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Abstract

Dilated cardiomyopathy (DCM) is a major cause of heart failure and cardiovascular mortality. In 

the past 20 years, there has been an overwhelming focus on developing therapeutics that target 

common downstream disease pathways thought to be involved in all forms of heart failure 

independent of the initial etiology. While this strategy is effective at the population level, 

individual responses vary tremendously and only approximately one third of patients receive 

benefit from modern heart failure treatments. In this perspective, we propose that DCM should be 

considered as a collection of diseases with a common phenotype of left ventricular dilation and 

systolic dysfunction rather than a single disease entity, and that mechanism-based classification of 

disease subtypes will revolutionize our understanding and clinical approach towards DCM. We 

discuss how these efforts are central to realizing the potential of precision medicine and how they 

are empowered by the development of new tools that allow investigators to strategically employ 

genomic and transcriptomic information. Finally, we outline an investigational strategy to 1) 

define DCM at the patient level, 2) develop new tools to model and mechanistically dissect 

subtypes of human heart failure, and 3) harness these insights for the development of precision 

therapeutics.
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Cardiovascular diseases including heart failure and coronary artery disease represent 

important causes of morbidity and mortality worldwide. Over the past several decades, the 

predominant focus of cardiovascular medicine has centered on identifying common factors 

that contribute to the progression of these prevalent diseases. Such initiatives have formed 

the basis of our current approach to patient care, which is generally agnostic to the 

underlying cause of a patient’s disease. For example, patients diagnosed with heart failure 

are offered essentially identical treatments regardless of whether their disease was caused by 

blockages in their coronary arteries or genetic mutations. Mechanistically, heart failure 

therapeutics target a process termed adverse remodeling, a common pathway by which the 

adult heart is thought to universally respond to injury. Pathologically, adverse remodeling is 

defined by cardiomyocyte hypertrophy and fibrosis [1,2]. Landmark clinical trials have 

established that therapeutics which target adverse remodeling including β-adrenergic, 

angiotensin receptor II, and aldosterone signaling inhibitors reduce mortality and improve 

left ventricular systolic function in adult heart failure patients [3].

While this “one-size-fits-all’ approach has led to improvements in clinical outcomes when 

large populations are examined, individual response rates vary tremendously, and it is 

difficult to distinguish patients who will achieve a favorable response from those who will 

experience disease progression and ultimately succumb to their illness. Consequently, many 

individuals are left inadequately treated and current 5-year transplant-free survival rates 

remain above 50% [4].

Intriguingly, therapies targeting adverse remodeling have substantially less efficacy in 

pediatric populations. The Pediatric Carvedilol Study failed to demonstrate improvements in 

clinical outcomes for children with symptomatic heart failure [5–7]. Registry data further 

revealed that adult heart failure therapeutics have provided no survival benefit in children 

over digoxin and diuretic based regimens that were established in the 1970s [8]. Our group 

has previously demonstrated that patients with pediatric heart failure displayed markedly 

reduced adverse remodeling at the histopathologic, electron microscopic, and gene 

expression levels compared to adult heart failure patients [9]. These observations indicate 

that pediatric and adult heart failure represent distinct entities, provide a mechanistic 

rationale for why children display substantially lower rates of ventricular arrhythmias and 

sudden cardiac death compared to adults [10,11], and highlight the clinically unmet need to 

identify novel approaches for pediatric cardiomyopathies.

In the cardiovascular field, we are now just beginning to appreciate that heart failure and 

coronary artery disease may actually represent a compilation of unique pathologies that are 

driven by complex interactions among a diverse array of genetic perturbations, 

environmental risk factors, and host responses to tissue injury or chronic disease. For 

example, due to the increased use of genetic sequencing in the clinic, inherited or 

spontaneously occurring mutations in genes important for cardiac contractility, structure, 

and metabolism are increasingly found in patients with idiopathic dilated cardiomyopathy 

(DCM), a common etiology of heart failure in adult and pediatric populations [12,13]. It is 

likely that different mutations give rise to distinct disease entities with differing phenotypes, 

environmental interactions, and responses to current medical regimens. For example, in the 
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case of hypertrophic cardiomyopathy, the relative incidence of heart failure, ventricular 

arrhythmias, and atrial fibrillation varies depending on whether a patient has a mutation in a 

sarcomeric protein or not [14]. We believe that an individualized approach to cardiovascular 

medicine targeting the mechanisms that initiate disease and drive disease progression has the 

potential to be transformative and will ultimately lead to new treatments and hope for our 

patients.

Large gaps in knowledge must be overcome to realize the potential of cardiovascular 

precision medicine. Specifically, we must: reclassify cardiovascular diseases based on the 

molecular and cellular mechanisms that drive pathogenesis; develop diagnostic strategies to 

identify patients with shared disease subtypes; and, generate therapeutics that target the 

specific mechanisms that underlie disease subtypes. Realizing this potential will require 

functional studies, powered by new technologies, to study and model patient-specific 

phenotypes at the molecular and cellular levels, and then translate these insights into the 

development of precision therapies. Here, we will focus on the application of this approach 

to DCM, which represents a major cause of heart failure and mortality; however, these tools 

and approaches are broadly applicable to a host of cardiovascular diseases. We believe that 

this approach will reshape our clinical and research philosophy and realize the potential for 

precision medicine in the cardiovascular field.

Functional insights are necessary to translate from genomic insights to 

precision medicine

Recent innovations in sequencing technology has made it feasible and reasonably 

inexpensive to sequence whole human exomes and genomes. The large volume of available 

sequencing data has revealed surprising diversity in the human gene pool, and as such, has 

become a focal point for precision medicine. Large scale sequencing and genome wide 

association studies (GWAS) have changed how we think about cardiovascular disease, and 

we direct the reader to some of the excellent reviews written on this topic [15–17]. They 

have helped to uncover the genetic bases of monogenic diseases with common presentations, 

such as DCM, Marfan’s Syndrome, and Long Q-T syndrome, as well as polygenic risk 

factors for diseases including atherosclerosis, hypertension, and heart failure [18,19]. In the 

case of DCM, at least 25% [20] can be attributed to specific mutations in a subset of genes 

that encode for sarcomeric (Troponin C, Troponin T, Myosin Heavy Chain, Tropomyosin, 

Myosin Binding Protein C3), structural (Titin, Desmin), mechanotransduction (Lamin A/C), 

calcium handling (Phospholamban, SERCA), signaling (Integrin-Linked Kinase), and 

metabolic or mitochondrial proteins [12,13]. It should be noted that some of these proteins 

can serve multiple roles in the cell. While the majority of genotype-positive patients have 

heterozygous missense mutations that produce proteins with altered activity [21,22], 

abundance [23], cellular localization, and/or stability, some mutations produce splice site 

variants or truncations [13].

While the genetic basis for DCM has become better understood, this advancement has yet to 

impact patient care beyond family screening. One challenge arises from the fact that despite 

sharing the common feature of cardiac remodeling and having a prevalence of 1:250 in the 
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population, DCM can be caused by hundreds of mutations [12]. For newly discovered 

mutations, it is difficult to determine whether a given variant is pathogenic, especially if 

examined families are not sufficiently large or the mutation occurred spontaneously. Genetic 

testing can be quite useful for individuals or families carrying a known or well-characterized 

variant that causes DCM. Individuals at risk for developing disease can easily be identified 

and subjected to either careful monitoring or aggressive treatment regimens focused on 

reducing cardiovascular risk factors and early initiation of anti-remodeling therapies. It is 

important to note that the genetic background and environment of a patient impact the 

presentation and prognosis of the disease. As a result, the timing of onset and heart failure 

phenotypes may differ between matched siblings and between parents and children. While 

some have suggested that genetic information alone could be used to decide whether to treat 

a patient with anti-remodeling therapies prophylactically, there is no consensus in the field 

as to the efficacy of such an approach with respect to the entire population of DCM or in 

regards to individual mutations [24].

Unfortunately, the direct translation of genomic data into precision medicine has been 

frustrated by several limitations. The most important limitation is that many genomic studies 

are correlative and do not necessarily provide actionable mechanistic insights into the 

disease pathogenesis. Surprisingly little is known regarding whether patients who harbor 

mutations in different genes display distinct heart failure phenotypes and/or clinical 

outcomes. It is possible that DCM could be better reclassified based on the identification of 

mutations that give rise to common disease phenotypes. Moreover, mutations within the 

same molecule can lead to different gross phenotypes. For example, mutations within 

troponin T can lead to hypertrophic [25], dilated [26], restricted cardiomyopathy, or no 

effect depending on the specific variant [27]. In fact, it has been shown that point mutations 

at the same residue with different amino acid substitutions can lead to different phenotypes 

[28].

Realizing the promise of precision medicine will require us to pair insights from genomic 

studies with mechanistic studies of the disease pathogenesis. Here, we discuss our approach 

and the fields progress towards precision medicine in 1) defining disease at the patient level, 

2) developing new tools to mechanistically understand and model subtypes of human heart 

failure, and 3) harnessing these insights for the development of precision therapeutics 

(Figure 1).

Harnessing new technologies to delineate patient-specific phenotypes

The establishment of cardiac tissue biobanks have provided critical opportunities to explore 

cellular and molecular mechanisms that contribute to heart failure pathogenesis. Early 

histopathology and gene expression profiling studies have provided key evidence that heart 

failure is more heterogeneous and complex than previously appreciated [29]. In fact, 

standard classification schemes dividing cardiomyopathies based on ischemic or non-

ischemic etiologies are not sufficient to account for variability between individual patients 

[30]. It is evident from rudimentary pathological analysis that dramatic differences exist 

between different forms of ischemic and non-ischemic cardiomyopathies (Figure 2). These 

observations highlight the need to develop new techniques and approaches to investigate, 
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appropriately reclassify, and identify causative mechanisms that give rise to different forms 

of human heart failure.

Over the past several years, an explosion of molecular pathology techniques built on the 

shoulders of next generation nucleic acid sequencing technologies have revolutionized 

modern pathology. With the advent of single cell and single nuclei RNA sequencing 

approaches, it is now possible to measure gene expression at single cell resolution. Such 

technologies enable investigators to define the cellular composition of a given tissue, 

discover new cell types, and compare gene expression within a given cell type across 

experimental conditions or diseases within a single comprehensive and unbiased workflow. 

The introduction of single nuclei RNA sequencing has expanded these promising 

capabilities to encompass cell types that cannot be recovered from enzymatically digested 

tissues. Most importantly, single nuclei RNA sequencing is readily adaptable to 

cryopreserved specimens, fueling unprecedented exploration of biobanked tissues and 

reinvigorating enthusiasm for developing and expanding human tissue repositories. These 

technologies have already provided critical new insights into disease diversity and new cell 

types that contribute to the pathogenesis of diseases ranging from cancer to autism [31–34].

A limitation of single cell and single nuclei RNA sequencing approaches is the loss of 

spatial information, most notably the location of cell types within a tissue and the existence 

of unique tissue niches composed of various cell populations. Within current workflows, this 

information must be acquired retrospectively using either immunohistochemistry or in situ 
hybridization. Spatial transcriptomics and advanced small sample input tissue acquisition 

systems offer viable solutions. These technologies provide transcriptomic level information 

from fresh or fixed tissue sections, respectively. Spatial transcriptomics provides an unbiased 

platform for spatial resolved transcriptional profiling [35]. In this system, fresh frozen tissue 

sections are placed over a slide containing uniquely barcoded oligo-dT primers spaced every 

40-100 microns printed over a 6mm × 6mm area. Co-registration of an H&E or antibody 

stained image with the position of the barcoded oligos allows the integration of spatial and 

transcriptomic data. Advanced laser capture and other small input tissue capture systems 

provide an alternative approach by allowing investigators to select particular regions of 

interest [36]. These platforms have the unique advantage of working on an array of tissue 

types ranging from fresh frozen to formalin fixed paraffin embedded tissues.

Today, there is incredible opportunity to apply these technologies to cardiovascular diseases. 

Understanding, the cellular composition of the healthy and diseased human heart is likely to 

provide unprecedented opportunities to identify disease potentiating cell types and delineate 

the functional diversity of human heart disease. For example, we know very little regarding 

the exact immune and fibroblast cell types that orchestrate myocardial fibrosis, whether 

mutations in distinct DCM genes produce unique tissue pathologies, or the underlying 

signaling pathways that contribute to inflammatory and infiltrative cardiomyopathies 

including cardiac sarcoidosis, giant cell myocarditis, and cardiac amyloidosis. Most 

importantly, next generation molecular pathology will undoubtedly allow investigators to 

glean critical information directly from the human disease itself rather than relying on 

oversimplified or potentially inaccurate animal or cellular models.
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New tools to mechanistically understand and model subtypes of human 

heart failure in vitro

Recent technological advances have also opened the door to modeling human heart failure 

subtypes in vitro. These new tools can be leveraged for the development of precision 

therapeutics for heart failure. Here, we will focus on recent advances in stem cell 

technologies, gene editing, and tissue engineering, and their translational potential for 

cardiovascular precision medicine.

Gene editing and human pluripotent stem cells

There are several model systems that have been applied to model heart failure. Each of these 

systems comes with its own set of advantages and caveats. Tissue from patients provides 

useful information about the specific patient phenotype in human tissues [37]; however, it is 

often not possible to obtain genetically matched control tissues for functional experiments, 

and it is difficult to obtain sufficient volumes of tissue for most functional experiments. 

Moreover, human tissue is usually only available from patients in the end-stages of the 

disease, either after the implantation of a ventricular assist device, heart transplantation, or 

postmortem. Transgenic animals including drosophila, zebrafish, and mice are excellent 

systems for studying some genetic forms of cardiovascular disease [24]; however, they do 

not always recapitulate the disease phenotype seen in humans due to physiological 

differences between species [38–43]. In the case of mice, mouse hearts beat 500-600 times 

per minute, compared to approximately 60-80 times per minute for humans. To achieve this 

faster heart rate, murine hearts have different proteins isoforms for calcium handling, ion 

channels, and contractile proteins. For example, murine hearts express the alpha myosin 

isoform (MYH6), which has a speed (as measured by the ADP release rate from 

actomyosin) that is ~10-times greater than the beta cardiac isoform (MYH7) expressed in 

human ventricles [44]. These differences can make it so that mouse models of heart failure 

do not recapitulate the human disease phenotype, and efforts have been made to make more 

humanized mice [39,45,46]. Given known limitations of rodent and other model systems, 

there has been a great push to develop new experimental platforms that focus on human 

tissues or cell-based systems.

Recent advances in stem cell technologies and gene editing have made it easier to study 

mutations that cause human heart failure in experimentally tractable systems. The derivation 

of human induced pluripotent stem cells (hiPSCs) [47] from a patient blood sample, urine 

sample, or skin biopsy, has enabled the study of patient-specific disease-causing mutations. 

hiPSCs can be differentiated into cardiomyocytes (hiPSC-CMs) using small molecules that 

activate developmental pathways [48,49]. hiPSCs can undergo genome editing using the 

CRISPR/Cas9 system [50] to enable the modeling of human disease on a controlled genetic 

background. One caveat of this system is that hiPSC-CMs are developmentally immature 

compared to adult cardiomyocytes [51,52]. These cells differ from mature cardiomyocytes in 

several ways. For example, hiPSC-CMs have a lower mitochondrial content, minimal t-

tubular structures, show sarcomeric disarray, have higher membrane resting potentials, 

generate less force in response to activation, and have altered action potentials [53,54]. That 

being said, the field is actively developing approaches to promote maturity, including 
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providing hiPSC-CMs with mechanical [55–61], electrical [62–64], and chemical [51,65] 

cues that mimic the native environment of the heart.

Single hiPSC-CMs can be extensively characterized using deep phenotyping tools. 

Transcriptional profiles can be probed using RNA sequencing. Precise measurements of 

contractility can be obtained using tools such as traction force microscopy or atomic force 

microscopy [55,66,67]. Cellular metabolism can be measured using tools such as the 

Seahorse Analyzer. Cellular and sarcomeric structural organization can be examined in fixed 

cells using immunofluorescence or in live cells using fluorescently tagged proteins [68]. E-C 

coupling can be investigated using single cell patch clamping and voltage/calcium sensitive 

dyes [69]. Moreover, these profiling techniques can be used for drug screening of individual 

patient-specific cell lines.

Using genome edited hiPSC-CMs, it is now possible to engineer single cells carrying 

disease-causing mutations on a controlled genetic background. The CRISPR/Cas9 system 

[50] can be used both to introduce mutations into control lines or to correct mutations found 

in patient cells (i.e., generate a genetically matched healthy control lines). The use of gene 

editing on a controlled genetic background removes confounding factors that arise when 

comparing two non-matched patients or even siblings. This gene editing approach has been 

used to model several forms of cardiac diseases at the single cell level including 

hypertrophic cardiomyopathy, long QT syndrome, Duchenne’s Muscular Dystrophy, and 

dilated cardiomyopathy [70]. While hiPSC-CMs are developmentally immature [51] and do 

not currently capture the late stages of the disease, single cell assays have been able to 

recapitulate many features of the early disease phenotype including cellular hypertrophy, 

disrupted calcium transients, altered gene expression, and altered action potentials [71]. This 

can be seen as a key advantage to study disease initiation.

In the case of DCM, several patient-specific mutations have been modeled in hiPSC-CMs, 

including mutations in troponin T [21,67], lamin A/C [72], titin [23], dystrophin [73], and 

phospholamban [74]. Moreover, hiPSC-CMs have been used to model diabetic 

cardiomyopathy [75,76]. These studies have been used to identify new mechanisms involved 

in the disease pathogenesis, such as aberrant PDGFR signaling [72] and disrupted responses 

to mechanobiological cues [21]. hiPSC-CMs have also been used to test the effects of 

potential therapeutics for individual patient-specific mutations [67], revealing interesting 

similarities and differences between specific mutations, supporting the power of this 

experimental system for precision medicine approaches.

One place where this technology shows great promise for precision medicine is in 

determining whether a given variant is pathogenic. For many DCM-associated variants, there 

are not enough patients with a particular variant to definitively determine whether it is likely 

pathogenic or not using linkage analysis. Gene edited hiPSC-CMs were recently used to 

demonstrate the likely pathogenicity of a mutation that causes cardiomyopathy [77]. Cells 

from both healthy and diseased patients were obtained, reprogrammed, and differentiated to 

form hiPSC-CMS. The hiPSC-CMs from the diseased patients showed alterations in calcium 

transients, contractility, sarcomeric structure, and gene expression compared to healthy 

controls. Next, the healthy lines underwent gene editing to introduce the mutation, and the 
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diseased patient line underwent editing to fix the mutation. The data clearly demonstrate that 

cellular dysfunction is dependent of the presence of the mutation, establishing that the 

mutation is likely pathogenic.

Human engineered heart tissues

Human engineered heart tissues (EHTs) provide a unique system for human disease 

modeling and the development of novel therapeutics. EHTs are in vitro systems that 

recapitulate aspects of the 3D environment of the heart [78,79]. As such, they provide a 

more physiologically relevant environment for studying cardiomyocyte function. The heart 

is a complex environment, consisting of many cell types including cardiomyocytes, 

fibroblasts, endothelial cells, and immune cells. These cells interact with each other, and 

these interactions can affect the contractile and electrophysiological properties of the 

myocardium [80]. In EHTs, cardiomyocytes are mixed with desired stromal cells in the 

presence of extracellular matrix proteins. These tissues will self-assemble in engineered 

devices where they can undergo extensive phenotyping. EHTs can be assembled using 

hiPSC-CMs, giving flexibility to examine patient-specific mutations that cause 

cardiovascular disease.

Multiple EHT platforms have been designed (Figure 3), each with its own set of strengths 

and weaknesses [81–84,63]. These platforms have varied geometries for tissue formation 

and are designed to examine different functional parameters [85]. These platforms can 

incorporate elements for measuring contractility, tissue organization, perfusion, 

electrophysiology, and conduction velocities. Moreover, systems have been designed to 

provide various cues to promote tissue maturity and to model environmental interactions 

including electrical stimulation [86,62], afterload [59], exogenous chemicals, and specific 

extracellular matrix scaffolds. hiPSC-CMs cultured in EHTs show improvements over single 

cells in mitochondrial content, sarcomeric organization, gene expression, T-tubule structure, 

electrophysiology, and contractility [62]. EHT systems have also been designed for higher 

throughput drug screening [87,88]. As such, EHTs show great promise for human disease 

modeling and drug discovery.

EHT systems have been used to model patient-specific mutations in several forms of heart 

disease. These studies have revealed diversity in the disease pathogenesis and highlight the 

potential role for EHTs in cardiovascular precision medicine. For example, an EHT model of 

DCM-causing truncations of the muscle protein titin revealed that these mutations likely 

exert their effect through haploinsufficiency [23]. EHTs were also used to model 

hypertrophic cardiomyopathy caused by mutations in myosin binding protein C (MyBPC), 

and it was used as a platform to demonstrate that expression of a phosphomimetic MyBPC 

could restore cardiac function in a particular mutant [89]. EHTs have also been used to study 

patient specific sensitivity to the chemotherapeutic agent, sunitinib, and to reveal that some 

heart specific effects of the drug become more pronounced with increased cardiac afterload 

[90].

Control of the genetic, chemical, cellular, and mechanical environment in EHTs gives them 

unique qualities that can be harnessed for precision medicine. For example, these systems 

could be used for diagnostic purposes, testing whether a given variant identified in a patient 
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is pathogenic or for dissecting how multiple genetic polymorphisms contribute to the 

development of complex polygenic diseases. Moreover, one can completely define the EHT 

environment to mimic different physiological or pathological conditions. For example, it is 

possible to examine the effects of different cell types in the heart, and their relative roles in 

disease. One can examine how changes in mechanics, such as increased afterload in 

hypertension or stiffening of the myocardium in fibrosis affects the disease development 

[91,59,90]. Moreover, it is now possible to examine how changes in the extracellular matrix 

that accompany disease affect EHT function.

The road to precision therapies

The ultimate goal of precision medicine is to develop and appropriately match therapeutics 

to patients. This approach requires upfront knowledge of the patient’s diagnosis, disease 

classification, and therapeutic options. Thus, the generation of new diagnostic tools is an 

essential element that cannot be ignored. Diagnostic classifications based on genetic testing, 

imaging, and/or serum biomarkers represent feasible options. For example, genetic testing 

for DCM variants or molecular imaging for particular immune cell populations would 

provide physicians with the requisite information to prescribe tailored or individualized 

therapies that target specific genotypes of DCM or inflammatory mediators, respectively. As 

opposed to our current practice, this approach maximizes benefit for a given individual and 

minimizes risk associated with adverse effects. These tools can be applied to other diseases 

with cardiac involvement. For example, hiPSC-CMs from cancer patients were recently 

screened for cardiotoxicity to tyrosine kinase inhibitors [92]. Moreover, precision diagnostic 

tools are also likely to yield useful prognostic information regarding the anticipated natural 

history of an individual’s disease.

As highlighted above, EHTs provide a human model of heart disease for drug discovery, 

development, and cardiotoxicity studies. By using patient specific hiPSC-derived 

cardiomyocytes or engineering an individualized mutation into an established hiPSC cell 

line, EHTs can be used to predict an individual’s response to a particular therapy. The use of 

human EHTs has several advantages over animal systems for early drug discovery, including 

fewer ethical concerns, easier scaling for high throughput screening [88,87], and lower cost 

per experiment. Moreover, murine hearts do not express the hERG channel that is expressed 

in humans. Many drugs bind to this channel, and as such, undetected cardiotoxicity in mouse 

models is one of the leading causes for clinical trial failures [93,92].

There are several opportunities for the development of precision treatments for DCM, that 

expand beyond the current “one-size-fits-all” treatments that target remodeling. It is likely 

that therapeutics which correct the activity of individual DCM variants, prevent their 

incorporation into sarcomeres, or promote their removal through selective degradation would 

constitute a highly effective strategy to delay or reverse the natural history of DCM. For 

example, there are several new compounds in development that target the sarcomere to 

correct altered contractile protein function [94–96]. Moreover, gene therapy and exon 

skipping strategies to correct or mitigate the functional effects of mutant proteins have 

continued to evolve [97,98]; however, there are substantial challenges that still must be 

overcome before these technologies can be brought to the clinic. Alternatively, since the vast 
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majority of DCM patients harbor heterozygous missense mutations that display reduced or 

absent activity, it might be possible to target mutant proteins for selective degradation. For 

many but not all of these mutants, the incorporation of these mutant proteins into sarcomeres 

(or other complexes) occurs in a stoichiometric fashion and results in a dominant effect on 

contractile function. For example, the TNNT2ΔK210 variant encodes a mutant protein with 

markedly reduced sensitivity to calcium [21]. Incorporation of this mutant protein into 

sarcomeres containing wild type TNNT2 leads to reduced force generation and abnormal 

relaxation [99,26]. Targeting of mutant protein for degradation or removal from the 

sarcomere has the possibility of rescuing the disease phenotype. Taken together, there are 

multiple exciting avenues for the development of precision therapeutics for cardiovascular 

disease.

We anticipate that the application of precision medicine to cardiovascular diseases will have 

profound translational impacts and result in paradigm shifts that will ultimately reshape our 

approach towards treating heart failure and other cardiovascular diseases. We envision that 

these initiatives will yield new diagnostics that define specific disease subtypes with 

differing etiologies, prognoses, and treatment responses. Ultimately, the deployment of 

precision therapies will finally arm physicians with the appropriate tools to treat disease on 

an individual rather than a population level. While these “forward-looking” initiatives may 

appear futuristic, technological advances are propelling the field at unprecedented speed and 

investigators are now only limited by their imagination and creativity rather than technical 

expertise.
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Figure 1: 
Schematic describing a precision medicine approach to heart failure and other cardiovascular 

diseases. Images were generated using Biorender.
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Figure 2: 
Individual heart failure etiologies display distinct histopathology features. Arrow denotes 

site of myocardial infarction. ARVC: arrhythmogenic right ventricular cardiomyopathy, 

DCM: dilated cardiomyopathy. Images from Wikipedia and Pathpedia.
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Figure 3: 
Examples of engineered heart tissues (EHTs) generated for disease modeling. (a) A circular 

EHT consisting of hiPSC-CMs and fibroblasts was mounted in between a force transducer 

and a length mover (Aurora Scientific) for active mechanical measurements. (b-c) An EHT 

consisting of hiPSC-CMs and fibroblasts was grown between two PDMS posts (EHT 

Technologies). The tissue self assembles and contracts spontaneously within 5 to 7 days 

after seeding. (d) An EHT grown between two PDMS posts was electrically stimulated 

(yellow). As the tissue contracts, it displaces the PDMS posts, enabling the calculation of the 

force of contraction (blue) for the tissue.
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