Skip to main content
. 2021 Feb 20;67:102518. doi: 10.1016/j.bspc.2021.102518

Table 3.

Comparison of the proposed method with State-of-the-Art Methods.

Author and Year Deep Learning Module Used Type of Diseases Involved Dataset and type of image Results
Metric Name Metric Value
Zheng C et al. (Jan 2020) [16] Deep CNN COVID-19 Local Hospitals 630 CT Images Accuracy 0.9
Xiaowei Xu et al. (Feb 2020) [8] 3D-CNN COVID-19 CT images (Hospitals in China)
618 samples
Accuracy 0.87
Influenza-A viral pneumonia
Healthy People
Ali Naren et al. (March 2020) [13] ResNet50 COVID-19 GitHub and Kaggle repository
100 chest X-ray Images
Accuracy 0.98
Inception -ResNetV2 0.87
InceptionV3 0.97
Gozes et al. (March 2020) [17] ResNet-50 based 2-D CNN Covid-19 56 CT Images from Local Hospitals Sensitivity 0.98
Specificity 0.92
AUC 0.99
Barstuga et al. (March 2020) [18] Feature Extraction –GLCM, LDP, GLRLM, GLSZM, DWT COVID-19 Local Hospitals 150 CT abdominal Images Accuracy 0.99
Classifier- SVM
Proposed Method U-Net COVID-19 1000 Chest CT Images
GitHub Repositories & SIRM
Sensitivity 0.92
Specificity 0.93
Accuracy 0.94
Precision 0.95