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Citations are important building blocks for status and success in
science. We used a linked dataset of more than 4 million authors
and 26 million scientific papers to quantify trends in cumulative
citation inequality and concentration at the author level. Our
analysis, which spans 15 y and 118 scientific disciplines, suggests
that a small stratum of elite scientists accrues increasing citation
shares and that citation inequality is on the rise across the natural
sciences, medical sciences, and agricultural sciences. The rise in
citation concentration has coincided with a general inclination
toward more collaboration. While increasing collaboration and
full-count publication rates go hand in hand for the top 1% most
cited, ordinary scientists are engaging in more and larger collabo-
rations over time, but publishing slightly less. Moreover, fraction-
alized publication rates are generally on the decline, but the top
1% most cited have seen larger increases in coauthored papers
and smaller relative decreases in fractional-count publication rates
than scientists in the lower percentiles of the citation distribution.
Taken together, these trends have enabled the top 1% to extend
its share of fractional- and full-count publications and citations.
Further analysis shows that top-cited scientists increasingly reside
in high-ranking universities in western Europe and Australasia,
while the United States has seen a slight decline in elite concen-
tration. Our findings align with recent evidence suggesting intensi-
fied international competition and widening author-level disparities
in science.
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Science is a highly stratified social system. The distribution of
scientific rewards is remarkably uneven, and a relatively small

stratum of elite scientists enjoys exceptional privileges in terms
of funding, research facilities, professional reputation, and in-
fluence (1–5). The so-called Matthew effect, well-documented in
science (6–15), implies that accomplished scientists receive more
rewards than their research alone merits, and recent evidence
indicates a widening gap between the “haves” and the “have
nots” of science in terms of salary levels (5), research funding
(16), and accumulation of scientific awards (17).
Inequality may foster creative competition in the science sys-

tem (18, 19). However, it can also lead to a dense concentration
of resources with diminishing returns on investment (intellectual
and fiscal) (16, 20), and to monopolies in the marketplace of
ideas (21, 22).
The social processes that sort scientists into more or less

prestigious strata are complex and multifaceted (1, 10, 23) and
may be changing in response to external pressures such as global-
ization, the advent of new information technologies, and shifts in
university governance models (3). However, a few common char-
acteristics have always separated elite scientists from the rest of us,
most notably their scientific output and visibility. Publications and
citations are critical building blocks for status and success in science
(23, 24), and the scientific elite accounts for a large share of what is
published and cited.
In 1926, Lotka observed that the publication frequencies of

chemists followed an inverse-square distribution, where the
number of authors publishing N papers would be ∼1/N2 of the
number of authors publishing one paper (25). Building on Lotka’s
work, de Solla Price later went on to suggest that 50%of all publications

were produced by amere 6% of all scientists (26). More recent research
demonstrates even larger disparities in citation distributions at
the author level (2, 6, 11, 27, 28), but variations in citation
concentration across disciplinary, institutional, and national
boundaries remain uncertain. Further, it is unclear whether the
observed inequalities in citation shares have intensified over time.
Advances in author-disambiguation methods (29) allow us to

investigate these questions on a global scale. We used a linked
dataset of 4,042,612 authors and 25,986,133 articles to examine
temporal trends in the concentration of citations at the author
level, and differences in the degree of concentration across
fields, countries, and institutions.
Publication and citation data were retrieved from Clarivate’s

Web of Science (WoS). We limited our focus to disciplines
within the medical and health sciences, natural sciences, and
agricultural sciences, where journal publication is the primary
form of scholarly communication (Materials and Methods). We
used a disambiguation algorithm to create publication profiles
for all authors with five or more publication entries in WoS. The
disambiguated dataset allowed us to measure developments in
citation concentration from 2000 onward.
Per-author citation impact was measured using field-normalized

citation scores (ncs). ncs is calculated by dividing the raw per-paper
citation scores with the average citation counts of comparable pa-
pers published in the same year and subfield. ncs was rescaled to
account for citation inflation, represented here as nics. We report
per-author cumulative citation impact based on a full and fractional
counting. The full counting gives the sum of nics for all papers
published by a scientist. The fractional counting also gives the sum
of citations accrued by a scientist in all her papers, but divides the
per-article citation scores with the number of contributors per pa-
per. We use citation density plots and Gini coefficients to gauge
trends in citation imbalance and concentration.

Significance

By analyzing a global sample of 4 million authors and 26 mil-
lion scientific papers, this study finds that the top 1% most-
cited scientists have increased their cumulative citation shares
from 14 to 21% between 2000 and 2015 and that the Gini co-
efficient for citation imbalance has risen from 0.65 to 0.70. The
growing citation concentration should be understood in the
context of diverging trends in publication and collaboration
activities for the top 1% compared to the “ordinary scientist.”
Our study raises intriguing questions about how rising in-
equalities will shape the evolution of science.
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Results
Our analyses suggest that the concentration of citations within a
small stratum of elite authors has increased during the past two
decades. Fig. 1A shows the general trend since 2000 of the share
of total citations accrued by the top 1% most cited authors
(i.e., the “citation elite”). The steep rise in full-count citation
concentration from 2011 and onward coincides with a sharp in-
crease in collaboration. This trend is likely driven by the launch
of large-scale collaborative experiments in physics and astron-
omy, such as the Large Hadron Collider, generating “mega-
papers” with abnormally high citation rates and coauthor
numbers. Fig. 1B and C juxtapose the trends in citation con-
centration in physics and astronomy with all other disciplines and
confirm that the steep incline since 2011 is specific to physics and
astronomy. Moreover, while we observe diverging trends for full-
count and fractionalized citation concentration in physics and
astronomy, this is not the case for the remaining disciplines.
In what follows, we therefore restrict the focus to the health

sciences, agricultural sciences, and natural sciences, excluding
physics and astronomy. As shown in Fig. 1C, citation concen-
tration has grown incrementally in these fields. From 2000 to
2015, the top 1% extended its citation share from 14.7 to 19.6%
in fractional counts (relative increase = 33%) and from 14.1 to
21% in full counts (relative increase = 49%). This concentration
trend is not sensitive to the general growth in publishing scien-
tists or the expanding number journals in WoS. Complementary
analyses with a fixed number of authors and a fixed set of jour-
nals across years produce near-identical results (SI Appendix,
Fig. S1).
The growing citation shares accrued by the top 1% should be

understood in the context of diverging trends in publication rates
and collaboration activities. Fig. 2A plots the trend since 2000 in
the citation elite’s share of all published papers and shows an
increase from 5 to 12% in fractionalized output and from 4 to
11% in full-count output. Fig. 2B displays developments in the
mean, annual publication rates per author for the 50th, 75th, and
99th percentile of most-cited scientists and indicates an upward
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Fig. 1. The rise in citation concentration for the 1% most cited as total, inflation-adjusted citations (nics) cumulated per year from 2000 to 2015. Solid dots
show the proportion based on full-count citation rates per article. The hollow dots show the fractional-count citation proportion in which the score of each
article is divided by the number of authors. (A) Proportion for all authors in the set. (B) Sample restricted to authors in physics and astronomy. (C) All authors
in A, excluding authors in physics and astronomy.
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trend for the 99th percentile (i.e., the top 1%) in full counts,
from 10.1 to 12.4, and a downward trend in fractional counts from
3.1 to 2.1. In comparison, both full-count and fractional-count
outputs have declined for authors in the 50th and 75th percentile,
and this decline may help explain why the citation elite has in-
creased its total share of fractionalized publications (Fig. 2A), while
decreasing its annual rate of fractional-count publications. In rela-
tive terms, the fractional-count publication output has decreased
less for the top 1% (relative change = −31%) than for the ordinary
scientist (50th percentile, relative decrease = −67%; 75th percen-
tile, relative decrease = −64%) (Fig. 2B).
As shown in Fig. 2C, the rise in citation concentration does not

reflect an average increase in the elite’s impact per paper. From
2000 to 2015, the top 1% decreased its average, fractional-count
citation rate per paper from 3.10 to 1.79, while the average, full-
count citation rate started and ended around 43 (Fig. 2C).

A closer look at trends in coauthorships shows that today’s
scientists are engaged in more collaborations than in the past and
have increased their average and total number of collaborators
per year. Fig. 2D indicates a slight increase in the proportion of
papers with at least one collaborator for the 75th and 99th
percentile, and a more striking upsurge for the 50th percentile.
Compared to the 50th and 75th percentile, the citation elite has
notably higher total (mean) rates of annual collaborators, and
this number has escalated from 35 in 2000 to 111 in 2015
(Fig. 2E). However, the mean and median numbers of collabo-
rators per paper remain lower for the citation elite than for the
50th and 75th percentiles of most-cited authors throughout the
observation period (Fig. 2F).
Taken together, these trends suggest that the citation elite has

extended its shares of all fractional-count publications and citations
without increasing its general productivity level (in fractional
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Fig. 2. Publication, citation, and collaboration trends. (A) Changes over time in the share of total papers accrued by the top 1% (99th percentile), 75th, and
50th percentile from 2000 to 2015. (B) Developments in average publication output per year (per author) for the top 99th, 75th, and 50th percentile based on
a full and fractional counting of papers. (C) Mean citation rate per paper (per year) for the 99th percentile. (D) Mean proportion of papers with at least one
coauthor for the 99th, 75th, and 50th percentile. (E) Average number of coauthors per year for the 99th, 75th, and 50th percentile. (F) Annual mean and
median number of coauthors per paper for authors in the three percentile bins. In all panels, the black lines and dots show the 99th percentile, red shows the
75th percentile, and blue shows the 50th percentile. Solid dots show the scores by full count and hollow dots show fractional counts. Solid squares show the
median and hollow squares show the mean. B, C, and F are split into two facets with common x axes and individual y axes.
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counts) or impact per paper. While the number of coauthors
per paper has generally gone up, the fractional-publication
output per author (per year) has decreased. However, the citation
elite has seen smaller relative decreases in fractionalized productivity
than authors in lower percentiles of the citation distribution. More-
over, while increasing collaboration and full-count publication rates
go hand in hand for the top 1%, scientists in the 50th and 75th
percentiles are engaging in more and larger (average) collaborations
but publishing slightly less over time. Results for physics and as-
tronomy are reported in SI Appendix, Fig. S2.
Fig. 3A plots the distribution of cumulative citation shares (full

count) by percentile ranks of authors, stratified by 5-y intervals,
and for instance shows that the 0.1% most-cited authors earned
larger citation shares than the 38% least cited in the period
2000–2004 (black line) and the 47% least cited in the period
2011–2014 (teal line). Gini coefficients for the citation imbalance
have increased from 0.65 to 0.70 in the period 2000–2015
(Fig. 3B).
The generality of the trend toward citation concentration

across fields and disciplinary domains is reported in Fig. 4 and
Table 1. Plots of citation density curves and annual Gini coeffi-
cients show that citation inequality and concentration are on the
rise in all three Organisation for Economic Co-operation and
Development (OECD) major fields (Fig. 4 A and B). Table 1
juxtaposes the periods 2000–2004 and 2011–2015 and shows that
the top 1% most cited per discipline has garnered >10% relative
increases in citation shares in 58% of agricultural-science sub-
fields, 58% of medical and health-science subfields, and 27%
percent of natural-science subfields. Some of the highest in-
creases in citation concentration are observed in clinical medi-
cine (28.9%) and the health sciences (25%), and the largest
decrease in computer and information sciences (−7%).
Further analysis shows that authors in the citation elite in-

creasingly reside in western Europe and Australasia, while the
United States has decreased its concentration of top-cited scientists
(Fig. 5). Among the 10 countries with the highest concentration of

citation elites, all, except for the United States, have extended their
concentration of authors in the top 1% (Fig. 5A). The United
States had the highest elite concentration between 2000 and 2004,
but has since been surpassed by The Netherlands, England, Swit-
zerland, and Belgium (Fig. 5A). Fig. 5B displays developments for
the 10 countries with the largest numerical representation of cita-
tion elites, and shows that elite concentration has also declined in
China and Japan, while Italy, Germany, and France have seen slight
increases in elite concentration. Seven of the 10 countries with the
largest growth in elite concentration are located in Europe, but
South Africa, Australia, and New Zealand have also seen notable
inclines (Fig. 5C). The countries exhibiting the smallest growth and
largest declines are mostly large economies, such as the United
States, China, India, Russia, and Brazil. As shown in SI Appendix,
Fig. S3, country-level imbalances in citation accumulation (mea-
sured by the Gini coefficient) have remained relatively stable since
2000, although concentration has decreased in the highest per-
centiles of the citation distribution.
Fig. 6 depicts similar trends at the university level. While top-

ranking universities in the United States and United Kingdom
still hold the highest proportions (Fig. 6A) and numbers (Fig.
6B) of scientists in the top 1%, some of them, including Harvard
University, Stanford University, Massachusetts Institutes of
Technology, and University of California San Francisco have de-
creased their elite concentration (Fig. 6D). Meanwhile, European
and Australian Universities such as Leiden University, Kings Col-
lege London, University of Amsterdam, University of Melbourne,
and University of Sydney have increased their concentration of
elites (Fig. 6C). Institution-level citation imbalances (measured by
the Gini coefficient) have remained stable over three consecutive
periods of 5 y, while citation concentration has slightly increased at
the upper end of the citation distribution (SI Appendix, Fig. S3).

Discussion
Existing evidence on trends in citation inequality is mixed. Some
studies indicate a rise in citation concentration at the article level
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(30–32), while others suggest a decline (33–35). These inconsis-
tencies may largely result from variations in the examined time
periods, data, disciplinary focus, and research design (including
attention––or lack thereof––to citation inflation, database effects,
and field normalization). This study adds to the literature by focusing
on developments in citation concentration at the author level, which,
according to our results, have been on the rise.
In a study of the publication trajectories of elite scientists within a

select set of 23 high-impact economics and multidisciplinary-science
journals, Petersen and Penner (11) found decreasing citation in-
equalities at the author level, with Gini coefficients declining from
0.83 (economics) and 0.74 (multidisciplinary) in the 1970s, to 0.74
(economics) and 0.63 (multidisciplinary) in the 1990s. Our analysis,
which draws on a larger and more diverse sample of authors and
journals, suggests a different development. From 2000 to 2015, the
share of total citations accrued by the top 1% most-cited scientists
increased from 14 to 21% in full counts and the annual Gini co-
efficient for citation imbalance rose from 0.65 to 0.70. These main
results account for citation inflation and do not appear to be driven
by the general growth in publishing scientists nor the expanding list
of journals covered by WoS.
Our findings align with prior work suggesting increasing team

sizes and declining fractionalized productivity rates (36, 37). We
add to this work by showing diverging trends for the top 1% most
cited compared to the ordinary scientist, with top-cited researchers

seeing larger increases in coauthored papers and smaller relative
declines in fractional-count publication rates. Moreover, while in-
creasing collaboration and full-count publication rates go hand in
hand for the top 1%, the productivity levels (in full counts) for
authors in lower percentiles of the citation distribution have slightly
declined. Taken together, these trends have allowed the top 1%
percent to extend its share of both fractional- and full-count cita-
tions. Note here that team-based research is known to accrue
higher citation rates than solo-authored work, which may partially
explain our findings (36, 38, 39).
The rise in citation concentration should be understood in the

context of changing dynamics in the career trajectories of science,
where scientists increasingly enter the enterprise to support
research projects led by others, without embarking on a long-
term, publication-active research career of their own. Indeed,
recent research documents a rise in the global proportion of
“transient scientists” with short careers in academic science
and low publication outputs (40).
The observed differences in inequality trends across subfields

may reflect underlying variations in the magnitude and concen-
tration of funding streams, but may also be attributed to dissimi-
larities in citation and publication practices (including publication
frequencies, author-group sizes, paper lengths, the number of ref-
erences per paper, and the cited half-life of published papers) (34).
Future research should examine how these and other variations in
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Fig. 4. Citation concentration and inequality by field. (A) Citation density (full counting) by fraction of authors, stratified by 5-y intervals for agricultural
sciences, medical and health sciences, and natural sciences. The x axes are on a logarithmic scale. (B) Field-specific Gini coefficients of citation density (full
count) by percentile rank, per year from 2000 to 2015.
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the social, material, and intellectual organization of science contrib-
ute to explain the diverging patterns of inequality across subfields.
Our finding that citation elites increasingly reside in western

Europe and Australasia, while the United States has slightly
decreased its concentration of top-cited scientists, aligns with
recent research suggesting changing power relations in global
science (41–43). The intensified international competition is also
reflected in the growing concentration of elite scientists within
reputed research institutions outside of North America, while
world-leading universities in the United States have decreased
their concentration of top-cited scientists. Despite these devel-
opments, top schools in the United States and United Kingdom
still employ the largest numbers and concentrations of elite re-
searchers, and the stark inequalities in institution-level citation
distributions observed in this study (SI Appendix, Fig. S3) reflect
the continuous dominance of elite universities in the global
production of scientific knowledge (44).
There are certain caveats and limitations to the conclusions

that can be drawn from this study. First, our author-disambiguation
method introduces some level of uncertainty, especially for scien-
tists with low publication outputs. To reduce this uncertainty, we
have limited our focus to authors with>4WoS publications (Materials
and Methods). However, because most scientists with a publication
output ≤4 have low cumulative citation rates, our results should be
interpreted as conservative estimates of the actual citation disparities
in a global science system, where short-term, academic research ca-
reers are becoming increasingly prevalent (41).
Second, outstanding citation impact is not in itself a sufficient

condition for elite membership in the scientific community,
which is also determined by a scientist’s access to resources and
research facilities, the strength of her social ties to other elite
members, and her influence over the activities of others (1, 18).
In the future, more detailed studies should examine how these
factors interact to determine status and success across institu-
tional contexts, disciplines, and countries.
Third, our dataset likely includes spuriously highly cited authors

whose impact has been generated through extreme self-citations,
citation farms, and ghost authorships (45). While these authors are
indeed a part of the citation elite, their characteristics may differ
considerably from those of the typical top-cited scientist.
Fourth, because our analysis focuses on per-author cumulative

citation rates, citation-elite membership is strongly correlated
with age. Future research should add to our work by examining
variations in the degree of citation concentration within and

across age cohorts. Another promising avenue for future research
concerns developments in the authorship positions of elite scientists
that are working in areas where first and last authorships are
specifically important.
Fifth, while our study suggests that citation concentration

should be understood in the context of diverging trends in
publication and collaboration activities for the elite compared to
the ordinary scientist, it does not offer any evidence on the un-
derlying drivers of this development. A promising avenue for
future research would be to explore how external factors such as
the fusion of fields, the emergence of interdisciplinary research,
the increasing availability of big data, improved measurement
and computational techniques, and the requirement of huge
teams for large-scale and long-term experiments, may have
shaped the observed trend toward citation concentration at the
author level.
In science, like in other social systems, hierarchies of status

tend to be self-reinforcing. Our finding that a general decline in
productivity rates and a “collaborative advantage” enjoyed by the
most-cited scientists have coincided with increasing citation in-
equality, aligns with evidence suggesting accelerating trends toward
funding concentration at the individual level (16, 20). Indeed, these
processes may be closely interlinked. Highly cited authors have
better odds of winning grants, allowing them to expand their re-
search laboratories and collaborative networks, ultimately leading
to increased (full-count) publication and citation rates (46). In an
evaluative system, where funding and hiring decisions are heavily
informed by bibliometric indices, we may expect to see further in-
creases in both funding, publication and citation concentration.
Our results raise intriguing questions about how rising in-

equalities will shape the evolution of science. Is the widening gulf
between the haves and the have nots inhibiting the creative
competition between divergent ideas, paradigms, theories, and
approaches and narrowing the opportunities for scientific
fields to develop in new directions (21)? Or is the concen-
tration trend a symptom of an overcrowded intellectual mar-
ket, where the number of scientists could be sharply reduced
without slowing the rate of advance (2)? Answers to these
questions could help improve the science system’s capacity to
efficiently use its global talent pool.

Materials and Methods
Publication metadata for this study were retrieved from the Web of Science:
Science Citation Index-Expanded, Social Science Citation Index and Arts &

Table 1. Trends in citation concentration by field

OECD major field Minor field

WoS categories

N Gnics (Δ %) Gn (Δ %) P

Agricultural sciences Agriculture, forestry, fisheries 6 4 (13.1) 1 (4.1) 470,781
Animal and dairy science 1 0 (6.4) 1 (18.7) 180,786
Other agricultural science 4 3 (10.9) 4 (12.1) 729,668

Veterinary science 1 0 (8.9) 0 (9.5) 382,829
Medical and health sciences Basic medical research 10 4 (7.7) 4 (6.1) 3,226,140

Clinical medicine 32 24 (28.9) 19 (12.4) 9,591,374
Health sciences 17 8 (25.0) 6 (9.0) 1,557,064

Natural sciences Biological sciences 21 5 (12.5) 9 (0.8) 4,636,995
Chemical sciences 9 2 (1.9) 4 (6.9) 3,650,044

Computer and information sciences 8 2 (−7.0) 1 (−0.2) 15,087
Earth and related environmental sciences 10 3 (12.4) 6 (9.9) 1,544,402

Mathematics 7 0 (1.3) 4 (23.7) 361,530
Other natural sciences 1 1 (40.8) 0 (−9.8) 674,780

The table reports the number of WoS subject categories (N) grouped under each OECD major and minor field of science. Gnics is the number of WoS subject
categories with >10% increase in citation concentration for the top 1% most-cited authors in the period 2011–2015 compared to the period 2000–2004. The
percentages in parentheses report the total, weighted change in citation concentration. Gn is the corresponding change in publication concentration, using
full count, for the 1% most-cited authors. P is the total number of papers written by authors classified under each OECD minor field.
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Humanities Citation Index produced by Clarivate Analytics (henceforth
WoS). The analysis relies on the structured database access to these data
provided through the WoS installation at Center for Science and Technology
Studies, Leiden University. The data are essentially the same as in WoS, but
with some improvements with respect to author disambiguation and cleaning
of missing and faulty reference data. The analysis relies on two further

additions to the data available through this installation: an algorithmic dis-
ambiguation of author names (29) and a highly detailed field-classification
system.

A high-precision approach to name-based author disambiguation is essential
for any analysis of researcher-specific impact and productivity. Author disam-
biguation can be challenging for two reasons: 1) individual authors may use
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Fig. 5. Country-level developments in the representation and concentration of elite researchers (i.e., the top 1% most cited) from 2000 to 2014, by 5-y
increments. (A) Changes in elite concentration within the 10 countries with the highest proportion of top-cited scientists overall. (B) Changes in elite con-
centration within the 10 countries with the highest number of top-cited scientists overall. (C) Developments in elite concentration within the 10 countries
with the largest growth in proportions of elite scientists. (D) Developments in elite concentration within the 10 countries with the smallest growth or largest
declines in proportions of elite scientists. Trends are plotted by 5-y increments in all panels (2000–2004, 2005–2009, 2010–2014). The arrows indicate the
direction of the development over time. Only countries with at least 2,000 disambiguated authors and at least 30 elite researchers are included in the figure.
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more than one version of their name in the author byline (for instance, the
same author may decide to include her middle name in one publication, while
leaving it out in another, or she may be inconsistent in her use of hyphenated
family names across publications); 2) many authors have identical author
names. Caron and van Eck (29) have approached this problem computationally

by clustering papers based on names, affiliations, emails, coauthors, grant
numbers, subject categories, journals, self-citations, bibliographic coupling, and
cocitations. This method has been used to disambiguate all authors in the
entire WoS database. The disambiguation is not perfect. Caron and van Eck
report 95% precision and 90% recall. In a recent study, Tekles and Bornmann
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Fig. 6. University-level developments in the representation and concentration of elite researchers (i.e., the top 1% most cited) from 2000 to 2014. (A)
Changes in elite concentration within the 10 institutions with the highest proportion of top-cited scientists overall. (B) Developments in elite concentration
within the 10 institutions with the highest number of top-cited scientists overall. (C) Changes in elite concentration within the 10 institutions with the largest
growth in proportions of elite scientists. (D) Changes in elite concentration within the 10 institutions with the largest decline in proportions of elite scientists.
Trends are plotted by 5-y increments in all panels (2000–2004, 2005–2009, 2010–2014). The arrows indicate the direction of the development over time. Only
institutions with at least 2,000 disambiguated authors and at least 30 elite researchers are included in the figure. Hospitals and medical centers have been
omitted from the visualization.
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found that Caron’s and Eck’s method was superior to four other unsupervised
disambiguation approaches (47).

To our knowledge, Caron and van Eck’s method represents the
state-of-the-art approach to author disambiguation in large-scale biblio-
metric analysis. The method’s main source of error stems from authors with
very few publications. For this reason, we restrict our analysis to authors
with at least five publications listed in WoS. This gives us a starting point of
4,995,039 disambiguated author names. For these, we identify the most
common WoS subject category that they have published in. These subject
categories are tied to the journals listed in WoS. When journals are assigned
to more than one category, we count the reciprocal of the number of cat-
egories. The journal subject categories can be further tied to the OECD fields
of science classification (48). Clarivate Analytics offers a conversion table
between the WoS subject categories and the OECD fields. We use this con-
version table to identify and remove all authors with a majority of publi-
cations published within the humanities, social sciences, and engineering
and technology, leaving only those from medicine and health sciences,
natural sciences, and agricultural sciences. We removed 825,378 authors by
using these exclusion criteria. An additional 125,690 papers were removed
because their subfield had a coverage of less than 66.7% of their references
in WoS. This number was found by averaging the ratio of covered references
and total references in a given subfield. This leaves 4,042,612 authors, which
we consider to be the relevant population of all researchers in the three
selected main fields.

Linked to these authors are 25,986,133 distinct papers, limited to full
research papers and reviews published in journals. Letters, editorials, com-
ments, and other document types are not included here. The papers are
linked to the authors through 92,856,807 authorships, meaning that the
average paper has 3.57 authors and the average author has published
22.97 papers.

Author-disambiguation methods are known to perform less well for East
Asian names. Errors may occur, where bundles of authors with similar names
are merged. As a robustness check we juxtaposed developments in the av-
erage number of papers per author for select countries (China, Denmark,
Germany, Japan, South Korea, Taiwan, and the United States) using frac-
tional paper counts. As displayed in SI Appendix, Fig. S4 the average paper
rates for Chinese and Taiwanese authors remain relatively stable over time
at levels comparable to authors in Denmark, Germany, and the United
States. If the algorithm were systematically more likely to bundle East Asian
authors with similar names, we would expect to see higher (and increasing)
mean number of papers per author in China and Taiwan compared to the
reference countries, but this is not the case.

Another possible bias concerns variations in the disambiguation method’s
precision across the observed time period. If the algorithm’s precision varies
for early authors in our dataset compared to more recent ones, this may
indirectly increase the observed trend toward citation concentration. While
we cannot categorically exclude the possibility of such bias, we expect its
influence to be marginal for the following reasons: 1) we have excluded all
authors with ≤4 WoS publications, hereby removing the less-reliable author
profiles and (expectedly) improving the (average) precision for the remain-
ing set; 2) extant research suggests a 95% precision of the algorithm (47),
and since authors with few publications make up a large proportion of the
full-author sample, this considerably restricts the possible variation that one
would expect to see across strata (e.g., in the precision for the elite com-
pared to other strata, or between younger and older researchers).

Citation Inflation and Field Normalization. WoS is growing annually, both due
to a general increase in the number of published articles and to the inclusion

of new journals in the database. SI Appendix, Fig. S5 displays the growth in N
papers and references for the entire WoS, and for the specific subset
included in our study.

Given the increase in the production of papers and references over time,
the general value of a citation will depend on when it was produced. In the
scientometric literature, this phenomenon is known as citation inflation (49).
While field normalization and especially normalization by publication year
should remove a large part of the temporal effect on a citation’s value (e.g.,
papers published in 2000 are weighted according to other papers published
only in the same year), it is unclear if an additional element of inflation may
be at play for certain types of papers. Therefore, we compute a field-
normalized, and inflation-corrected citation score, nics. First, we define the
inflated citation value of any citing reference in year y as ρ(y), the reciprocal
of the sum of references, r, given in the same year:

ρ(y) = (∑ 
r(y))−1.

Thus, any reference given is weighted by the sum of all references given the
same year, meaning that newer references are worth less than older ones, as
there are more references in play. The inflation-corrected citation score, ics,
then becomes the sum of all inflated citation values of articles, j, citing it:

ics = ∑
n

j=1
ρj .

This is by definition a very small number, as every ρ is in the magnitude 10−7.
However, we also normalize these scores by field. To do this, we first cal-
culate the mean ics for all fields, f, for all years y, individually. We denote
this simple arithmetic mean asmics, in line with the mean citation score,mcs,
used by Waltman and van Eck (50), defining the field-normalization tech-
nique used here. The nics of a paper published in field f and year y is then

nics(f , y) = ics(f , y)=mics(f , y).

This corresponds to the state-of-the art approach to field normalization (50),
ncs, but uses inflation-corrected citations instead of raw citations in all
places. When using this normalization, all values are rescaled to be centered
around 1, with a lower bound at 0 (uncited) but no upper bound.

We use a field delineation based on the bibliographic properties of articles,
as proposed by ref. 50. The same fields are used in the Leiden ranking (51).
The algorithm generates a little more than 4,000 clusters of articles with
similar reference and citation patterns.

Inequality Measures. We use the Gini coefficient to measure inequality in
citation distributions. The coefficient is calculated with the ineq package in R
(52). Since we rely on inflation-adjusted, field-normalized citation indices,
our use of Gini coefficients should be robust to “marginal biases” resulting
from increases in the total number of authors and articles (53). SI Appendix,
Fig. S6 replicates the plot of Gini coefficients presented in Fig. 3B with a
fixed number of authors across years and produce near-identical results.

Data Availability. Bibliometric data have been deposited in GitHub.com,
https://github.com/ipoga/elite_citations (54).
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