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Abstract——The gut microbiome modulates neuro-
chemical function and behavior and has been impli-
cated in numerous central nervous system (CNS)
diseases, including developmental, neurodegenerative,
and psychiatric disorders. Substance use disorders
(SUDs) remain a serious threat to the public well-
being, yet gut microbiome involvement in drug abuse
has received very little attention. Studies of the
mechanisms underlying SUDs have naturally focused

on CNS reward circuits. However, a significant body of
research has accumulated over the past decade that
has unwittingly provided strong support for gut
microbiome participation in drug reward. b-Lactam
antibiotics have been employed to increase glutamate
transporter expression to reverse relapse-induced
release of glutamate. Sodium butyrate has been used
as a histone deacetylase inhibitor to prevent drug-
induced epigenetic alterations. High-fat diets have
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been used to alter drug reward because of the extensive
overlap of the circuitry mediating them. This review
article casts these approaches in a different light and
makes a compelling case for gutmicrobiomemodulation
of SUDs.Few factorsalter the structureandcomposition
of the gut microbiome more than antibiotics and a high-
fat diet, and butyrate is an endogenous product of
bacterial fermentation. Drugs such as cocaine, alcohol,
opiates, and psychostimulants also modify the gut
microbiome. Therefore, their effects must be viewed
on a complex background of cotreatment-induced
dysbiosis. Consideration of the gut microbiome in
SUDs should have the beneficial effects of expanding
the understanding of SUDs and aiding in the design
of new therapies based on opposing the effects of

abused drugs on the host’s commensal bacterial
community.

Significance Statement——Proposed mechanisms
underlying substance use disorders fail to acknowl-
edge the impact of drugs of abuse on the gut micro-
biome. b-Lactam antibiotics, sodium butyrate, and
high-fat diets are used to modify drug seeking and
reward, overlooking the notable capacity of these
treatments to alter the gut microbiome. This review
aims to stimulate research on substance abuse–gut
microbiome interactions by illustrating how drugs of
abuse share with antibiotics, sodium butyrate, and fat-
laden diets the ability to modify the host microbial
community.

I. Introduction

According to the National Survey on Drug Use and
Health, approximately 20 million American adults had
a substance use disorder (SUD) in 2017. The National
Institute on Drug Abuse has estimated that abuse of
tobacco, alcohol, and illicit drugs costs the nation;$740
billion annually in expenses related to crime, lost work
productivity, and health care (see following link on
National Institute on Drug Abuse webpage: https://
www.drugabuse.gov/drug-topics/trends-statistics/costs-
substance-abuse). Therefore, SUDs constitute a serious
threat to the public well-being. A great deal of research
has been focused on achieving a better understanding of
the mechanisms by which abused drugs exert their
addictive properties to develop more effective treatments.
Unfortunately, Food and Drug Administration–approved
therapies for SUD at present remain limited to metha-
done, buprenorphine, and extended-release naloxone for
treatment of opiate use disorder. The vast majority of
research on the mechanisms underlying SUDs has fo-
cused on reward pathways in the brain and, more
specifically, the circuits in the ventral tegmentum area
(VTA) and nucleus accumbens (NAc) that are activated
by drugs of abuse and use the neurotransmitters
dopamine (DA) and glutamate for synaptic signaling.
A better understanding of the central nervous system
(CNS) sites that are hijacked by alcohol, tobacco, and
illicit drugs would possibly lead to new treatment
strategies for SUDs.
By focusing almost entirely on CNS mechanisms

underlying SUDs, other possible mediators outside of
the CNS may escape notice, thus remaining under-
studied and underappreciated. Emerging results pro-
vide evidence of peripheral mechanisms that can
mediate complex reward-seeking behaviors previously

assigned to the CNS. The pioneering research of Hoebel
and colleagues provided some of the earliest evidence
that bingeing on sugar solutions has effects that are
similar to substance abuse in that it shows dependence-
and withdrawal-like behaviors, it cross-sensitizes with
amphetamine, and it releases DA in the NAc [reviewed
in Avena et al. (2008, 2009, 2011)]. Additionally, de
Araujo and colleagues have shown that gut stimulation
with caloric nutrients induces robust striatal DA release
(Ren et al., 2010; de Araujo et al., 2012; Ferreira et al.,
2012). Mice fed high-fat diets do not show the calorie-
dependent DA effluxes seen in mice fed low-fat diets and
this high-fat–induced DA deficiency is restored by the
dietary satiety messenger oleoylethanolamine (Tellez
et al., 2013). More recently, these same investigators
have identified the neural circuit for gut-induced reward
by showing that optical activation of the right nodose
ganglion causes release of DA in the striatum, sus-
tains self-stimulation behavior, and conditions a place
preference [conditioned place preference (CPP)] that
maps to populations of well known reward neurons
in the nigro-striatal pathway (Han et al., 2018). In
a related study, Fernandes et al. (2020) demonstrated
that the intragastric administration of sucrose sustains
self-administration and increases the activity of VTA-
DA neurons via the hepatic branch of the vagus nerve.
These investigators also showed that optogenetic stim-
ulation of the left nodose ganglion significantly increased
the activity of VTA-DA neurons (Fernandes et al., 2020).
These findings suggest that nutrients can exert effects
that are reminiscent of the actions of drugs of abuse, such
as ethanol and nicotine, which have been shown to
directly increase the firing of VTA neurons (Juarez and
Han, 2016), and also maintain self-administration and
support development of a CPP. The notion that compul-
sive intake of drugs and food share neurobiological

ABBREVIATIONS: CLV, clavulanic acid; CNS, central nervous system; CPP, conditioned place preference; CTX, ceftriaxone; DA, dopamine;
DA D1R, DA D1 receptor; DA D2R, DA D2 receptor; DAT, DA transporter; DOX, doxycycline; GHSR1a, growth hormone secretagogue receptor
type 1a; GI, gastrointestinal; GLT1, glutamate transporter 1; HDAC, histone deacetylase; HFD, high-fat diet; mGluR2, metabotropic glu-
tamate receptor 2; MINO, minocycline; NaB, sodium butyrate; NAc, nucleus accumbens; NIDA, National Institute on Drug Abuse; OM,
Osborne-Mendel; Per1, period circadian regulator 1; SCFA, short-chain fatty acid; SUD, substance use disorder; TIG, tigecycline; VTA, ventral
tegmentum area.
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substrates, which involve impairments in DA pathways
regulating reward sensitivity and incentive motivation,
has long been debated, and supportive data have been
reviewed (Volkow and Wise, 2005; Gregorowski et al.,
2013; Volkow et al., 2013; Clasen et al., 2020a). More
recently, it has emerged that non-nutritive drugs of
abuse (e.g., cocaine, amphetamine) can directly in-
fluence neuronal activity in homeostatic feeding cir-
cuits (i.e., Agouti-related protein neurons of the arcuate
nucleus of the hypothalamus) and increase mesoac-
cumbal DA signaling (Alhadeff et al., 2019). Betley
and colleagues propose the coordination of hypothalamic
Agouti-related neuropeptide neurons and midbrain DA
circuits to form reciprocal networks in the modulation of
the neural processing of rewards (Alhadeff et al., 2019)
and affirm the close interplay between the compulsive
intake of food and drugs of abuse.
Wise and Kiyatkin (2011) have provided evidence for

peripheral input to the addictive properties of cocaine
that do not involve feeding-reward circuits. These inves-
tigators hypothesized that the peripheral actions of
cocaine can serve as conditioned interoceptive stimuli
for the central actions of this psychostimulant (Wise
and Kiyatkin, 2011). Using cocaine methiodide, a qua-
ternary cocaine analog that does not cross the blood-
brain barrier, they demonstrated that central DA and
glutamate release can be elicited by the methiodide
analog in rats previously trained to self-administer
cocaine HCl but not in naïve rats (Wise et al., 2008;
Wang et al., 2013; Wakabayashi and Kiyatkin, 2014).
Cocaine methiodide forms a CPP in cocaine HCl
experienced rats and reinstates lever pressing after
extinction of cocaine HCl self-administration (Wang
et al., 2013).
Taken together, the foregoing discussion establishes

rationale for the operation of peripheral input into the
central actions of addictive drugs. The close interplay
between neural circuits for the rewarding properties of
nutrients (i.e., fat and sugar) and drugs of abuse
raises the possibility that the gut microbiome and the
gut-brain axis may also be involved in SUDs. The
purpose of this commentary therefore is to discuss
a wealth of published information that implicates the
gut microbiome in SUDs but without invoking a role
for it. The schematic in Fig. 1 illustrates the main
discussion points of this review. Although discussion
of the gut-brain axis per se is beyond the scope of this
overview, the interested reader is referred to numer-
ous, excellent review articles on this subject (Cryan
and O’Mahony, 2011; Mayer, 2011; Carabotti et al.,
2015; Mayer et al., 2015; Dinan and Cryan, 2017;
Cryan et al., 2019).

II. The Gut Microbiome and Drugs of Abuse

The bulk of the microbiome resides in the gastroin-
testinal (GI) tract and is composed of bacteria, microbes,

viruses, and archaea. It has been estimated that the
human GI system contains .1000 bacterial species
and ;4 � 1013 microorganisms [same as number of
human cells (Sender et al., 2016)], and gut microbiome
expresses;100 times as many genes as the host human
genome (Savage, 1977; Hamady and Knight, 2009).
Normal functioning of the gut microbiome is essential
to the maintenance of human health. A disruption in
the gut microbiome composition (i.e., dysbiosis) has
been linked to numerous diseases, including cancer,
diabetes, obesity, immune dysfunction, and inflamma-
tory bowel disease (Pflughoeft and Versalovic, 2012;
Shreiner et al., 2015). It is also emerging that gut
microbiome dysbiosis can play a role in numerous
neurologic [e.g., Parkinson disease, Alzheimer disease
(Tremlett et al., 2017)] and psychiatric diseases [e.g.,
autism (Dinan and Cryan, 2017), depression, and anxiety
(Foster andMcVeyNeufeld, 2013)] and in eating disorders
(Seitz et al., 2019).

Research on gut microbiome involvement in SUDs
lags well behind most other health disorders, but an
increasing number of publications are documenting
drug-induced alterations in it. Many drugs of abuse
are well known to alter GI function through gut micro-
biome modifications, and examples of this include
opiate-induced constipation (Nee et al., 2018) and
cocaine-induced bowel ischemia (Riezzo et al., 2012). It
is therefore relevant to opiate use that constipation
causes gut dysbiosis, and treatments that relieve con-
stipation (e.g., probiotics) restore changes in the gut
microbiome caused by this bowel condition (Dimidi
et al., 2017; Meng et al., 2020). With regard to cocaine,
modulation of the gut microbiome can prevent intesti-
nal ischemia/reperfusion injury (Yoshiya et al., 2011;
Bertacco et al., 2017). Alcohol (Caton et al., 2015),
cocaine (Billing and Ersche, 2015), and amphetamine
(Lemieux et al., 2015) can significantly alter the appetite
as well. In view of the profound effects that diet has on
the gut microbiome (Singh et al., 2017; Hills et al., 2019;
Ezra-Nevo et al., 2020; Wilson et al., 2020), it should
come as no surprise that many drugs of abuse can
disrupt the composition of the gut microbiome.

The greatest amount of progress in SUD-gut micro-
biome interactions has been made for alcohol. It is now
known that the gut microbiome is significantly altered
in humans after moderate consumption (Kosnicki et al.,
2019; Stadlbauer et al., 2019) as well as in those with
alcohol dependence (Mutlu et al., 2012; Leclercq et al.,
2014; Dubinkina et al., 2017; Bjørkhaug et al., 2019).
Chronic alcohol consumption changes the composition
of the gut microbiome of nonhuman primates (Barr
et al., 2018; Zhang et al., 2019b) and alters microbiome
status in rodent models of alcohol seeking (Peterson
et al., 2017; Jadhav et al., 2018), chronic consumption
(Yan et al., 2011; Bull-Otterson et al., 2013; Labrecque
et al., 2015; Fan et al., 2018;Wang et al., 2018b;Kosnicki
et al., 2019; Xu et al., 2019; Bluemel et al., 2020),
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and withdrawal (Xiao et al., 2018). Alcohol-induced
dysbiosis has even been the subject of numerous
review articles (Engen et al., 2015; Hillemacher
et al., 2018; Leclercq et al., 2019; Qamar et al., 2019;
Temko et al., 2017). With regard to opiates, chronic
use is associated with substantial alterations in the
gut microbiome of humans (Acharya et al., 2017; Xu
et al., 2017) and nonhuman primates (Sindberg et al.,
2019). Similarly, animal models of opiate dependence
(Banerjee et al., 2016; Lee et al., 2018; Wang et al.,
2018a, 2020) and analgesic tolerance (Kang et al.,
2017; Zhang et al., 2019a) document drug-induced
alterations in the gut microbiome. The effects of
opiates on the microbiome have been the subject of
several review articles as well (Akbarali et al., 2014;
Akbarali and Dewey, 2017; Wang and Roy, 2017; Le
Bastard et al., 2018; Wiss, 2019; Ren and Lotfipour,
2020). Emerging results have shown that cocaine
causes dysbiosis in the gut microbiome of humans
(Volpe et al., 2014) and rodents (Chivero et al., 2019;
Scorza et al., 2019). Depletion of gut bacteria by
treatment with a prolonged course of antibiotics
increased sensitivity to cocaine CPP and enhanced
its locomotor-stimulating properties (Kiraly et al.,
2016). Nicotine (Allais et al., 2016; Chi et al., 2017;
Wang et al., 2019; Nolan-Kenney et al., 2020), meth-
amphetamine (Angoa-Pérez et al., 2020; Ning et al.,
2017; Xu et al., 2017), bath-salts drugs (Angoa-Pérez
et al., 2020), and cannabinoids (Al-Ghezi et al., 2019;
Cluny et al., 2015) also cause significant dysbiosis in
the gut microbiome. The effects of selected drugs of
abuse on the gut microbiome have been reviewed
recently (Meckel and Kiraly, 2019).

The first crucial step in assessing how drugs of abuse
interact with the gutmicrobiome (e.g., documentation of
drug-induced alterations in its composition and struc-
ture) has been partially achieved via the studies cited in
the previous paragraph, but much work and many
opportunities remain in this area. The next step
involves determination of whether the gut microbiome
modulates or plays active roles in SUDs. This second
step has begun via studies that have used ceftriaxone
(CTX), sodium butyrate (NaB), and high-fat diets
(HFDs) to alter responses to a drug of abuse. However,
these treatments were used for reasons completely
unrelated to their ability to interact with the gut
microbiome. These factors and the rationale for their
use will be discussed below for cocaine, alcohol, opiates,
and other drugs of abuse (e.g., methamphetamine,
amphetamine, nicotine).

III. CTX and Other Antibiotics

CTX is a third-generation broad-spectrum b-lactam
antibiotic. Its recruitment into studies of drugs of
abuse was stimulated by a 2005 publication showing
that CTX and other b-lactam antibiotics caused increases
in the CNS expression of the glutamate transporter 1
[GLT1; (Rothstein et al., 2005)]. Rothstein and col-
leagues (2005) documented the ability of b-lactam
drugs to increase transcription of the GLT1 gene in
both in vitro and in vivo experiments and demonstrated
that CTX was neuroprotective in the G93A-SOD1 mouse
model of amyotrophic lateral sclerosis. CTX was deemed
neuroprotective by virtue of its ability to increase the
reuptake of the excitatory neurotransmitter glutamate

Fig. 1. Potential interactions between the brain and the gut microbiome in the modulation of the rewarding effects of drugs of abuse. Cocaine, ethanol,
opiates, and psychostimulants have been shown to modify the gut microbiome. Beyond their suspected actions on the brain, b-lactam antibiotics,
sodium butyrate, and hyperpalatable diets are also potent modifiers of the composition of the microbial communities in the gut. Studies on the
mechanisms underlying substance use disorders have focused on CNS mechanisms, but the possibility exists for modulation of drug reward by the gut
microbiome. This review offers alternative interpretations of research that has used antibiotics, sodium butyrate, and high-fat diets to modify drug
reward and relapse by highlighting the profound effects of these agents on the gut microbiome. It is now clear that drugs of abuse cause significant
alterations in the gut microbiome. Antibiotics, sodium butyrate, and high-fat diets also modify the gut microbiome. Therefore, when antibiotics, for
example, are tested for effects on cocaine reward and relapse, consideration should be given to the possibility that the outcomes reflect the combined
influence of both treatments on the gut microbiome.
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via GLT1 and thereby reduce glutamate excitotoxicity
(Rothstein et al., 2005). Beginning a few years after
this publication and continuing to the present, a large
number of studies have used CTX to modulate the
rewarding effects of drugs of abuse, using it to increase
expression of GLT1. It had already been demonstrated
in a series of elegant studies that relapse to drug
self-administration after extinction is mediated by
downregulation of the GLT1 with a resulting increased
secretion of glutamate in the NAc. The glutamate
theory of addiction has been thoroughly discussed in
numerous reviews (Koob and Nestler, 1997; Kalivas,
2004, 2009; Kalivas et al., 2009; Knackstedt and
Kalivas, 2009; Torregrossa and Kalivas, 2008; Shen
et al., 2014; Koob and Volkow, 2016; Spencer et al.,
2016; Scofield, 2018). When using CTX strictly for its
ability to increase expression of GLT1, the primary
pharmacological action of this drug is overlooked. CTX
is, after all, a powerful antibiotic that inhibits a large
number of bacterial pathways. Two population-based
metagenomics analyses revealed that use of antibiotics
was significantly associated with alterations in micro-
biome composition, and the only drugs significantly
associated with the differential abundance of specific
bacterial genera were b-lactam antibiotics (Falony
et al., 2016; Zhernakova et al., 2016). A recent review
(Ferrer et al., 2017) illustrates the extremely broad
effects of CTX and other b-lactams on the gut micro-
biome. CTX in particular alters nine different bacterial
genera throughout the phyla of Actinobacteria, Bacter-
oidetes, Firmicutes, and Verrucomicrobia (Ferrer et al.,
2017). Other antibiotics used to modify the addictive
properties of drugs of abuse include primarily the
b-lactams clavulanic acid (CLV), cefazolin, cefopera-
zone, ampicillin, and amoxicillin. The combination of
CLV with amoxicillin (i.e., Augmentin) has also been
used. CLV requires additional emphasis because it is
stated to have minimal antimicrobial activity (and for
this reason it is often combined with amoxicillin
clinically), yet it retains the b-lactam moiety necessary
to increase GLT1 expression (Rothstein et al., 2005).
Therefore, when used by itself to alter the actions of
a drug of abuse, CLV effects are generally attributed
solely to alterations in GLT1. Despite this interpreta-
tion, CLV does have antimicrobial activity (Finlay et al.,
2003; Ferrer et al., 2017) and has been linked to
alterations in numerous bacterial genera within the
phyla of Actinobacteria, Firmicutes, and Proteobacteria
(Ferrer et al., 2017). The tetracycline derivatives min-
ocycline (MINO), tigecycline (TIG), and doxycycline
(DOX) have also been used in this regard. These latter
drugs, like CTX, have broad effects on the gut micro-
biome (Wong et al., 2016; Ferrer et al., 2017; Hasebe
et al., 2019; Schmidtner et al., 2019; Leigh et al., 2020).
In general, the tetracyclines are used in studies of drugs
of abuse for their anti-inflammatory properties via
blockade of microglial activation and inhibition of

matrix metallopeptidases, cyclooxygenase-2, protein
kinase C, phospholipase A2, and/or nitric oxide syn-
thase (Garrido-Mesa et al., 2013), although these drugs
are by no means specific for acting on microglia (Möller
et al., 2016). The antibiotic effects of b-lactams and
tetracycline derivatives on bacteria in turn can lead to
significant alterations in gutmicrobial activity and gene
and protein expression, microbiome metabolite content
(long linear and branched-chain fatty acids, saturated
and unsaturated fatty acids), branched-chain amino
acids, sugars, peptides, and polyamines (Willing et al.,
2011; Pérez-Cobas et al., 2013; Becattini et al., 2016;
Zhang and Chen, 2019). These alterations in the gut
microbiome, many of which are adverse to the host,
could then reverberate into the CNS via the gut-
brain axis.

A. Antibiotics and Cocaine. A large number of
studies have examined CTX for its ability to alter the
addictive properties of cocaine. These publications are
highlighted in Table 1. The general experimental
approach in the majority of these preclinical studies
is to establish consistent self-administration of co-
caine, which is then extinguished, and CTX is given at
the start of cue-primed reinstatement of cocaine self-
administration. Some investigators have also used the
CPP and the locomotor sensitization models. Most of
these studies highlighted in Table 1 document that CTX
and other b-lactam antibiotics, such as ampicillin and
CLV, indeed decrease reinstatement of cocaine seeking
after extinction of self-administration. It has been
reported that CTX decreases the reinforcing efficacy of
cocaine (Kim et al., 2016). Although some of these
studies showed that CTX increased GLT1 expression
and function, some did not. None of the studies in
Table 1 mentioned the potential effects of CTX-induced
alterations in the gut microbiome. Nonetheless, several
of these papers do present data that open the results on
CTX and cocaine reinstatement to alternative interpre-
tations. One study showed that increases in GLT1
expression using a viral vector harboring the GLT1
construct reduced glutamate efflux but did not block
cocaine reinstatement (Logan et al., 2018). Another
study showed that amoxicillin reduced cocaine seek-
ing after cue-primed reinstatement without increasing
expression of GLT1. CLV did not reduce cocaine seeking
under cue-primed reinstatement but did restore GLT1
levels in the NAc versus the cocaine-induced reduction
in this protein (Bechard et al., 2019). A third study
tested CTX to block cocaine reinstatement in rats
trained to self-administer cocaine alone or cocaine plus
alcohol (Stennett et al., 2020). These investigators made
the interesting observation that CTX attenuated relapse
in the cocaine-only group but not in the cocaine + alcohol
group, but the latter treatment group showed increased
GLT1 expression in theNAc (Stennett et al., 2020). Focus
on the GLT1 in mediating CTX-induced prevention of
cue-induced relapse to cocaine self-administration has
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shifted somewhat to the metabotropic glutamate re-
ceptor 2 (mGluR2) after the demonstration that the
mGluR2 antagonist LY341495 injected directly into the
NAc prevented CTX from attenuating reinstatement of
cocaine seeking (Logan et al., 2020). Finally, cefazolin
was found not to reduce cocaine reinstatement (Weiland
et al., 2015). MINO prevents the development of cocaine
locomotor sensitization (Chen et al., 2009) as is seenwith
CTX (Sondheimer and Knackstedt, 2011).
B. Antibiotics and Alcohol. CTX has been used in

studies with alcohol to increase GLT1 expression in the
same manner used to reduce cocaine reward. Most
studies examining the effects of CTX on alcohol have
used alcohol-preferring rats that are exposed to volun-
tary alcohol drinking for times ranging from 5 to 14
weeks. Thereafter, CTX (or another antibiotic) is given
for 5–7 days in the first or second week after chronic
drinking, and intake is measured for the remainder of
the experiment. This approach is referred to as relapse-
like drinking and has been used effectively by Sari and
colleagues. Publications reporting alcohol-antibiotic
interactions are highlighted in Table 2. The literature
is in good agreement in showing that CTX reduces
relapse-like drinking (Sari et al., 2011, 2013a,b, 2016;
Qrunfleh et al., 2013; Alhaddad et al., 2014; Rao and
Sari, 2014a,b; Das et al., 2015; Rao et al., 2015c;
Stennett et al., 2017). Ampicillin, cefazolin, cefopera-
zone, CLV, amoxicillin, and Augmentin share with CTX
the ability to reduce relapse-like drinking (Goodwani
et al., 2015; Hakami et al., 2017; Hakami and Sari,
2017; Rao et al., 2015b). In addition, CTX blocks
acquisition of alcohol intake (Sari et al., 2013a) and
attenuates alcohol withdrawal syndrome (Abulseoud
et al., 2014). CTX and cefazolin also attenuate cue-
primed reinstatement of alcohol drinking using an
operant approach (Weiland et al., 2015). The major-
ity of the studies referenced in Table 2 confirmed
antibiotic-induced increases in expression of GLT1,
with some interesting exceptions (see below). A smaller
number of studies have tested various tetracycline
derivatives, and despite the fact that these drugs were
used for their ability to block microglial activation and
reduce neuroinflammation, none of these effects were
documented. When given before alcohol, MINO, TIG,
and DOX significantly reduce voluntary drinking
(Agrawal et al., 2011; Bergeson et al., 2016; Syapin
et al., 2016). MINO also blocks alcohol reward as
assessed by CPP (Gajbhiye et al., 2017), and bothMINO
and TIG reduce alcohol withdrawal (Martinez et al.,
2016; Gajbhiye et al., 2018). A number of reviews have
been published on CTX-GLT1–alcohol dependence inter-
actions (Rao and Sari, 2012; Sari, 2013; Rao et al., 2015a;
Bell et al., 2017).
C. Antibiotics and Opiates. A relatively small num-

ber of studies have investigated the interactions be-
tween antibiotics and opiates, and these papers are
highlighted in Table 3. Early studies established that

CTX attenuates morphine dependence, analgesic toler-
ance, and precipitated withdrawal (Rawls et al., 2010a,b;
Habibi-Asl et al., 2014) and inhibits the development
of morphine hyperalgesia (Chen et al., 2012). Other
investigations determined that CTX and CLV de-
creased acquisition and/or reinstatement of a mor-
phine (Schroeder et al., 2014; Mehri et al., 2018) or
hydrocodone CPP (Alshehri et al., 2018), whereas
another study reported that CTX alone did not alter
acquisition and reinstatement of a morphine CPP (Fan
et al., 2012). Finally, it has been reported that CTX
prevented cue-induced heroin seeking (Shen et al.,
2014). Most of these studies did not confirm altered
expression of GLT1, but the paper of Shen et al. (2014)
did provide an extensive investigation of N-methyl-d-
aspartate receptor electrophysiology that documented
increased glutamate uptake after CTX treatment. One
study did establish CTX-mediated increases in GLT1
expression (Chen et al., 2012), and another reported
that CTX decreased reinstatement of an opiate CPP
without increasing GLT1 expression (Alshehri et al.,
2018). MINO has been shown to decrease (Hutchinson
et al., 2008) and facilitate extinction and reduce re-
instatement of the morphine CPP (Arezoomandan and
Haghparast, 2016). MINO also delays the development
of morphine analgesic tolerance but does not reverse
existing tolerance in rats with neuropathic pain (Zhang
et al., 2015).

D. Antibiotics and Methamphetamine, Amphetamine,
and Nicotine. A few of studies have investigated the
effects of antibiotics on dependence-like behaviors
associated with methamphetamine, amphetamine,
and nicotine, and these are highlighted in Table 4.
Both CTX (Abulseoud et al., 2012) and CLV (Althobaiti
et al., 2019) reduce reinstatement of the extinguished
methamphetamine CPP. CTX also reduces cue-primed
reinstatement of amphetamine self-administration (Garcia
et al., 2019) and decreases amphetamine-induced be-
havioral sensitization (Rasmussen et al., 2011). MINO
reduces the formation and reinstatement of a metham-
phetamine CPP (Fujita et al., 2012; Attarzadeh-Yazdi
et al., 2014) and also reduces methamphetamine self-
administration (Snider et al., 2013). In humans,
MINO reduces the subjective effects of amphetamine
but does not alter amphetamine choice (Sofuoglu
et al., 2011). With regard to nicotine, CTX reduces
the development of nicotine analgesic tolerance (Schroeder
et al., 2011), attenuates the persistence of a nicotine
CPP (Philogene-Khalid et al., 2017), and reduces its
reinstatement (Alajaji et al., 2013). Finally, MINO has
been shown to reduce craving for cigarettes in humans,
but it does not alter smoking self-administration or the
subjective responses to intravenous nicotine (Sofuoglu
et al., 2009).

E. Summary and Alternative Interpretations of
Studies Examining Effects of Antibiotics on the Re-
warding Effects of Drugs of Abuse. The interpretation
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of results from the vast majority of studies of antibiotic
interactions with drugs of abuse focuses on b-lactams
for the ability to increase expression of GLT1 and
on tetracyclines for their ability to reduce microglial
activation and neuroinflammation. Often, neither of
these purported effects was confirmed. However, the
outcomes of the studies in this section leave open the
possibility that the gut microbiome is involved in
antibiotic-induced reward reduction for the following
reasons:

1. All drugs of abuse considered in the foregoing
section cause significant disruptions in the gut
microbiome.

2. CTX can increase expression of the GLT1, but
MINO does not, yet both can alter the rewarding
effects of drugs of abuse. Although CTX and
MINO may influence drug reward via different
CNS actions, both have antimicrobial properties
and effects that have not been considered in data
interpretation. In fact, the common property
shared by all antibiotics discussed above is the
ability to knock down the gut microbiome. Even
CLV, which retains the b-lactam moiety required
to increase GLT1 expression but reportedly has
minimal antimicrobial activity, does indeed have
antibacterial actions (Finlay et al., 2003; Ferrer
et al., 2017). Therefore, all antibiotics alter the
gut microbiome, and their varying effects on the
rewarding properties of drugs of abuse may be
explained by the specific pattern by which they
do so. It is also significant that antibiotics are
administered on a background of drug-induced
disturbances in the gut microbiome. The possi-
bility of gut microbiome involvement in the
actions of antibiotics was acknowledged by only
one study highlighted in Table 2. Although the
study by Bergeson et al. (2016) showed TIG-
mediated reduction in alcohol intake, a role for
the gut microbiome was discounted because of
the short duration of antibiotic treatment (1 hour
prior to alcohol), and a mechanism was not
posited to explain this antibiotic-induced reduc-
tion of alcohol intake.

3. Assuming that CTX-induced increases in GLT1
expression are the mechanism by which drug
reward is blocked, a significant dissociation exists
between GLT1 expression and reward reduc-
tion. This discrepancy exists in studies of cocaine
(Logan et al., 2018; Bechard et al., 2019; Stennett
et al., 2020), wherein antibiotics may or may
not alter GLT1 expression and/or cocaine reward.
With regard to alcohol, Qrunfleh et al. (2013)
showed that although CTX doses of 50 and
100 mg/kg both significantly reduced relapse-
like drinking of alcohol, only the higher dose
increased GLT1 levels. Rao et al. (2015c) treated

alcohol-preferring rats with CTX (100 mg/kg) for
2 or 5 days after a 5-week period of voluntary
drinking and found that although CTX reduced
drinking at both times, GLT1 expression was
only increased significantly at the 5-day time
point. In addition, Stennett et al. (2017) showed
that CTX (200 mg/kg for 2 or 5 days) decreases
alcohol consumption without changing GLT1
expression in the NAc. The morphine CPP and
the development of locomotor sensitization
are reduced by CLV (Schroeder et al., 2014)
without evidence of altered GLT1 expression.
CTX and CLV both block reinstatement of the
methamphetamine CPP, but their effects on
GLT1 expression differ substantially—CLV
increased GLT1 expression (Althobaiti et al.,
2019), whereas CTX did not (Abulseoud et al.,
2012). Finally, and most importantly, Knack-
stedt and colleagues have shown conclusively
that increased expression of GLT1 is not the
mechanism by which antibiotics reduce cocaine
reward (Logan et al., 2018; Bechard et al., 2019;
Stennett et al., 2020). More recent studies have
focused on CTX- and cocaine-induced alterations
in the mGluR2 versus the GLT1 (Logan et al.,
2020). Logan et al. (2020) demonstrated that
CTX attenuates reinstatement of cocaine self-
administration, and a Glu2 receptor antago-
nist injected directly into the NAc blocks the
effect of CTX.

4. Most studies highlighted in Tables 1–4 adminis-
tered high doses of CTX (200 mg/kg is the most
common dose) for 5–12 days prior to tests of
reinstatement, a course of treatment known to
significantly alter the composition of the gut
microbiome in humans (Burdet et al., 2019) and
animals alike (Luo et al., 2016; Connelly et al.,
2017; Chakraborty et al., 2018; Luo et al., 2018;
Holota et al., 2019; Miao et al., 2020). It is also
interesting that the original report on CTX-
mediated neuroprotection used the same course
of treatment in the G93A-SOD1 mouse model of
amyotrophic lateral sclerosis (Rothstein et al.,
2005), a mouse that is now known to have a leaky
intestine and an impaired gut microbiome (Wu
et al., 2015). Therefore, high-dose antibiotic
treatment would impart an additional dysbiotic
effect on a gut microbiome already substantially
altered by drugs of abuse.

5. Antibiotic interference with the rewarding effects
of drugs of abuse is partial. When the gut micro-
biome is given more consideration in studies of
drug reward, it should be possible to use different
and more-specific antibiotics as well as other well
known and validated approaches to alter the gut
microbiome to more completely prevent the
rewarding effects of drugs of abuse.
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Taken together, abundant evidence exists implicating
the gut microbiome in the mechanism by which anti-
biotics alter the rewarding effects of drugs of abuse. A
role for the gut microbiome is rarely considered, but the
disparities in outcomes described above justify a much
more comprehensive analysis of how the gut micro-
biome can influence drug reward.

IV. Sodium Butyrate, Histone Deacetylase
Enzymes, and Drugs of Abuse

The intended use of NaB in modifying the dependence-
like actions of drugs of abuse has been strictly as an
inhibitor of histone deacetylase (HDAC) enzymes, which
is an effect first demonstrated by Candido et al. (1978)
in cultured cells. HDACs catalyze the removal of acetyl
groups from lysine residues in histone proteins, an
epigenetic modification that regulates chromatin struc-
ture and gene transcription (Seto and Yoshida, 2014).
NaB is a weak inhibitor of class I (HDACs 1, 2, 3, and 8)
and class IIa (HDACs 4, 5, 7, and 9) HDACs (Eckschlager
et al., 2017). Broadly speaking, drugs of abuse can
modulate gene transcription and expression via epi-
genetic mechanisms (Nestler, 2014;Cadet, 2016;Ajonijebu
et al., 2017) such that chronic use leads to histone
hypoacetylation via the action of HDACs. Therefore,
HDAC inhibitors would block deacetylation, restoring
gene transcription and expression to normal levels and
preventing the transition to or reinstatement of drug
use to the level of dependence. However, NaB has many
pharmacological actions that go well beyond inhibition
of HDACs as recently reviewed (Seto and Yoshida,
2014; Stilling et al., 2016; Dalile et al., 2019; Silva et al.,
2020), and these can cloud interpretation of results
when it is tested against the actions of drugs of abuse.
Specifically, NaB can strengthen cocaine-associated
contextual memory (Itzhak et al., 2013), trigger a stress
response (Gagliano et al., 2014), and inhibit microglial
activation (Huuskonen et al., 2004; Yamawaki et al.,
2018), all of which could also modify the effects of drugs
of abuse. In addition, the in vivo pharmacokinetics of
NaB are such that it achieves very low bioavailability.
Kim et al. (2013) found brain uptake of butyrate to be
less than 0.006% after intravenous injections of radio-
labeled butyrate in primates, leading Stilling et al.
(2016) to conclude that it is unlikely that butyrate
enters the brain in high enough concentrations to cause
direct inhibition of HDACs.
With regard to the gut microbiome, butyric acid is

a short-chain fatty acid (SCFA) that is synthesized
during anaerobic microbial fermentation of polysac-
charides, which cannot be digested by the host. Most
butyrate-producing bacteria are found in phylum Fir-
micutes. Butyric acid can also be obtained from the diet
(Stilling et al., 2016). From a pharmacological perspec-
tive, the sodium salt of butyric acid, NaB, is the form
used almost exclusively in studies aimed at modifying

the actions of drugs of abuse. The administration of
exogenous NaB modifies the gut microbiome (Zhou
et al., 2017; Fang et al., 2019; Yu et al., 2019), so this
could represent another mechanism by which it alters
drug reward. Another emerging mechanism by which
NaB could alter the actions of drugs of abuse via the
gut-brain axis involves ghrelin signaling. Ghrelin is
a 28-amino-acid peptide that is secreted by A-like–type
cells of the stomach (Sakata and Sakai, 2010). Ghrelin
signaling is mediated by the growth hormone secreta-
gogue receptor 1a (GHSR1a), which is expressed in
brain and modulates the appetite-inducing effects of
ghrelin (Sakata and Sakai, 2010). It has been shown
recently that butyrate and other SCFAs decrease ghrelin
signaling by blocking GHSR1a (Torres-Fuentes et al.,
2019). This is highly relevant to SUDs because ghrelin
administration can increase alcohol intake and enhance
preference for cocaine, whereas GHSR1a antagonists
and GHSR1a gene knockouts show reduced voluntary
intake of alcohol, stimulants, and nicotine, as reviewed
recently (Panagopoulos and Ralevski, 2014; Zallar et al.,
2017).

A. Sodium Butyrate and Cocaine. The literature on
NaB-induced modification of cocaine actions is some-
what variable, and these studies are highlighted in
Table 5. Most of these studies verified histone acetyla-
tion levels and/or changes in gene expression, but none
included the gut microbiome in the interpretation of
results. NaB decreases cocaine reward and increases
cocaine extinction and reinstatement. NaB has been
shown to increase cocaine self-administration (Sun et al.,
2008), whereas phenylbutyrate, which is also used as
an HDAC inhibitor, decreases self-administration and
decreases motivation for cocaine (Romieu et al., 2008,
2011). In theCPPmodel of cocaine reward,NaB increases
acquisition of a cocaine CPP (Raybuck et al., 2013)
and decreases reinstatement of the extinguished CPP
(Malvaez et al., 2010). Lower doses ofNaB (300–600mg/kg)
increase extinction of the cocaine CPP (Raybuck et al.,
2013), whereas the higher dose of 1200mg/kg can either
increase (Malvaez et al., 2013) or decrease (Raybuck
et al., 2013) extinction of the cocaine CPP. NaB does not
modify the DA D1 receptor (DA D1R) agonist–induced
increase in a cocaine CPP (Schroeder et al., 2008).
Finally, NaB increases the locomotor sensitization
caused by cocaine (Sanchis-Segura et al., 2009) and
cocaine plus a D1 agonist (Schroeder et al., 2008),
suggesting enhancement of cocaine-induced reward. On
the other hand, HDAC inhibitors other than NaB have
fairly consistent effects on cocaine reward. For instance,
the pan-HDAC inhibitor tricostatin A decreases cocaine
self-administration (Romieu et al., 2008; Host et al.,
2010; Romieu et al., 2011). The specific HDAC3 in-
hibitor RGFP966 increases extinction of the cocaine
CPP (Malvaez et al., 2013) and increases extinction of
cocaine self-administration and decreases its reinstate-
ment (Hitchcock et al., 2019). The class I HDAC inhibitor
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MS-275 decreases cocaine locomotor sensitization (Kennedy
et al., 2013). In contrast, the class II HDAC inhibitor
MC1568 enhances cocaine self-administration (Griffin
et al., 2017). These latter results add some substantia-
tion to the conclusion that HDAC inhibition can alter
cocaine actions. The roles played by epigenetics by
cocaine have been reviewed (Kreek et al., 2012; Cadet,
2016).
B. Sodium Butyrate and Alcohol. A small number of

studies have investigated the effects of NaB on alcohol
drinking and reward, and these are highlighted in
Table 5. The effects of NaB on histone acetylation levels
and/or alterations in gene expression were verified in all.
The gut microbiome was not considered in the interpre-
tation of the data of any. It can be seen in Table 5 that
NaB can either increase (Sanchis-Segura et al., 2009) or
decrease (Legastelois et al., 2013) alcohol-induced loco-
motor sensitization. NaB increases acquisition of an
alcohol CPP (Xu et al., 2012) but decreases alcohol
drinking in dependent rats and prevents escalation to
excessive drinking (Simon-O’Brien et al., 2015). The
HDAC class I–specific inhibitor MS-275 reduces alcohol
self-administration and decreases relapse (Jeanblanc
et al., 2015). Valproic acid, a short branched-chain fatty
acid derived from the SCFA valeric acid and an inhibitor
of class I and IIA HDACs, lowers preference for alcohol
and reduces consumption in the two-bottle choice para-
digm, and it blocks formation of analcoholCPP (Al Ameri
et al., 2014). For the most part, the studies of NaB and
alcohol are inconsistent, as is the case for cocaine,
showing increases or decreases in alcohol dependence
and reward. Nevertheless, all studies in Table 5 attrib-
uted the effects of NaB on alcohol reward to decreases in
HDAC activity and/or epigenetic alterations. The role of
HDAC inhibition and epigenetic alterations in alcohol
reward and drinking has been reviewed (Palmisano and
Pandey, 2017; Pandey et al., 2017; Ponomarev et al.,
2017).
C. Sodium Butyrate and Opiates. The studies in-

vestigating NaB-opiate interactions are also high-
lighted in Table 5. The majority of these studies
confirmed NaB-induced alterations in histone acetyla-
tion and/or gene expression, and none included discus-
sion of the gut microbiome in the interpretation of
results. Using the CPP model of drug reward, it has
been shown that NaB increases the development of
a morphine CPP (Sanchis-Segura et al., 2009) while
increasing CPP extinction and reducing reinstatement
(Wang et al., 2010). NaB has been shown to increase the
development of locomotor sensitization (Sanchis-Segura
et al., 2009), although it and valproic acid given sepa-
rately decrease sensitization (Jing et al., 2011). Heroin
self-administration is not altered by NaB, and this
HDAC inhibitor increases reinstatement of heroin-
primed self-administration (Chen et al., 2016). Finally,
the genetic deletion of the Per1 clock gene impairs the
development of morphine-induced sensitization and the

CPP (Perreau-Lenz et al., 2017). Interestingly, these
mice show significant increases in global levels of
histone acetylation. Treatment of the Per1 knockout
mice with NaB restores development of both morphine
sensitization and CPP (Perreau-Lenz et al., 2017). In
general, it is difficult to attribute NaB-induced alter-
ations in the rewarding effects of opiates to HDAC
inhibition because NaB can increase or decrease
dependence-like behavior. NaB has no effect on opiate
self-administration but can increase primed reinstate-
ment of morphine self-administration, implying that
HDAC inhibition increases seeking behavior for opiate
reward. The role of HDAC inhibition and/or epigenetic
alterations in opiate reward has been the subject of
several review articles (Kreek et al., 2012; Browne et al.,
2020).

D. Sodium Butyrate and Methamphetamine, Am-
phetamine, and Nicotine. NaB and other HDAC
inhibitors have been tested with methamphetamine,
amphetamine, and nicotine in a small number of
studies, and these are highlighted in Table 5. NaB
increases (Harkness et al., 2013), whereas valproic acid
decreases (Coccurello et al., 2007), methamphetamine-
induced locomotor sensitization. NaB has very complex
effects on methamphetamine CPP in that it increases
acquisition, increases extinction, and decreases rein-
statement (Zhu et al., 2017). The effects of HDAC
inhibitors on amphetamine-induced locomotor sensiti-
zation are equally confusing. The same investigators
showed that NaB and valproic acid could decrease
amphetamine sensitization (Kalda et al., 2007) and
later reported that both HDACs increased it (Shen
et al., 2008). NaB decreases reinstatement of nicotine
self-administration only if given immediately after
extinction but not if given a few hours later (Castino
et al., 2015). Finally, phenylbutyrate decreases the
nicotine-induced CPP (Pastor et al., 2011). The role of
HDAC inhibition and/or epigenetic alterations in at
least methamphetamine reward has been the subject of
several review articles (Cadet and Jayanthi, 2013;
Godino et al., 2015; Cadet, 2016).

E. Summary and Alternative Interpretations of
Studies Examining Effects of Sodium Butyrate on the
Rewarding Effects of Drugs of Abuse. Studies investi-
gating the effects of NaB on the rewarding effects of
drugs of abuse (see Table 5) attributed the outcomes to
NaB-induced alterations in histone acetylation, chro-
matin remodeling, or epigenetic alterations. However,
the outcomes of the studies in this section, as seen above
for antibiotics, leave open the possibility that the gut
microbiome is involved in NaB-induced reward reduc-
tion for the following reasons:

1. Several factors related to the pharmacology
of NaB, including the nonselective actions of
high dose NaB, the conflicting effects of NaB
and other HDAC inhibitors on drug reward
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(some increase, some decrease) and the lack of
correlation between levels of histone acetyla-
tion, and the effect of HDAC inhibitors on
reward reduction, temper the conclusions on
HDAC involvement.

2. Butyrate is produced endogenously by bacterial
fermentation, and when given exogenously, it
can cause alterations in the gut microbiome. It
does not seem likely that the levels of butyrate in
the circulation or in brain can achieve high
enough concentrations to inhibit HDACs in the
CNS even after dietary manipulations designed
to do so (Stilling et al., 2016).

3. The ability of NaB to block the ghrelin receptor
may be the primary mechanism by which it
reduces cocaine reward, invoking a role for the
gut-brain axis.

For these reasons and others discussed above, it
is difficult to conclude that NaB is changing the
dependence-like behaviors of drugs of abuse solely
by inhibition of HDACs. These drugs of abuse have
varying effects of their own on histone acetylation,
and in some cases, they increase the levels of histone
acetylation much like an HDAC inhibitor (see, for exam-
ple, Harkness et al., 2013). Additional research on how
HDAC inhibitors modify the dependence-like effects of
the drugs of abuse should focus on endogenous micro-
bial butyrate production and their interactions with
the gut-brain axis.

V. High-Fat Diet

HFDs are most frequently used in combination
with drugs of abuse because of the shared neuronal
substrates activated by both the DA reward systems
in the VTA-NAc axis and in the substantia nigra–
dorsal striatum axis. These systems are thought to
mediate motivation-reinforcement learning and action
selection–goal-directed behavior, respectively (Volkow
et al., 2017). Many drugs of abuse also interact directly
or indirectly with the DA transporter (DAT) to increase
the synaptic levels of DA via blocking uptake and/or
causing release from presynaptic neurons via reverse
transport through the DAT (Baladi et al., 2012a).
Compulsive food intake and obesity, such as compul-
sive drug taking, are significant health problems in
the USA. Therefore, a diet rich in fat and sugar could
modulate sensitivity to the dependence-like effects of
drugs of abuse, most likely by activating the central
DA reward systems. HFD-drug interactions generally
expose subjects to diets rich in fat and/or sucrose ad
libitum or on a restricted access-binge schedule. There-
after, subjects are tested for dependence-like effects of
a drug to determine whether the diet modifies drug-
related behavior. Other variables of importance in these
studies include sex and subject age (e.g., adolescence,
adult, via maternal consumption) at the time of exposure

to an experimental diet. In addition to activation of central
DA reward pathways, diet and especially an HFD are
well known to cause significant alterations in the gut
microbiome (Spor et al., 2011; Goodrich et al., 2014;
Xiao et al., 2015; Kim et al., 2017; Singh et al., 2017;
Ericsson et al., 2018; Hills et al., 2019; Wu et al., 2019;
Ezra-Nevo et al., 2020; Wilson et al., 2020), which can in
turn alter microbial metabolic profiles that can reverber-
ate throughout the body and into the CNS.

A. High-Fat Diet and Cocaine. Studies investigat-
ing the effects of HFD on the actions of cocaine have
uncovered a number of interesting complexities, and
these publications are highlighted in Table 6. Perhaps
the first study to test the effects of an HFD on cocaine
was published by Wellman et al. (2007), who reported
that acquisition of self-administration was impaired
in adult male rats. Morales et al. (2012) found that an
HFD decreased the cocaine CPP. These early papers
seem to be the exception, however, becausemost ensuing
publications report that an HFD increases cocaine
dependence–like behavior. For instance, Puhl et al.
(2011) found that a history of restricted or binge-like
consumption of an HFD enhances cocaine seeking and
self-administration in adult male rats. Exposure of
male rats to an HFD-binge intake during adolescence
increases the cocaine CPP and self-administration in
adulthood (Blanco-Gandía et al., 2017, 2018). These
investigators also noted that adolescent rats housed
in groups of three to four showed increased sensitivity
to the development of a CPP to a subthreshold dose
of cocaine, whereas singly housed rats fed standard
chow were more sensitive to subthreshold doses of
cocaine when tested in adulthood (Blanco-Gandía et al.,
2018). To address the question of whether an HFD
alters cocaine intake by increasing its rewarding prop-
erties or by decreasing its aversive properties, Clasen
et al. (2020c) fed an HFD ad libitum to rats from
adolescence into adulthood and then tested subjects
for development of a CPP and a conditioned place
aversion. These investigators reported that long-term
exposure to the HFD altered neither the rewarding nor
the aversive properties of cocaine (Clasen et al., 2020c).
In a follow-up set of experiments, these same inves-
tigators reported that ad libitum feeding of an HFD
from adolescence into adulthood significantly increased
cocaine self-administration (Clasen et al., 2020b). A few
studies have exposed pregnant rodents to HFD and
then tested the offspring for their responsiveness to
cocaine. The results from these studies are not in
agreement, with one showing that maternal over-
nutrition did not alter locomotor responsiveness to
cocaine in offspring (Sasaki et al., 2018), whereas
a second study found that this treatment resulted in
a greater CPP to cocaine in offspring (Peleg-Raibstein
et al., 2016). Following the hypothesis that obesity-
prone and -resistant rats may have differential sen-
sitivity to natural rewards that could extend to drug
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rewards, Thanos et al. (2010) tested obesity-resistant
S5B and obesity-prone OM rats for development of
a cocaine CPP. These investigators found that obesity-
prone OM rats did not show a significant cocaine CPP,
whereas the obesity-resistant rats did (Thanos et al.,
2010). On the other hand, Townsend et al. (2015) tested
obese and lean Zucker rats for cocaine self-administration
and found that the two groups did not differ in cocaine
intake in a behavioral economic demand procedure.
Both groups concluded that the results did not
support a theory of common vulnerability for food
and nonfood reinforcers despite the overlap in CNS
reward pathways mediating each (Thanos et al., 2010;
Townsend et al., 2015).
An extensive series of studies by France and col-

leagues has uncovered numerous interesting results
with regard to the influence of sex, age of exposure to
a fat-rich diet, and the method of exposure to HFD
(restricted vs. ad libitum) on locomotor sensitivity to
cocaine. These investigators reported initially that an
HFD increased cocaine sensitivity in female rats with
both free (Baladi et al., 2012b; Serafine et al., 2015,
2016) and restricted access to the diet (Baladi et al.,
2012b). Free but not restricted access to an HFD for
adult females also increased sensitivity to cocaine
(Baladi et al., 2012b). In another study, Serafine
et al. (2014) found that although adult female rats
fed an HFD with either free or restricted access showed
increased locomotor sensitization to cocaine, the effect
of the HFD was not significant. When adolescent
female rats were given free access to an HFD paired
with either sucrose or saccharin in the drinking
water, the development of cocaine locomotor sensitiza-
tion was enhanced by the diet but not by sucrose or
saccharin (Serafine et al., 2015). In contrast with an
earlier study (Baladi et al., 2012b), this report found
that restricted access to the HFD did not alter the
development of locomotor sensitization in adolescent
female rats (Serafine et al., 2015). Finally, adult male
and female mice given free access to an HFD develop
increased sensitization to the locomotor effects of acute
cocaine (Collins et al., 2015). With repeated cocaine
administration, adult female mice develop locomotor
sensitization more rapidly when consuming sucrose,
and this effect is not enhanced by anHFD (Collins et al.,
2015).
B. High-Fat Diet and Alcohol. A small number of

studies have examined the effects of HFD on alcohol
drinking, and these studies are highlighted in Table 6.
Offspring from dams exposed to an HFD throughout
pregnancy and lactation showed increased alcohol
drinking in adulthood (Peleg-Raibstein et al., 2016).
Adult rats given access to an HFD on an intermittent
schedule significantly decreased their alcohol drinking
(Sirohi et al., 2017; Villavasso et al., 2019). Coker et al.
(2020) carried out an extensive analysis of the impact of
HFD access schedules on alcohol drinking, and the

results were very interesting. Mice given unlimited
access to an HFD showed a significant decrease in
drinking, whereas limited access to HFD (3 days/week)
did not change alcohol drinking by comparison with
controls, and intermittent access (a 24-hour session per
week) led to increased alcohol drinking (Coker et al.,
2020). It is clear that the discrepancies in the results of
these studies may well result from the specific schedule
of access to HFD. However, intermittent exposure to an
HFD for 6 to 7 weeks can either decrease (Sirohi et al.,
2017) or increase (Coker et al., 2020) alcohol drinking,
so it appears that additional variables are operational.
Data from the studies discussed above supported the
conclusion that the observed outcomes were attributed
to alterations in neurotransmitter neurochemistry
(Peleg-Raibstein et al., 2016; Villavasso et al., 2019),
decreased anxiety and elevated ghrelin (Sirohi et al.,
2017), and the development of insulin insensitivity and
glucose intolerance (Coker et al., 2020).

C. High-Fat Diet and Opiates. Few studies have
determined the effects of an HFD on opiate reward,
focusing instead on the larger issue of opioid modu-
lation of food intake [see Taha (2010), Bodnar (2019)
for reviews]. It has been reported that HFD-induced
obesity increases morphine seeking and consump-
tion in rats after bariatric surgery to lower their body
weights, but the HFD had no effect on morphine
reward in sham controls (Biegler et al., 2016). Rats
fed a Western diet (high in palm oil and esterified
fats) showed increased morphine reinstatement of
an extinguishedCPP,whereas rats fed aMediterranean
diet (low in fat) did not show relapse (Milanesi et al.,
2019). The latter authors attributed the dietary effects
on reinstatement of the morphine CPP to increases in
DAT and DA D2 receptor (DA D2R) levels in the NAc
(Milanesi et al., 2019). These studies are included in
Table 6.

D. High-Fat Diet and Methamphetamine, Amphet-
amine, and Nicotine. The effects of an HFD on meth-
amphetamine, amphetamine, and nicotine reward have
scarcely been investigated, and the publications that
have done so are highlighted in Table 6. It can be seen
that an HFD increases the development of locomotor
sensitization to methamphetamine (McGuire et al.,
2011). With regard to amphetamine, an HFD decreases
drinking (Kanarek et al., 1996) but increases the de-
velopment of locomotor sensitization in the offspring of
dams exposed to an HFD throughout pregnancy and
lactation (Peleg-Raibstein et al., 2016). An HFD also
decreases the amphetamine CPP (Davis et al., 2008).
Mice fed an HFD do not develop a nicotine-induced CPP
(Blendy et al., 2005), but after maternal overnutrition,
offspring show increased self-administration of nicotine
and decreased drug-primed reinstatement (Morganstern
et al., 2013). It is clear from these studies that an HFD
does not have a unitary effect on the rewarding proper-
ties of methamphetamine, amphetamine, or nicotine.
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Most investigators attribute dietary effects on the re-
warding properties of these drugs to overlapping reward
pathways shared by overeating and drugs of abuse or to
the anorectic effects of the amphetamines.
E. Summary and Alternative Interpretations of

Studies Examining Effects of High-Fat Diet on the
Rewarding Effects of Drugs of Abuse. Interpretation of
the results of studies examining how an HFD changes
sensitivity to cocaine within the construct of activation of
overlapping DA reward pathways by fat and cocaine is
complex. In general, it appears that an HFD increases
sensitivity to the cocaine reward, but the results must be
tempered because of some variability in outcomes. In-
terpretation is made more complex by the roles played by
sex, age of subject when exposed to an HFD, the duration
of exposure to the HFD, and animal housing conditions.
Studies using self-administration and CPP agree that
longer-term exposure of adolescent or adult male rodents
to an HFD increases cocaine self-administration and
development of a CPP. The fact that exposure to an
HFD in adolescence, a time of enhanced vulnerability,
extends heightened sensitivity to cocaine into adulthood is
interesting and significant. Results from studies using
obese versus lean animals fed standard diets and those
that used cocaine-induced locomotor sensitization as the
behavioral model show less agreement. Some of the more
perplexing outcomes relate to the observation that an
HFD enhances the locomotor-stimulating effects of co-
caine in adolescent male rats but, against predictions,
decreases striatal DA clearance, which led Baladi et al.
(2015) to rule out the DAT as a mediator of the observed
effects. Fish oil, whichwasused because of its documented
ability to counter the inflammatory effects of HFDs, was
found to prevent HFD-induced enhancement of locomotor
sensitivity of adolescent females to cocaine, but its effects
could not be linked to reductions in inflammatory cytokine
markers (Serafine et al., 2016). The differential sensitivity
ofmales and females to the locomotor-sensitizing effects of
cocaine is also difficult to reconcile within the construct of
theDA reward system (seeBaladi et al., 2012a for review).
Lastly, the finding that obesity-prone OM rats did not
develop a cocaine CPP ran counter to expectations
(Thanos et al., 2010). In this same study, the ability of
the DA D2R antagonist bromocriptine to reduce the
cocaineCPP in obesity-resistant S5B rats led the authors
to conclude that the DA D2R played a partial regulatory
role in the resistant rats. However, this effect was
confounded somewhat by the observation that bromo-
criptine significantly reduced time spent in the cocaine-
paired chamber in the obesity-prone OM rats even
though these subjects did not form a cocaine CPP
(Thanos et al., 2010). For more extended discussions of
how diet, food bingeing, and the DA reward system can
interact to alter the rewarding properties of various
drugs of abuse, the interested reader is referred to the
following selected reviews: Bello and Hajnal (2010),
Baladi et al. (2012a), Billing and Ersche (2015), de

Macedo et al. (2016), Blanco-Gandía and Rodríguez-
Arias (2017), and Volkow et al. (2017).

None of the publications discussed above include
consideration of the gut microbiome in the interpreta-
tion of the results on drug-HFD interactions. However,
it is clear that many of the variables that influence how
an HFD can modulate the rewarding effects of drugs of
abuse are closely linked to the gut microbiome, and for
the reasons listed below, the gut microbiome cannot be
ruled out:

1. An HFD causes extensive alterations in the
composition and structure of the gut microbiome,
so animals fed an HFD are metabolically quite
different from animals fed standard laboratory
chow. The administration of cocaine, alcohol, or
amphetamines (which also alter the gut micro-
biome composition) on these differing backgrounds
could have effects that are influenced as much
by the dysbiotic microbiome as by alterations of
central DA reward pathways.

2. Different housing conditions influence how an
HFD modulates cocaine sensitization, but grouped
versus individual housing has a significant impact
on the gut microbiome as well (Spor et al., 2011;
Xiao et al., 2015; Ericsson et al., 2018; Hylander
and Repasky, 2019; Ringel-Scaia et al., 2019;
Robertson et al., 2019).

3. Male-female differences influence the devel-
opment of cocaine-induced locomotor sensiti-
zation, and they exert strong influence on the
gut microbiome (Gomez et al., 2012; Markle
et al., 2013; Xiao et al., 2015; Ja�sarevi�c et al.,
2016; Davis et al., 2017; Beale et al., 2019). Of
particular relevance is the finding that high-
fat and high-sucrose diets differentially affect
the gut microbiome of males and females (Daly
et al., 2020).

4. Maternal obesity may influence cocaine reward
in offspring, but it certainly exerts a powerful
influence on the gut microbiome of offspring that
persists into young adulthood (Buffington et al.,
2016; Guo et al., 2018; Zhou and Xiao, 2018).

5. The differing responses of at least the lean and
obese Zucker rats to cocaine could be influenced
by the vastly differing gut microbiomes in these
rats (Hakkak et al., 2017).

VI. Summary, Conclusions, and Perspectives

Over the past 10–15 years, a large number of studies
have investigated the effects of antibiotics, NaB, and an
HFD on the rewarding effects of many drugs of abuse,
and the greatest amount of focus has been on cocaine
and alcohol. b-Lactam antibiotics were used in these
studies for their ability to increase the levels of the
GLT1 in the NAc. It now turns out that there is no
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relationship between the levels of expression of the
GLT1 after treatment with b-lactam antibiotics and
alterations in drug reward. In addition, the results of
these studies also reveal significant variability with
drug reward being increased, decreased, or not changed
by antibiotics. Some of the variations seen in the
highlighted studies can be linked directly to alterations
in the gut microbiome. First, most drugs of abuse are
now known to cause significant alterations in the
composition of the gut microbiome. Second, all anti-
biotics used to alter drug reward are known to cause
significant changes in the gut microbial communities as
well. Third, any pairing of a particular drug of abuse
(e.g., cocaine) with a particular antibiotic (e.g., CTX)will
alter the gut microbiome in a manner that is specific for
each drug in the pairing (see Ianiro et al., 2016 for
examples of antibiotic specificity). Despite the over-
whelmingly clear effects of antibiotics on the gut micro-
biome, all studies so far have focused on central
mechanisms by which antibiotics alter the rewarding
effects of drugs of abuse (e.g., mGluR2/3 vs. GLT1Logan
et al., 2020). In the absence of a relationship between
the levels of GLT1 and alterations in drug reward
by antibiotics, the knockdown of the gut microbiome
by antibiotics remains an obvious, potential mecha-
nism by which drug reward is altered, but unfortu-
nately, the gut microbiome has not entered into the
conceptualization of how antibiotics alter drug re-
ward. Many of the highlighted studies even use the
term “b-lactam antibiotic” in the title of published
papers without any consideration that the effects of
these antibiotics on drug reward could be occurring
outside of the CNS.
A number of studies used NaB to alter drug reward,

focusing on the ability of this compound to inhibit
histone deacetylase enzymes. The outcomes of these
studies are similar to those using antibiotics in that
high doses of NaB can increase, decrease, or have no
effect on drug reward. NaB is a short-chain fatty acid
and a fermentation product of the gut microbiome that
can also alter the structure and composition of the gut
microbiome when given exogenously. Despite being
given in very large doses (e.g., 1200 mg/kg), NaB is
a weak inhibitor of HDACs because of the limited
bioavailability it achieves in vivo. In vitro studies have
established that NaB is a broad-spectrum HDAC in-
hibitor that exerts actions on class I (HDACs 1, 2, 3, and
8) and class IIa (HDACs 4, 5, 7, and 9) HDACs, so it is
difficult to link drug actions to any specific enzyme form.
It is likely the case that drug reward is mediated in part
by epigenetic alterations (Nestler, 2014; Cadet, 2016;
Ajonijebu et al., 2017), but it should be remembered that
NaB and other SCFAs can cause epigenetic changes in
the gut microbiome as well, and communication be-
tween the microbiome and host is mediated in part via
epigenetic mechanisms (for reviews see Hullar and Fu,
2014; Alam et al., 2017; Aleksandrova et al., 2017;

McKenzie et al., 2017; Kim and Jazwinski, 2018). Finally,
the ability of NaB and other SCFAs to influence drug
reward by interfering with ghrelin signaling represents
another influential, peripherally based mechanism.

Feeding animals an HFD has generally been un-
dertaken to study how overlapping food and drug
reward mechanisms interact to modify drug reward.
HFDs have varying effects on drug reward and can
increase, decrease, or have little influence depending on
the drug, the fat content of the diet, and the duration of
the nutritional modification. Alcohol is unique among
drugs of abuse in that it is nutritive and its interactions
with CNS reward circuits and the gut microbiome differ
from those of non-nutritive drugs of abuse (Alhadeff
et al., 2019). On the other hand, diet is one of the most
important determinants of the structure and composi-
tion of the gut microbiome. Both overnutrition (Spor
et al., 2011; Goodrich et al., 2014; Xiao et al., 2015;
Singh et al., 2017; Kim et al., 2017; Ericsson et al., 2018;
Hills et al., 2019;Wu et al., 2019; Ezra-Nevo et al., 2020;
Wilson et al., 2020) and undernutrition (Sonnenburg
and Sonnenburg, 2014; Sonnenburg et al., 2016) cause
extensive alterations in the gut microbiome. As is the
case with studies of antibiotics and drugs of abuse, the
combination of drug-induced dysbiosis with dietary-
induced dysbiosis will have effects on the gut micro-
biome that are specific to each pairing of a drug of abuse
with an altered diet and that are different from either
treatment alone. Adding to this complexity is the fact
that selected drugs of abuse have GI effects (e.g., opiate
constipation, cocaine ischemia) that can influence the
gut microbiome in amanner that is different from drugs
of abuse that do not have deleterious effects on GI
function. With the foregoing discussion in mind, it is
plausible to conclude that a role for the gut microbiome
in SUDs cannot be ruled out and should be given
additional attention going forward.

A large number of factors are thought to contribute to
the variation in outcomes of studies of drugs of abuse
and how antibiotics, NaB, and HFDs interact to modify
their rewarding properties. These include sex, prenatal
exposure to drugs and modifiers, ad libitum versus
binge feeding of altered diets, and the age of experi-
mental subjects, to list a few. As more is learned about
how the gut microbiome influences host health and
well-being, it has become clear that these variables can
have significant effects on the composition of the gut
microbiome. In turn, these variables can contribute to
the variability and irreproducibility seen in many
animal models of disease (Franklin and Ericsson,
2017). Factors that may seem trivial are now known to
disrupt the gut microbiome in rodents. Xiao et al. (2015)
investigated some of those factors that have broad
effects on the design and outcomes of experiments with
mice and observed five major ones: mouse provider,
housing laboratory/room, diet, sex, and mouse strain.
The impact of these factors has been affirmed in other
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studies (Spor et al., 2011; Goodrich et al., 2014; Franklin
and Ericsson, 2017; Ericsson et al., 2018). For example,
regarding mouse vendors, C57BL/6 mice from Jackson
Laboratory or Taconic Farms have significantly distinct
microbiomes (Robertson et al., 2019). Other influential
factors include drinking water, the birth/nursing dam,
type of caging (e.g., static, ventilated), bedding, housing
(e.g., single, grouped), fasting, and the maternal/cage
effect (Spor et al., 2011; Goodrich et al., 2014; Franklin
and Ericsson, 2017; Kim et al., 2017; Ericsson et al.,
2018). With these factors in mind, it is easy to imagine
that any one of them or several in combination can
introduce unanticipated influences into an experiment,
particularly when considering that drugs of abuse alter
the gut microbiome.
Many other mechanisms exist by which the gut

microbiome couldmodify the rewarding actions of drugs
of abuse. A complete discussion of these mechanisms is
well beyond the scope of this review, but a few examples
are highly relevant and deserve mention. First, a very
large number of marketed, nonantibiotic drugs are now
known to have extensive impact on gut bacteria, and
CNS-active drugs are overrepresented among all tested
drugs for their ability to inhibit growth of selected
bacterial strains (Maier et al., 2018). With few accepted
medical uses, drugs of abuse have not been tested
extensively for their bacteriostatic or bactericidal
effects, but it is known that at least cocaine possesses
significant antimicrobial activity (Johnson et al., 2008).
Second, the gut microbiome has both direct and indirect
effects on drug and xenobiotic metabolism (Wilson and
Nicholson, 2017; Clarke et al., 2019; Zimmermann
et al., 2019). For instance, the gut microbiome can carry
out reductive metabolism and other biotransforma-
tions, including demethylation, deamination, dihydrox-
ylation, decarboxylation, and oxidation (Wilson and
Nicholson, 2017). Demethylation of methamphetamine
by intestinal bacteria (Caldwell andHawksworth, 1973)
is but one example of how the metabolism, disposition,
and bioavailability of a drug of abuse can be determined
by gut bacteria. Third, alterations in tryptophan me-
tabolism by the gut microbiome can modify the down-
stream kynurenine pathway (Kennedy et al., 2017), and
it has been demonstrated that increases in kynurenic
acid significantly reduce cue-induced reinstatement of
both alcohol and cocaine-seeking behavior (Vengeliene
et al., 2016). Increases in brain kynurenine levels also
reduce alcohol consumption via its ability to inhibit
DA release in the NAc (Giménez-Gómez et al., 2018).
Fourth, and as mentioned above in paragraph IV,
increases in butyrate production by the gut micro-
biome could interfere with ghrelin signaling, which
is known to have profound effects on the rewarding
effects of alcohol, stimulants, and nicotine (see Panagopoulos
andRalevski, 2014 andZallar et al., 2017 for reviews). Last,
the gut microbiome produces a large number of metabo-
lites that agonize numerous G-protein–coupled receptors

(Cohen et al., 2017; Park et al., 2019), including various
receptor subtypes for serotonin and DA (Chen et al.,
2019; Colosimo et al., 2019). Therefore, alterations in
gut production of these metabolites could interact
with the same receptors implicated in the rewarding
effects of drugs of abuse, such as the mGluR2 for
reinstatement of cocaine seeking after treatment with
CTX (Logan et al., 2020).

Based on the studies highlighted in Tables 1–6, it
is clear that the gut microbiome has received very little
attention in the interpretation of results from studies
testing antibiotic, NaB, or HFD interactions with drugs
of abuse. However, it is undeniable that b-lactam anti-
biotics and HFDs cause substantial disruptions of the gut
microbiome. Drug-induced dysbiosis could also shift the
makeup of the microbiome such that experimental ani-
mals differ from controls not only based on drug treat-
ment but on the interaction of that particular drug with
numerous other dysbiosis-causing factors. More direct
and specific assessment of the role of the gut microbiome
in SUDs could lead to a better understanding of the
mechanisms underlying drug abuse and thereby suggest
new therapies. Although it is still too early to consider
them for the treatment of SUD-related complications,
manipulations of the gut microbiome–brain axis through
supplementation of nutritional dietary components, such
as prebiotics (i.e., indigestible fiber), and probiotics (ben-
eficial live microorganisms) (Liu et al., 2015), as well as
fecal microbiota transplantation constitute available tools
that could aid in the design of studies aiming to assess the
potential role of the gut microbiome in SUDs. Accounting
for the potential roles played by the gut microbiome in
SUDs, especially when using animal models, would in-
crease experimental rigor and reproducibility and reduce
variability in outcomes.
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