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Airborne pollen has major respiratory health impacts and anthro-
pogenic climate change may increase pollen concentrations and
extend pollen seasons. While greenhouse and field studies indi-
cate that pollen concentrations are correlated with temperature, a
formal detection and attribution of the role of anthropogenic
climate change in continental pollen seasons is urgently needed.
Here, we use long-term pollen data from 60 North American sta-
tions from 1990 to 2018, spanning 821 site-years of data, and Earth
system model simulations to quantify the role of human-caused
climate change in continental patterns in pollen concentrations.
We find widespread advances and lengthening of pollen seasons
(+20 d) and increases in pollen concentrations (+21%) across North
America, which are strongly coupled to observed warming. Human
forcing of the climate system contributed ∼50% (interquartile
range: 19–84%) of the trend in pollen seasons and ∼8% (4–14%)
of the trend in pollen concentrations. Our results reveal that an-
thropogenic climate change has already exacerbated pollen sea-
sons in the past three decades with attendant deleterious effects
on respiratory health.

climate change | respiratory health | detection | attribution |
Earth system model

Human-caused climate change is expected to have widespread
negative impacts on public health through a range of pathways

(1–3). Climate change could trigger spatial and temporal shifts in
plant airborne pollen loads, which have major respiratory health
consequences for allergies and asthma (4–7), viral infections (8),
school performance and downstream economic impacts (9), and
emergency room visits (5, 10). Because pollen concentrations are
often highly temperature-sensitive (11, 12), anthropogenic climate
change could substantially harm respiratory health by increasing
pollen concentrations and/or lengthening pollen seasons and ex-
posure times (13–15). Thus, understanding the spatial and temporal
variation in pollen loads and whether anthropogenic climate change
is a major contributor to such changes at large geographical (e.g.,
continental) scales is urgently needed to estimate potential changes
in respiratory health.
Climate change detection and attribution analysis is a powerful

tool for linking long-term climate change and observed impacts (16,
17). However, detection and attribution techniques have not been
widely applied to public health impacts, despite major implications
for policy and public health interventions (18). Detection and at-
tribution approaches provide a substantial advance by connecting
societal impacts to ongoing climate change and rigorously quanti-
fying the role of human forcing of the climate in trends of impacts
(18). Detection and attribution approaches aim to statistically de-
tect whether a variable/impact is changing and attribute how much
of the observed change was contributed by anthropogenic climate
change (19–21).

Among climate-related health impacts, pollen trends may be
particularly suited to detection and attribution because both el-
evated temperature and CO2 concentrations have been found to
increase pollen production in greenhouse or growth chamber
experimental studies (22–25). A few long-term observational
studies on selected plant taxa or at a small number of sites have
found increases in pollen concentrations and pollen season
length over time, often correlated with temperature (11, 12, 15,
26), although temperature–pollen season relationships may de-
pend on chilling requirements in some taxa (27, 28). Yet a
continental-scale detection of long-term pollen trends with a
formal attribution to anthropogenic climate change is lacking.
Here, we leverage a continental-scale dataset of long-term pollen

records from 60 North American cities spanning 1990–2018
(821 site-years of data; SI Appendix, Table S1), observational climate
datasets, and a suite of simulations from 22 Earth system models to
conduct a detection and attribution analysis on spatial and temporal
characteristics of aero-allergenic pollen trends. We ask: 1) What
are the long-term trends in common pollen metrics; i.e., can
trends be detected in various estimates of pollen season severity?
2) Do climate—temperature and precipitation variables—and/or

Significance

Human-caused climate change could impact respiratory health,
including asthma and allergies, through temperature-driven
increases in airborne pollen, but the long-term continental
pollen trends and role of climate change in pollen patterns are
not well-understood. We measure pollen trends across North
America from 1990 to 2018 and find increases in pollen con-
centrations and longer pollen seasons. We use an ensemble of
climate models to test the role of climate change and find that
it is the dominant driver of changes in pollen season length and
a significant contributor to increasing pollen concentrations.
Our results indicate that human-caused climate change has
already worsened North American pollen seasons, and climate-
driven pollen trends are likely to further exacerbate respiratory
health impacts in coming decades.

Author contributions: W.R.L.A. designed research; W.R.L.A. performed research; J.T.A.,
L.D.L.A., L.B., P.L.K., and L.Z. contributed new reagents/analytic tools; W.R.L.A. analyzed
data; and W.R.L.A., J.T.A., L.D.L.A., L.B., P.L.K., and L.Z. wrote the paper.

The authors declare no competing interest.

This article is a PNAS Direct Submission. J.A.P. is a guest editor invited by the
Editorial Board.

This open access article is distributed under Creative Commons Attribution License 4.0
(CC BY).
1To whom correspondence may be addressed. Email: Anderegg@utah.edu.

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.2013284118/-/DCSupplemental.

Published February 8, 2021.

PNAS 2021 Vol. 118 No. 7 e2013284118 https://doi.org/10.1073/pnas.2013284118 | 1 of 6

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
SU

ST
A
IN
A
BI
LI
TY

SC
IE
N
CE

https://orcid.org/0000-0001-6551-3331
https://orcid.org/0000-0001-7599-9750
https://orcid.org/0000-0002-5144-7254
https://orcid.org/0000-0002-6090-4920
https://orcid.org/0000-0003-2801-1003
https://orcid.org/0000-0002-6220-1620
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013284118/-/DCSupplemental
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2013284118&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:Anderegg@utah.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013284118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2013284118/-/DCSupplemental
https://doi.org/10.1073/pnas.2013284118
https://doi.org/10.1073/pnas.2013284118


increasing atmospheric CO2 concentrations play a prominent role
in driving interannual variation and trends in pollen metrics? 3)
How much of the observed temporal trends in pollen metrics can
be attributed to recent human-caused changes in climate?

Results and Discussion
We detected significant temporal trends in 7 of 10 common
pollen metrics, including daily pollen extremes, pollen season
start date and length, and seasonal and annual total pollen in-
tegrals, that revealed a substantial intensification of pollen sea-
sons in North America over the 1990–2018 period (SI Appendix,
Tables S2 and S3). We observed widespread temporal increases
of 20.9% and 21.5% in annual and spring (February–May) pollen
integrals, respectively, between 1990 and 2018 (P < 0.0001 for both
metrics; Fig. 1 and SI Appendix, Table S3). The largest and most
consistent increases were observed in Texas and the midwestern
United States (Fig. 1A). Among taxa, tree pollen showed the largest
increases in spring and annual integrals (SI Appendix, Fig. S1).
These continental trends were robust to sensitivity analyses around
the number of stations included (SI Appendix, Table S2) and the
longevity of station observations (SI Appendix, Fig. S2). We also
found significant advances of ∼20 d in pollen season start date and
lengthening of the pollen season by ∼8 d over the same period

(pstart = 0.01; plength = 0.0003; Fig. 1B). Advances in pollen season
start date and increases in spring pollen integrals strongly support a
phenological seasonal shift of pollen loads to earlier in the year (SI
Appendix, Table S3 and Fig. S3). Long-term increases in pollen
season length and annual pollen integrals indicate that exposure
times to allergenic pollen as well as amount of pollen have in-
creased significantly for North America in recent decades.
We conducted a model selection analysis to quantify the cli-

mate drivers of the four most important pollen metrics: annual
pollen integral, spring pollen integral, pollen season start date,
and pollen season length. We tested eight annual and seasonal
climate variables, including temperature, precipitation, frost
days, and atmospheric CO2 concentrations in a mixed-effects
model framework to account for city-to-city variation. We found
that mean annual temperature was the strongest predictor of these
four pollen metrics (P < 0.0001 for all metrics; Fig. 2 and SI Ap-
pendix, Table S4). The full mixed-effects models explained 51–90%
of the variance (i.e., conditional R2) in pollen metrics, and mean
annual temperature alone (i.e., marginal R2) explained 14–37% of
the variance in pollen metrics (SI Appendix, Figs. S4 and S5 and
Table S4). Notably, while atmospheric CO2 concentrations were
sometimes included in the group of the most parsimonious models,
the variation explained was often quite low (e.g., annual integral

A

B

Fig. 1. Detection of long-term worsening of pollen seasons in North America. Linear trend over individual stations of the annual pollen integrals (A) and
pollen season start date (B) across the 60 pollen stations in North America. Warm colors indicate increasing annual pollen integrals or earlier start dates and
circle size is proportional to the years of data at each station.
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R2
marginal = 0.01). This indicates that while an impact of CO2

concentrations can be detected, consistent with experimental
greenhouse studies, temperature appears to be a much stronger
driver of pollen variability in space and time at continental scales.
We used climate model output from 22 Earth system models

(14 models from the Coupled Model Intercomparison Project
[CMIP] Phase 5 and 8 models from CMIP Phase 6; SI Appendix,
Table S5) to calculate the signal of anthropogenic forcing of the
climate system on pollen integrals modeled as a function of mean
annual temperature. This approach enables attribution of how
much human forcing of the climate system has influenced trends
in pollen variables. We calculated the anthropogenic contribu-
tion in the full 1990–2018 record and the more recent 2003–2018
period where data were available from at least 40 pollen stations
across North America.
Anthropogenic climate change was a strong driver of trends in

pollen season metrics and a more modest driver of trends in
pollen integrals. Anthropogenic forcing contributed to an estimated
35–66% (interquartile range) of the full trend and 45–84% of the
recent trend in pollen season start date and 19–35% and 22–41%
of the trend in pollen season length over the 1990–2018 and
2003–2018 periods, respectively (Fig. 3). Human forcing con-
tributed 4–8% (mean2003–18 6.5%) of the trend in annual pollen
integral and 4–14% (mean2003–18 12%) of the long-term trend in
spring integral (Fig. 3). The anthropogenic contribution was
stronger in the more recent 2003–2018 period than in the full
1990–2018 period (Fig. 3), likely due both to an increasing signal
from anthropogenic forcing over time and to increased ability to

detect the signal in the more recent period due to more stations.
The anthropogenic signal appears to be more modest in annual
integrals compared to spring integrals due to a “seasonal com-
pensation” effect whereby some decreases in summer pollen
integrals may dampen the total annual signal (SI Appendix, Table
S3), likely indicative of shifting phenology of plant species to
earlier in the year in many regions (14, 29, 30).
Our results demonstrate that human forcing of the climate

system has substantially exacerbated North American pollen
seasons, particularly for pollen season duration and spring pollen
integrals. These findings can also inform ongoing efforts to include
prognostic pollen models within Earth systemmodels to make spatial
and temporal projections of pollen seasons under future climate
scenarios (31) and when combined with seasonal and near-term
climate forecasts may enable seasonal pollen forecasts, similar to
crop yield forecasts (32). We note that these anthropogenic
contributions are likely conservative estimates, given that the
influences of climate on pollen are complex, and this analysis
considers all taxa’s pollen combined and temperature-driven
interannual variability. Other potential climate and nonclimate
drivers could potentially play a role as well, including changes in
urban vegetation patterns, species composition, and biomass.
Allergies and asthma are responsible for substantial morbidity

burdens and associated medical costs in the United States (33).
Long-term data show significant increases in allergen sensitivities
(both prevalence and number of allergens) across all age groups
in the United States, with trends of increasing pollen sensitization in
childhood leading to increased adolescents and adults with allergic

A B

C D

Fig. 2. Temperature strongly influences pollen seasons and loads in North America. Predicted slope from linear mixed effects models across 60 North
American cities of annual average temperature against the total annual pollen integrals (A), pollen season start date (DOY) (B), total spring (February–May)
pollen integrals (C), and total pollen season length (days) (D). Points are individual years at individual stations. Thin lines are station-level trends. Point/line
colors are regions (SI Appendix, Fig. S5). Shaded areas indicate the 95% CI of the fixed effect.
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asthma (34). Pollen is an important trigger for many allergy and
asthma sufferers, and pollen concentrations are strongly linked to
both medication purchases and emergency hospital visits (5, 6), as
well as susceptibility to viral infections through exacerbating respi-
ratory inflammation and weakening immune responses (8). Thus,
while not analyzed directly here, we hypothesize that climate-driven
changes in spring and/or annual pollen integrals would have im-
portant implications for spatial and temporal patterns of allergy and
asthma prevalence and associated medical costs.
These data represent a continental-scale detection and attri-

bution of anthropogenic climate change on long-term pollen
trends. Detection and attribution of climate impacts is a rapidly
growing field (19), and detection and attribution of public health-
related climate impacts is an urgent research area (1, 18). While the
pollen-respiratory health linkages are complex, our results highlight
that longer pollen seasons and higher pollen concentrations are
being driven in part by human-driven temperature increases and
are increasing the risks of respiratory health problems in real time.
Thus, a clearly detectable and attributable fingerprint of human-
caused climate on North American pollen loads provides a powerful
example of how climate change is contributing to deleterious health
impacts through worsening pollen seasons.

Methods
Pollen Data and Temporal Trend Detection. We compiled pollen concentra-
tions collected by the American Academy of Allergy, Asthma, & Immunology
(AAAAI)–National Allergy Bureau’s (NAB) pollen count stations. Airborne
pollen is sampled over a 24-h period at NAB stations typically using a
Rotorod Sampler or Burkard spore trap and then counted by trained experts
(35). Although the aerial sampling methods differ in their collection effi-
ciency of different pollen sizes, the statistical methods we use throughout
the study (mixed effects models) include station-level random slopes and
intercepts to enable robust estimates of temporal trends and climate rela-
tionships across all stations. NAB stations disaggregate pollen concentrations
to varying degrees by taxa. We primarily analyzed all taxa combined (total
pollen) to be able to include the largest number of NAB stations in the
analysis but performed one sensitivity analysis examining broad categories
of tree, grass, and weed taxa for important seasonal and annual integrals (SI
Appendix, Fig. S1). NAB stations are considered to provide accurate and
rigorous estimates of pollen concentrations and have been used in previous
observational studies (12, 26).

We set several a priori criteria for pollen stations and years to be included
in the analysis. Because we aim to assess long-term trends, we only included

stations with five or more years of data. For each station, each year had to
contain at least 10 measurements, although most station-year combinations
contained extensive measurements within a year (mean and median mea-
surements/year: 168 and 163, translating to a measurement on average
every 2–3 d; SI Appendix, Fig. S6 and Table S1). No trend in the number of
measurements per station over time was detected (P = 0.77; SI Appendix,
Fig. S6). A total of 57 NAB stations met our criteria and we additionally
added 3 stations that met our criteria from a recently published observa-
tional study (12) that included data in Canada and Alaska, bringing our total
station count to 60. Next, we checked the records for each station for in-
ternal consistency by plotting individual stations over time. We examined
these plots to check if any stations had inconsistent jumps within or between
years or potential “missing value” issues where the main pollen season might
have been missed in a given year (e.g., daily concentration measurements start
in April when previous years show pollen spikes in March). We observed four
station-year combinations spread across two stations (stations 58 and 59; SI
Appendix, Table S1) with potential inconsistencies and removed those
station-years.

Then, for each station-year combination, we linearly interpolated 24-h
concentration measurements over the course of the year. This method
yielded daily concentrations for each station and year that most parsimo-
niously ingests all available 24-h concentration data and accommodates
stations with different measurement frequencies (e.g., every 2 d vs. every
5 d). We compared this method to a similar approach in a previous study that
used weekly aggregation (12) at three common cities and observed strong
agreement in the annual integral estimates (R2 = 0.94). We then calculated
10 pollen metrics from the daily time series. We calculated the maximum,
mean, and median of all daily concentration values in a year for a station. To
look at pollen season lengths, we set a threshold based on diagnostic plots
that the pollen season starts on the first day of the calendar year when daily
concentrations exceeded the 30th percentile of raw daily concentration
measurements for that station and ends when the last daily concentration
falls back below that threshold. We did a sensitivity analysis and observed
very similar patterns when varying the threshold from 20th to 40th per-
centile. From this threshold, we estimated the “start date,” “end date,” and
“season length” of the pollen season each year. Finally, we calculated sea-
sonal and annual pollen integrals by summing the daily concentrations of
February 1–May 31 for spring integrals, June 1–August 31 for summer in-
tegrals, September 1–November 30 for fall integrals, and January 1–December
31 for annual integrals. Daily data were not available to us for two of the
Canadian stations from the previous study (12) and for those two stations we
estimated spring pollen integrals using the strong relationship between spring
and annual integrals as in the Fairbanks, AK, station (R2 = 0.96).

We note as a caveat that NAB pollen measurements often employ a
convenience sampling strategy where measurements are collected for only
part of the year in many locations, based on a historical understanding of the

A B

Fig. 3. Anthropogenic climate change (ACC) has exacerbated pollen seasons. Boxplot of the percentage contribution of ACC to the long-term (1990–2018)
and more recent (2003–2018) trends of annual total pollen integrals (dark red) and spring total pollen integrals (red) (A) and pollen season start date (dark
green) and season length (light green) (B) across 60 pollen stations in North America. Data are plotted from 22 climate models (i.e., each model’s estimated
fractional contribution to the observed continental trend from the mixed effect model).
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pollen season at that location, and often only on certain days of the week.
This sampling approach increases the uncertainty in daily pollen concen-
tration metrics (e.g., mean or maximum concentrations) and pollen season
start and end dates. We conducted two sensitivity analyses to test the po-
tential for this seasonal sampling strategy to influence our primary results.
First, we flagged station-year combinations where the first pollen mea-
surement was above the 30th percentile, indicating the station might have
missed the true start of the pollen season. All of our central metrics’ tem-
poral trends were robust to excluding those data (P < 0.01 for all). Second,
we tested for systematic biases over time in the distribution of the initial
pollen concentration measurement or first five measurements of each station-
year combination, which would indicate a widespread pattern of missing the
start of the pollen season if the earlier part of each station’s record tended to
miss the start of the season more frequently. We found no significant differ-
ences between the first and second halves of stations’ records (P > 0.15, SI
Appendix, Fig. S7). These indicate that the seasonal sampling strategy is un-
likely to greatly bias our results on pollen season start dates.

To quantify temporal changes in pollen metrics across all stations
(i.e., detection in the detection and attribution framework), we used linear
mixed effects models of pollen metrics versus year. Mixed effects models are
particularly useful and appropriate for this analysis because they allow an
analysis of the full dataset (avoiding challenges of multiple hypothesis testing
from individual regressions/tests for each station) while incorporating a
random effect for station that allows for station-specific slope, intercept, and
variance terms. This random effect of station accounts for unobserved
station-to-station variation, for instance in sampling method or expert
counter differences, while rigorously estimating a global effect across all
stations. We used the same model structure determined in the climate-
pollen analysis (see below) of a random slope, intercept, and variance
across stations and log-transformed pollen variables (see Statistics). As sen-
sitivity analyses, we conducted this temporal trend analysis for annual integrals
including all station-years versus only those station-years with >5 or >40 sta-
tions collecting data. We also tested all station-years versus data only from
stations with 10+ years of data. We observed similar results with all data subsets
(SI Appendix, Table S2 and Fig. S2). For spatial visualization in Fig. 1, we plot the
linear slopes from ordinary least squares linear regression, but the rigorous
trend detection used in the detection and attribution analysis was based on the
mixed effect model estimation of temporal slope (fixed effect) across all stations.

We examined regional differences in pollen trends but did not observe
substantial differences across regions in the main pollen metrics (SI Appendix, Fig.
S8). Because statistical power fell rapidly at a regional level due to limited stations
within certain regions, we did not conduct further regional-level analyses.

Climate Data. We used gridded climate data from the University of East
Anglia’s Climatic Research Unit. We extracted monthly temperature, precipi-
tation, and frost days from the HadCRUT4 dataset at 0.5° spatial resolution (36)
and calculatedmonthly time-series of these variables from 1991 to 2018 over all
60 pollen stations. We used annual atmospheric CO2 concentration data from
the National Oceanic and Atmospheric Administration’s Mauna Loa Observa-
tory over that period (37). For each station and year, we calculated mean an-
nual temperature, total annual precipitation, mean spring (February–May)
temperature, total spring precipitation, total number of spring frost days as a
coarse estimate of chilling requirements, mean summer temperature, total
summer precipitation, and total number of summer frost days. This yielded
eight climate metrics in total, plus atmospheric CO2 concentrations, to be used
as predictor variables in the pollen-climate models below.

Pollen-Climate Models. To estimate the effect of climate on pollen concen-
trations and integrals, we conducted a model selection analysis using mixed
effects models on the seven pollen metrics with significant temporal trends
detected (SI Appendix, Table S3). Following recommended practice on mixed
effects model selection (38), we first included all nine predictor variables as
fixed effects and determined the model structure of random effects and if
transformations were needed. Log10 transformations were needed on all
variables, except for pollen season start date where a square-root transform
was best. Model structure of random effects was determined both by Akaike
Information Criterion (AIC) scores and quantile-quantile plots. The most parsi-
monious model by AIC and the model that yielded robust QQ plots was a
random slope and intercept, allowing for unequal variances across stations.

We then used an “all possible models” model selection technique
whereby all potential combinations of predictor variables (nine predictors)
are used as fixed effects in the model and ranked using AIC scores to gen-
erate the most parsimonious model or group of models. This approach tends
to be more robust than forward or backward model selection. The intercept-

only model (i.e., no climate predictors) was the best model for three pollen
metrics (maximum daily concentration, mean daily concentration, summer
total integral) and we explored those metrics no further. This led to the four
prominent pollen metrics—spring integral, annual integral, pollen season
start date, and pollen season length—upon which we focused all subsequent
analyses. Using the table of AIC-ranked models, we further examined the
marginal and conditional R2 values of all models within AIC values within 3
from the top model (SI Appendix, Table S4). AIC values of 3 or more are
generally considered to be strong evidence for favoring one model over
another and, thus, models within 3 AIC are all potentially plausible (39).
Within these top models, we chose the model with the highest marginal R2

value, indicating that the fixed effects can explain the highest amount of
variance in the model. For all four pollen metrics, this model included only
mean annual temperature (SI Appendix, Table S4).

Earth System Models and Detection-Attribution Analysis. We downloaded
monthly surface air temperature (variable “tas”) climate model output from
14 Earth system models in the CMIP5 and 8 Earth system models in the
CMIP6 databases (40, 41) (SI Appendix, Table S5). For each model, we
downloaded the Historical (all forcings) simulation and representative con-
centration pathway (RCP) 8.5 (SSP5–8.5 in CMIP6) for the first ensemble
member. One model in CMIP6 (BCC-CSM2) did not have SSP5–8.5 simulations
uploaded when we downloaded data and, thus, we used the similar SSP3–7.0
scenario simulation for that model. While there is much uncertainty regarding
projected pathways, the pathways chosen have little bearing on the contem-
porary signal of anthropogenic forcing that we focus on. We then regridded all
climate models to a common 1° × 1° resolution, calculated the mean annual
temperature for each year, and following common detection and attribution
practices, subtracted the 1850–1880 climatology mean annual temperature of
each grid cell to yield the temperature anomalies. A sensitivity analysis using a
1960–1990 baseline yielded very similar results.

Following approaches used in previous studies (20, 42), we calculated the
anthropogenic climate change (ACC) signal using a 50-y moving average of
the temperature anomaly in each grid cell of each model, combining the
historical and RCP simulation, to remove high frequency variability. Because
the signal across CMIP5 and CMIP6 models were statistically indistinguish-
able at our station sites, we used simulations from both sets of models in the
analysis. We consider the observed temperature time-series from CRU to be
the full forcing (with ACC) and subtracted the ACC signal from each of the
22 climate models from the observed temperature time-series to yield the
no-ACC forcing scenario (i.e., a counter factual of temperature time-series at
a site in a world without ACC-forced climate change; e.g., ref. 42).

To calculate the contribution of ACC to the observed pollen trends, we
used the “best”mixed effects model selected above to predict each of the four
pollen metrics as a function of temperature for each station and year. We then
quantified the ACC contribution, estimated by climate model i, as the
1990–2018 or 2003–2018 trend predicted from with-ACC forced temperature
(i.e., observed temperature; mwACC, i) minus the trend predicted from no-ACC
forced temperature (mnoACC, i), divided by the total observed trend (mobs):

Percent ACC  contributioni = 100 ×mwACC,i −mnoACC,i

mobs
.

We note that this approach and calculation is likely quite conservative and
underestimates the full effects of ACC on pollen for several reasons. The
potential strength of the ACC contribution is largely constrained by the
predictive ability of the pollen-temperature model. Sources of uncertainty
and imperfect predictive ability in that model, including temporal aggre-
gation of climate and pollen data and the taxonomic aggregation of pollen
data, will tend to “flatten” (i.e., decrease sensitivity and slope) the pollen-
temperature predictions and decrease the ACC contribution. More compli-
cated pollen-climate models, such as daily or weekly climate data, alternate
climate variables like growing degree days, or modeling major pollen taxa as
a function of different climate drivers, could increase the predictive ability of
the pollen-climate models and, thus, the ACC contribution.

We also note that uncertainties and caveats remain, including potential
nonclimate confounding factors, but our methods should largely minimize
the impact of these factors. Because the spatial footprint of pollen stations is
not well-understood and is likely temporally variable depending on weather
conditions, nonclimate drivers could influence pollen trends but cannot be
estimated currently. Long-term change in urban or peri-urban vegetation
biomass or species composition due to land-use change or tree growth
might influence pollen patterns. We tested for this using MODIS satellite
data (MOD13A3-006) of the annual average EVI and NIRv 1-km resolution
vegetation metrics over the 2000–2018 window and found no significant
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trends at our NAB stations, nor were vegetation metric trends significantly
correlated with pollen trends across sites (P = 0.15; SI Appendix, Fig. S9). In
addition, our ACC contribution analysis is based on interannual variation at
individual sites and how that variation is related to climate, which would not
be greatly affected by nonclimate trends. Furthermore, a positive secular
nonclimate trend in pollen that is unrelated to temperature would act to
decrease our estimated percent ACC contribution by increasing the de-
nominator in the equation above. Thus, while these are certainly caveats,
our analysis should be largely robust to these potential confounding factors
and is likely a conservative estimate.

Statistics. We ensured that assumptions of normality and homogeneity of
variances were met with Q-Q plots via the qqPlot diagnostic in the “car” R
package (43, 44). Mixed effects models were conducted using the lme
function in the “nlme” R package. Model selection was undertaken using
the dredge function in the “MUMIn” R package. Climate observational data
and model analysis were conducted using the “RNetCDF” R package, and
maps were made using the “rworldmap” package. All analyses were con-
ducted in the R statistical software (45).

Data Availability. Data access can be requested from the National Allergy
Bureau: https://www.aaaai.org/Aaaai/media/MediaLibrary/PDF%20Documents/
NAB/NAB-Data-Release-Guidelines-Final-7-24-13.pdf.
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