at log10 scale: log10ð�sbÞ � U 10�5; 10�2ð Þ and log10(πm,b) ~U(10−3, 10
−1). In this scenario, a new mutation can either be beneficial or deleterious with a
selection coefficient as modelled above given the average positive or negative
selection coefficient. Note that only the Simons et al. model was used to simulate
GWAS data in this scenario as the Eyre-Walker model only fits in the context of
negative selection.

Inference on evolutionary parameters. We used a polynomial regression model
to predict an evolutionary parameter from the estimates of the genetic architecture
parameters for complex traits. The forward simulation data under either the
Simons et al.12 or Eyre-Walker3 model with various settings were used as a
reference to estimate the associations between an evolutionary parameter (�s, πm
and h2m at log10 scale for a positive parameter space) and the genetic architecture
parameters in their original units. We tested the performance of this method by a
cross-validation analysis in the simulated data, with 80% of the sample as training
and the rest as validation. As shown in Supplementary Fig. 20, the three evolu-
tionary parameters, �s, πm and h2m, can be predicted with reasonably high accuracy,
and the prediction accuracy reached the maximum when the degree of polynomial
was about 3. Given this result, we chose the degree of polynomial of 3 in the real
trait prediction analysis. We used the entire simulation data set to build a poly-
nomial regression model to predict each of the evolutionary parameters by jointly
modelling the SBayesS estimates of h2SNP; S and π (or the SBayesRS estimates of
h2SNP, S, π1, π2, π3 and π4). We then applied these polynomial equations to predict
the evolutionary parameters in real data for 44 complex traits.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
This study makes use of individual-level genotype and phenotype data from UK Biobank
Resource (application number: 12505) as well as GWAS summary data and functional
genomic annotation data from the public domain. UK Biobank: https://www.ukbiobank.
ac.ukhttps://www.ukbiobank.ac.uk; GERA: https://www.ncbi.nlm.nih.gov/projects/gap/
cgi-bin/study.cgi?study_id=phs000674.v2.p2; UKB GWAS summary data from the Neale
Lab: http://www.nealelab.is/uk-biobank; baseline-LD annotations: https://data.
broadinstitute.org/alkesgroup/LDSCORE; HapMap3: https://www.sanger.ac.uk/
resources/downloads/human/hapmap3.html. Sparse LD matrix of ~1.1 million HapMap3
SNPs computed from 50,000 unrelated UKB individuals of European ancestry: https://
cnsgenomics.com/software/gctb/#Download.

Code availability
SBayesS, SBayesRS and SBayesS-strat have been implemented in the GCTB (genome-
wide complex trait Bayesian analyses) software tool, freely available at http://
cnsgenomics.com/software/gctb. Other software used in this study include PLINK 1.90
(https://www.cog-genomics.org/plink2), SLiM3 (https://messerlab.org/slim), S-LDSC
(https://github.com/bulik/ldsc), and GCTA (https://cnsgenomics.com/software/gcta).
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