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Abstract

Pain is a major health problem, affecting over fifty million adults in the US alone, with significant 

economic cost in medical care and lost productivity. Despite evidence implicating nicotinic 

acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain 

processing in the spinal cord remains unclear given their presence in both neuronal and non-

neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a 

novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric 

α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion 

exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine 

and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and 

mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these 

receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate 

that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine 

the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. 

Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-

expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the 

knowledge-based database, Ingenuity Pathway Analysis, and suggests increased 

neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. 

Collectively, these findings implicate a heightened inflammatory response in the absence of 
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neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by 

which NACHO in the spinal cord modulates pain.
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Introduction

The International Association for the Study of Pain estimated that 20% of adults worldwide 

suffer from chronic pain and almost 10% of the population is diagnosed with pain every 

year. This makes pain a major health problem costing society an estimated $560 billion 

annually in medical care and lost productivity in the US (Dahlhamer et al. 2018; Gaskin and 

Richard 2012). These statistics, in addition to the ongoing opioid epidemic, underscore the 

need to develop new and effective treatments to manage persistent pain.

Nicotinic acetylcholine receptors (nAChR) are ligand-gated cationic channels assembled as 

homo- or heteropentamers from α- (α2–10) and β- (β2–4) subunits (Crespi et al. 2017; 

Kabbani and Nichols 2018). The roles nAChRs in modulating pain remain unclear. Nicotine 

produced analgesia in experimental models of chronic pain (Aceto et al. 1986; Christensen 

and Smith 1990) and this was blocked by the non-selective nAChR antagonist, 

mecamylamine (Freitas et al. 2015; Saika et al. 2015). Antinociceptive effects of nicotine 

and its derivatives were associated with a decrease in sensitization of spinal neurons 

(Holtman et al. 2010). In clinical studies, nicotine patches decreased pain evoked by 

cutaneous electrical stimulation (Jamner et al. 1998), intranasal nicotine decreased 

postoperative pain (Flood and Daniel 2004; Matthews et al. 2016), and nicotine deprivation 

increased neurogenic inflammation and mechanical hyperalgesia in daily tobacco smokers 

(Ditre et al. 2018), suggesting analgesic effects of nicotine in humans. However, the 

selective α4β2 receptors agonist, ABT-894, was ineffective in a clinical trial for diabetic 

neuropathic pain (Rowbotham et al. 2012). The disparate effects of drugs targeting nAChRs 

between preclinical models and humans are well known, especially in the treatment of 

neuropathologies and psychiatric disorders (Bertrand and Terry 2018). Thus, the roles of 

specific nAChRs in pain require additional investigation. (+/−)-Epibatidine, a non-selective 

α7, α4β2, and α3β4 receptor agonist, reduced heat and mechanical hyperalgesia in models 

of inflammatory and neuropathic pain (AlSharari et al. 2012; Gao et al. 2010; Kesingland et 

al. 2000; Nirogi et al. 2013; Sullivan et al. 1994). Intrathecal epibatidine potentiated the 

analgesic effect of clonidine, an agonist for the α2-adrenergic receptor, in the formalin 

model (Hama et al. 2001). Epibatidine given directly into the rostral ventromedial medulla 

reduced hyperalgesia following inflammation, suggesting a role for α7, α4β2, and α3β4 in 

descending pathways that modulate nociception (Jareczek et al. 2017). As such, the role of 

each receptor subtype in the spinal cord in pain modulation remains unclear. Activation of 

the α7 receptor by selective agonists reduced inflammatory and neuropathic pain (Feuerbach 

et al. 2009; Loram et al. 2012; Medhurst et al. 2008; Munro et al. 2012; Umana et al. 2017). 

The attenuation of inflammatory pain produced by the α7 nAChR agonist compound B was 

blocked by intrathecal application of an α7 nAChR antagonist (Medhurst et al. 2008). 
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However, α7 receptor knockout mice showed little changes in thermal and mechanical 

sensitivity at baseline or following nerve injury, whereas mice with a single copy of α7 gain-

of-function, such as the L250T mutant mouse (Orr-Urtreger et al. 2000) characterized by 

increased α7 receptor affinity for agonists, exhibited decreased thermal hyperalgesia 

following nerve injury (Alsharari et al. 2013). Wieskopf et al. (2015) demonstrated a key 

role of the spinal α6-containing receptor, but not α4, in the modulation of mechanical 

allodynia in rodent models of inflammatory and neuropathic pain utilizing gene knockout 

and gain-of-function transgenic mice (Wieskopf et al. 2015). On the other hand, intrathecal 

α-conotoxin MII, a selective α6β2 and α3β2 receptor antagonist with a greater affinity for 

α6-containing receptors (>1000x), reduced baseline mechanical sensitivity in rats, 

implicating these receptors in the modulation of pain at the spinal cord level (Young et al. 

2008).

In addition to the role of specific nAChRs in pain modulation, the mechanisms by which 

nAChRs modulate pain are unclear. Possibilities include inhibition of glutamate release from 

primary afferent nociceptive fibers (Young et al. 2008), or through nAChR-dependent 

activation of GABAergic neurons in the spinal cord, thereby enhancing inhibitory tone 

(Enna and McCarson 2006; Rashid et al. 2006; Umana et al. 2013). Indeed, there is evidence 

that activation of nAChR increased GABA release in the spinal cord (Genzen and McGehee 

2005; Gonzalez-Islas et al. 2016). Activation of GABAergic neurons inhibited synaptic 

transmission, resulting in decreased pain signaling, whereas blocking GABA receptors 

produced hyperalgesia (Hwang and Yaksh 1997). Decreased GABAergic inhibition has been 

implicated in the development of neuropathic pain (Larsson and Broman 2011). Yet another 

possible mechanism by which nAChRs modulate pain is the suppression of 

neuroinflammation in the spinal cord through activation of nAChRs expressed on microglia. 

Activation of α4β2 or α7 nAChR by perineural or intrathecal administration of selective 

receptor agonists (e.g., TC-2559, PHA-543613, choline) decreased neuropathic pain, and 

this was associated with decreased microglial activity and release of pro-inflammatory 

mediators (Ji et al. 2019; Kiguchi et al. 2018; Loram et al. 2010). Given the presence of 

nAChRs in both neuronal and non-neuronal cell types, the roles of nAChRs in specific cells 

(e.g., neurons, microglia) and the specific contributions of nAChR subtypes to pain 

modulation need further study.

Transmembrane protein 35a (TMEM35a) is a small neuronal-specific transmembrane 

protein (Kennedy et al. 2016; Tran et al. 2010), which has been renamed Novel 

Acetylcholine receptor Chaperone (NACHO) (Gu et al. 2016). NACHO was demonstrated to 

be necessary and sufficient for assembly and trafficking the homomeric α7 while facilitates 

the assembly of the heteromeric α3, α4, and α6 containing receptor subtypes (Deshpande et 

al. 2020; Gu et al. 2016; Matta et al. 2017; Mazzaferro et al. 2020). Deletion of the tmem35a 
gene, which removes NACHO (polypeptide) activity, resulted in a complete absence of α7 

membrane expression and electrophysiological activity (Gu et al. 2016). However, tmem35a 
KO mice showed residual cell surface expression of α3, α4- and α6-containing receptors 

evident by residual binding of epibatidine and conotoxin II (Gu et al. 2016; Matta et al. 

2017; Mazzaferro et al. 2020). We took advantage of tmem3a KO mice to determine the 

effect of NACHO (and α7) on evoked pain. We found that tmem35a KO mice exhibited 

thermal hyperalgesia and mechanical allodynia accompanied by an increased number of 
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microglia in the spinal cord dorsal horn. Due to the complete loss of α7 nAChR functional 

activity, we further determined the precise role of neuronal α7 in the tmem35a KO mice via 

intrathecal administration of the selective α7 receptor agonist, PHA543613. Our findings 

support a role for α7 nAChR in modulating activity of sensory neurons evoked by noxious 

heat.

Materials and Methods

Animals

Male tmem35a knockout (KO) mice (C57BL6/N) were bred in our lab on a C57Bl6/J 

background and maintained as previously described (Kennedy et al. 2016). C57Bl6/J (WT) 

littermates served as controls. Mice had access to food and water ad libitum and maintained 

on a 12 hr:12 hr (light: dark) cycle. Genotypes were determined using tail DNA and PCR 

amplification as previously described (Kennedy et al. 2016). The University of Minnesota 

Institutional Animal Care and Use Committee approved all protocols in this study.

Sensitivity to mechanical stimuli

Mechanical paw withdrawal threshold was used to determine differences in sensitivity to 

mechanical stimuli between tmem35a KO mice (n=20) and WT mice (n=18). The 50% 

mechanical threshold (g) was determined using the up-down method (Chaplan et al. 1994) 

with an adjustment for mouse paw sensitivity (Hamamoto et al. 2007). Briefly, mice were 

placed on a wire mesh platform, covered with a glass container (10×3.5×3.5cm) and allowed 

to acclimate to the environment for at least 30 min before each of 3 daily test sessions. A 

series of 8 calibrated von Frey monofilaments (0.07, 0.16, 0.40, 0.60, 1.0, 1.2, 2.0, and 4.0 g) 

was used and stimuli were applied to the plantar surface of each hind paw. Testing was 

initiated with a monofilament that delivered 0.60 g. In the absence of a withdrawal response, 

a stronger monofilament was applied. If a withdrawal occurred, a weaker monofilament was 

presented. The inter-stimulus interval was ~5 sec. The resulting pattern was tabulated, and 

the 50% paw withdrawal threshold was calculated. The 50% mechanical paw withdrawal 

threshold was determined for each hind paw. Paw withdrawal threshold for each mouse was 

defined as the mean threshold of both paws. Mechanical allodynia was defined as a 

significant decrease in mean paw withdrawal threshold compared to WT mice or vehicle 

treatment.

Sensitivity to heat stimuli

Heat sensitivity was assessed using methods previously described (Khasabov et al. 2017). 

Briefly, radiant heat was applied to the plantar surface of each hind paw and withdrawal 

response latencies were determined. Before testing, mice were placed under a clear plastic 

cage (10×3.5×3.5 cm) on a clear, 3-mm thick glass elevated to allow maneuvering of a 

controlled radiant heat source underneath. Mice (15 WT and 16 KO) were acclimated to the 

testing chamber daily for 15 min before testing on 3 consecutive days. Heat stimuli of 

constant intensity were delivered by a 50-W light bulb placed in a custom case, which 

allowed focusing the light source (8-mm diameter) on the plantar surface of one hind paw. 

The intensity of the lamp was adjusted to produce stable withdrawal latencies ~ 7–13 s in 

control mice. Withdrawal latencies were measured to the nearest 0.1 s using a photocell that 
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terminated the trial and a timer upon a withdrawal response. Each hind paw received four 

stimuli, alternating between each hind paw, with a minimum of 1 min between trials. 

Withdrawal latency for each hind paw was defined as the mean of the last three trials, and 

withdrawal latencies for each paw were averaged. A 19-s cutoff was imposed on the 

stimulus duration to prevent tissue damage. Heat hyperalgesia was defined as a significant 

decrease in mean withdrawal response latency as compared to WT mice or vehicle 

treatment.

Sensitivity to cold stimuli

A cold plate apparatus (Ugo Basile, Gemonio, Italy) was used to compare cold sensitivity 

between KO (n=12) and WT (n=10) mice. Mice were individually habituated in the 

apparatus with the plate temperature set at 30˚C. Following 30 min habituation, the plate 

temperature was adjusted to 4˚C. Sensitivity to cold was measured as the number of 

nocifensive behaviors (paw lifts, bouts of licking, and jumps) that occurred during a 3-min 

test session. Cold hyperalgesia was defined as an increase in the number of nocifensive 

behaviors (paw lifting and licking and jumping) as compared to WT mice or vehicle 

treatment.

Drugs

All compounds were diluted with saline (0.9% NaCl). (−) Nicotine bitartrate was purchased 

from Sigma (St. Louis, MO) and PHA543613 hydrochloride was purchased from Tocris 

(Biotechne, Minneapolis, MN).

Intrathecal drug administration and experimental design

Mice were randomly divided into separate groups and drugs were administered by 

intrathecal (i.t.) injection according to the previously described method (Hylden and Wilcox 

1980). Briefly, mice were handled for 2 days prior to injection to acclimate them to the 

handling procedure for the injection. Each mouse was held firmly by the pelvic girdle and 

injection was performed with a disposable (30-gauge, ½ inch) needle attached to a 50 μl 

Hamilton syringe. The needle was inserted on one side of L5 or L6 spinous processes at an 

angle 20° to horizontal plane. It was placed between the spinous and transvers processes and 

reached the intrathecal space at the level of cauda equine to avoid damage to the spinal cord. 

The needle was placed at 10° and the tip moved rostrally approximately 0.5 cm, and 5μl of 

the drug solution was delivered. Successful placement of the needle was indicated by a tail 

flick reflex. The needle was removed immediately after injection. Separate groups of mice 

received nicotine at doses of 0.5 or 1.5 nmol, or PHA543613 at doses of 10 or 50 nM. 

Sensitivity to mechanical, heat, and cold stimuli was determined as described above and was 

determined just prior to i.t. injection and at 15, 30, 60, and 90 min after injection. Sample 

sizes were 4–10/genotype/treatment. The experimenter was blinded to the treatment.

Immunohistochemistry and Imaging

Mice (n=4/genotype) were transcardially perfused with cold PBS and 4% Paraformaldehyde 

fixative. L4-L6 spinal cord were embedded in OCT compound (Scigen Scientific, Gardena, 

CA) and cryo-sectioned at 20 μm and mounted onto Superfrost Plus glass slides. Sections 
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were rehydrated in PBS, permeabilized in 0.1% Triton X-100 (in PBS), blocked in 10% 

BSA (Fraction V, Sigma), and incubated in primary antibodies overnight at 4°C. Sections 

were rinsed (3X) with PBS + 0.1% Tween-20 (PBST), blocked in 10% BSA, and incubate in 

fluorescent conjugated secondary antibodies overnight at 4°C. Excess antibodies were 

removed with PBST rinses (3X). Sections were clear with aqueous mounting media 

containing DAPI (Vector laboratories Inc.) and covered with a glass coverslip. Confocal 

images were captured with a Nikon Digital-Eclipse C1 system equipped with a motorized 

stage. Primary antibodies included Biotinylated-Isolectin B4 (IB4, 1:500, Vector laboratories 

Inc.), rabbit polyclonal anti-NACHO (1:100, In-house antibody, (Kennedy et al. 2016)), 

mouse monoclonal anti-CGRP (1:1000, Santa Cruz Biotechnology Inc., Santa Cruz, CA), 

rabbit polyclonal anti-Iba1 (1:1000, Novus Biologicals), and CF488-conjugated α-

bungarotoxin (1:50, Biotum). Secondary antibody (purchased from Vector Laboratories Inc.) 

included Alexa-488 anti-rabbit IgG (1:200), Alexa-555 anti-rabbit IgG (1:200), Alexa-633 

anti-mouse IgG (1:200), and Alexa-555 Avidin (1:200). Images of spinal cords were 

captured by a laser confocal microscope (Nikon Eclipse C1) or an upright microscope 

equipped with a CCD camera (Leica DM6B system). Confocal images were captured using 

10x or 20x air objectives with adjusted laser power to optimize signal-to-noise ratio and 

minimize signal saturation. Pseudocolors (red, green, and blue) were assigned to the three 

channels to produce optimal contrast signals. Images were processed using Adobe 

Photoshop (v21.1.0).

Quantitation of microglia in the dorsal horn

Cells immunoreactive for ionized calcium binding adaptor molecule 1 (Iba1), a specific 

marker for microglia/macrophage, were estimated by counting Iba1+ cells across 

representative sections (n=3 sections per mouse). Iba1 labeled cells were counted in lamina I 

through III of the dorsal horn from 5 WT and 4 KO mice. The experimenter counting the 

cells was blinded to the mouse genotype.

Spinal cord transcriptome and bioinformatics

Spinal cords (T8-L6) were isolated from adult mice (n=4/genotype) for RNA isolation 

(RNAqueous, Invitrogen). RNA sequencing (RNAseq) was performed as previously 

described (Barks et al. 2018). Briefly, isolated RNA was quantified using the RiboGreen 

RNA Assay kit (Invitrogen) and assessed for quality using capillary electrophoresis (Agilent 

BioAnalyzer 2100; Agilent). RNA samples with RIN value ≥ 8.0 were used for library 

construction. Barcoded libraries were constructed for each sample using the TruSeq RNA v2 

kit (Illumina). Libraries were size (200 bp) selected and sequenced (50 bp paired-end reads) 

using Illumina HiSeq 2500. Quality control on raw sequence data was performed with 

FastQC. Mapping of reads was performed via Hisat2 (version 2.1.0) using the mouse 

genome (mm10) as reference. Differentially-expressed genes (DEGs) were identified by 

genewise negative binomial generalized linear models using the EdgeR feature in CLC 

Genomics Workbench (Qiagen, version 10.1.1). The generated list was filtered based on 

false discovery rate (FDR) corrected p-value (q-value) < 0.05. DEGs were annotated by 

Ingenuity pathway Analysis (IPA; Qiagen) to identify relevant altered canonical pathways, 

molecular networks and cellular functions. Statistical significance (p < 0.05) was determined 

by Fisher’s exact test.
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Statistical methods

Mechanical withdrawal thresholds, heat withdrawal latencies and the number of nocifensive 

behaviors evoked by cold were compared between WT and KO mice using t-tests. Effects of 

i.t. administration of nicotine and PHA543613 were compared over time between KO and 

WT mice using 2-way ANOVA with repeated measures (dose and time as independent 

factors). Post hoc comparisons were made using Bonferroni’s multiple comparisons test. 

Unpaired t-test was used for Iba+ cell counting to determine the difference between WT and 

KO mice. For transcriptomic analysis, EdgeR statistical package was used for determining 

differentially expressed genes with and FDR (q value) < 0.05. For IPA analysis, Fisher’s 

exact test was used for multiple comparisons to determine significant gene interactions, 

canonical pathways, and molecular networks. Where applicable, graphs and statistical 

analyses were generated using Prism Graphpad 8 (Graphpad Software, San Diego, CA). For 

all statistical tests, a p value <0.05 was considered significant. All data are expressed as 

mean ± SEM.

Results

Expression of NACHO in spinal cord

Expression of NACHO (TMEM35a) was visualized by immunostaining using a polyclonal 

antibody raised against the C-terminal 15-amino acids of NACHO (Kennedy et al. 2016). 

NACHO immunostaining was found in the spinal cord dorsal horn of WT (Fig. 1A) but not 

in the tmem35a KO mice (Fig. 1B). There were no differences in localization within dorsal 

horn architecture between WT and KO mice based on the immunostaining of calcitonin 

gene-related peptide (CGRP) fibers in lamina I and Isolectin B4 (IB4) fibers in lamina II 

(Fig. 1C–D). NACHO was co-localized with peptidergic fibers marked with CGRP in dorsal 

horn lamina I (Fig. 1C), with much less co-localization with non-peptidergic fibers that were 

labeled with IB4 in lamina II (Fig. 1D). NACHO expression was found in cells that also 

expressed cell surface α7 nAChR marked by α-bungarotoxin binding (αBgtx+) in lamina I, 

II, V, and VI (Fig. 1E–F).

tmem35a KO mice exhibited hyperalgesia compared to WT mice

Given the antinociceptive roles of nAChRs in various pain models (Freitas et al. 2015; 

Kesingland et al. 2000; Rowley et al. 2008), we assessed whether tmem35a KO mice 

exhibited mechanical allodynia and thermal hyperalgesia. Compared to WT littermates, KO 

mice exhibited lower mechanical withdrawal response thresholds (Fig. 2A), lower 

withdrawal latencies to heat (Fig. 2B) and increased number of nocifensive behaviors to cold 

(Fig. 2C). Mean mechanical response thresholds for WT and KO were 1.00 ± 0.09 and 0.15 

± 0.02 g, respectively (t = 9.55, df = 36, p < 0.0001). Mean withdrawal latencies to heat 

were 8.64 ± 0.40 sec for WT and 5.77 ± 0.24 sec for KO mice (t = 6.28, df = 29, p < 

0.0001), and the mean numbers of nocifensive responses (paw lifting and licking and 

jumping) to cold were 2.6 ± 0.6 for WT and 12.4 ± 1.93 for KO mice (t = 4.29, df = 19, p < 

0.0004).
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Analgesia produced by intrathecal administration of nicotine is reduced in tmem35a KO 
mice

To determine if the loss of nAChR function is responsible for the hyperalgesia in tmem35a 
KO mice, mechanical withdrawal thresholds and withdrawal latencies to heat were 

determined after i.t. administration of nicotine, a non-specific nAChR agonist. In WT mice 

(Fig. 3A), a low dose, but not a high dose, of nicotine increased mechanical paw withdrawal 

threshold (F2,11 = 5.32, p = 0.02) and withdrawal latencies to heat (F2,16 = 3.07, p = 0.07, 

Fig. 3C) as compared to vehicle (saline) control. In the tmem35a KO mice, neither nicotine 

doses altered withdrawal responses to mechanical stimuli (time x nicotine dose interaction, 

F8, 44 = 0.22, p = 0.99, Fig. 3B), and only a high dose of nicotine produced analgesia to heat 

stimuli which persisted for >30 min (time x nicotine dose interaction, F8,76 = 3.58, p = 

0.0014, Fig. 3D). Administration of vehicle did not alter withdrawal latencies to heat at any 

time.

Effects of the nAChRα7-specific agonist, PHA543613, on mechanical and heat sensitivity 
in WT and tmem35a KO mice

To test the specific role of spinal cord α7 nAChR in tmem35a KO mice, effects of i.t. 

administration of the α7-specific agonist, PHA543613 (PHA) on withdrawal responses to 

mechanical and heat stimuli were determined. Based on an estimated ED50 of 65 nM PHA 

for α7–5HT3 chimera (Wishka et al. 2006) and the high affinity of PHA for α7 (Ki = 8.8 

nM) over α4β2 and 5HT3 receptors (Toyohara and Hashimoto 2010), PHA doses of 10 and 

50 nM were used. The effects of PHA on mechanical (Fig. 4A–B) and heat sensitivity (Fig. 

4C–D) were dose-dependent. Whereas a 10 nM dose of PHA produced analgesia to 

mechanical stimuli in WT (F2,12 = 3.68, p = 0.057), a 50 nM dose of PHA was needed to 

increase withdrawal threshold in KO mice (PHA x time interaction, F8,48 = 2.70, p = 0.016). 

Similarly, PHA produced analgesia to heat stimuli in WT mice (PHA x time interaction, 

F8,48 = 3.10, p = 0.007), but not in KO mice at either dose (PHA x time interaction, F8,60 = 

1.22, p = 0.305).

Spinal cord transcriptome reveals increased inflammatory activity in tmem35 KO mice

To gain further insights into the molecular mechanisms underlying the hyperalgesia in 

tmem35a KO mice, an unbiased transcriptomic approach was performed. RNAseq analysis 

(n=4/genotype) revealed 72 differentially-expressed genes (DEGs) between tmem35a KO 

and WT mice, with 39 down- and 33 up-regulated genes in the spinal cord (Table). Notably, 

the spinal cord of tmem35a KO mice had lower expression of fosB (log2[Fold Change, FC] 

= − 0.91, p<0.0001), serotonin receptor 3a (Htr3a, log2FC = − 0.70, p = 0.0001), and 

prodynorphin (Pdyn, log2FC = − 0.58, p = 0.0003) concomitant with a higher expression of 

S100 calcium binding protein A8 and A9 (Log2FC = +1.94 and +1.67, p < 0.0001) and 

neuropeptide S receptor 1 (Npsr1, log2FC = +1.12, p < 0.0001). Using the knowledge-based 

database (Ingenuity Pathway Analysis) these 72 DEGs were mapped onto known biological 

functions. Several themes emerged from these data and include reduced activity of 

intracellular transport of molecules, reduced neuroglia activation, increased inflammation, 

and increased inflammatory cell number (Fig. 5A). These DEGs also predicted 

corresponding increased activity of upstream regulators implicated in proinflammation (i.e., 
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TCF7L2, AIRE, EHF) and decreased activity of anti-inflammatory factors (i.e., IKBKB, 

CHUK, Fig. 5B). To validate the predictive increased number of immune cells, cells 

immune-reactive for ionized calcium binding adaptor molecule 1 (Iba1), a specific marker 

for microglia/macrophage, were estimated by quantifying Iba1+ cells across representative 

sections (n=3/mouse, 5WT, 4KO) of the dorsal horn lamina I through III (Fig. 5C). The 

mean number of Iba1+ cells were 11.8 (± 1.3) and 18.5 (± 1.3) cells/section for WT and KO 

mice, respectively, (Fig. 5C, p = 0.009, t = 3.6, df = 7).

Discussion

The present study demonstrates that genetic deletion of tmem35a results in the development 

of mechanical allodynia and hyperalgesia to heat and cold stimuli. A role for NACHO in the 

modulation of pain at the spinal level was further supported by the absence of analgesia 

following intrathecal administration of nicotine or PHA in tmem35a KO mice at doses that 

produced analgesia in WT mice. Given the newly discovered role of tmem35a-encoding 

protein, or NACHO, as a major chaperone for the assembly and trafficking of neuronal 

homomeric α7 in particular, and to a lesser extent for the heteromeric α3, α4, and α6-

containing nAChR subtypes, our findings highlight an important role for spinal neuronal α7 

in nociception. Further analysis of the underlying molecular changes in spinal cord 

transcriptome in tmem35a KO mice suggest that the absence of NACHO leads to a 

heightened state of neuroinflammation corroborated by an increased number of microglia in 

the dorsal horn. The contribution of glia activation in the spinal cord to central sensitization 

and pain is well known (Chen et al. 2018; Ji et al. 2016), however, it is not clear whether a 

loss of neuronal α7 nAChR activity in tmem35a KO mice alters the mechanisms by which 

glia activation produces pain. Further studies are needed to elucidate this crosstalk. 

Collectively, results from the present study support important roles for neuronal-specific 

NACHO in pain processing.

Mechanical allodynia and hyperalgesia to heat and cold stimuli in tmem35a KO mice 

suggest that neuronal α7, and to a lesser extent α3, α4, and α6-containing receptor 

subtypes, is dependent on its trafficking and assembly by NACHO. The absence of analgesia 

to heat following intrathecal PHA in tmem35a KO mice suggests that neuronal α7 nAChR is 

essential for modulating information related to noxious heat, confirming an earlier study that 

used selective agonist/antagonist in preclinical pain models (Rowley et al. 2008). 

Interestingly, analgesia to noxious heat was observed with a high dose of intrathecal nicotine 

in the KO mice. This observation suggests a possibility that activation of limited residual α3, 

α4 and α6-containing receptor subtypes in the tmem35a KO would require a nicotine dose 

that normally induces receptor desensitization in WT mice (Kem et al. 2018; Khan et al. 

1998; López-Hernández et al. 2009).

The mechanisms underlying mechanical allodynia in tmem35 KO mice are unclear. One 

possibility is that reduced activity of neuronal α3, α4, and α6-containing receptor subtypes 

contributes to mechanical allodynia. While in vitro evidence supports the role of NACHO in 

the assembly and expression of these receptors, the residual binding of their selective 

agonists (i.e., epibatidine and conotoxin II) in the brain of tmem35a KO mouse suggests at 

least a partial conservation of receptor function (Deshpande et al. 2020; Gu et al. 2016; 

Khasabov et al. Page 9

Neuroscience. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Matta et al. 2017). This would be consistent with the implicated roles of these receptors in 

the modulation of mechanical allodynia at the spinal cord level (Rowley et al. 2008; 

Wieskopf et al. 2015; Young et al. 2008). Thus, the observed mitigation of mechanical 

allodynia following a high dose of PHA543613 in the tmem35a KO mice suggests that 

residual α3, α4, and α6 could be activated with a high dose of the α7 selective agonist. 

Another possibility is that activation of glial α7 nAChR in the spinal cord by PHA543613 

might attenuate mechanical allodynia in tmem35 KO mice. Indeed, intrathecal 

administration of selective α7 agonists activate microglial anti-inflammatory activity by 

inhibiting pro-inflammatory cytokine (e.g., IL1β) production, and reduced mechanical 

allodynia in rat models of post-traumatic stress disorder and HIV-related inflammatory pain 

(Loram et al. 2010; Sun et al. 2017). Consistent with this notion, our preliminary data (not 

shown) indicate a functional preservation of microglial α7 nAChR in tmem35a KO mice 

evidenced by the presence of transcriptional responses of microglial-specific downstream 

target genes (e.g., IL1β, Tnfα, and S100B (Dash et al. 2016; Huang et al. 2013)) and the 

absence of neuronal-specific responses (e.g., c-fos and Egr1 (Thomsen et al. 2008; Vazquez-

Padron et al. 2010)) immediately following intranasal PHA. This possibility is also in line 

with the RNAseq data indicating increased neuroinflammation in the KO mouse spinal cord.

It is also possible that increased pain sensitivity in tmem35 KO NACHO could result from 

reduced GABAergic inhibition in the spinal cord. While NACHO is important for neuronal 

activity of α7, it is also involved in the assembly and trafficking of α4-containing receptors 

(Gu et al. 2016; Matta et al. 2017). This could impair the spinal cord GABAergic inhibitory 

tone as these neurons possess α4-containing receptors (Cordero-Erausquin et al. 2004; 

Rashid et al. 2006). Reduced Ca2+ currents in these neurons may lead to less inhibitory 

modulation (Du et al. 2017; Umana et al. 2013).

In addition, intracellular signaling pathways mediated by Ca2+entry are important for the 

development of pathological pain via activation of canonical calcium-dependent (e.g. 

CaMKs) mechanisms that regulate transcription of relevant gene targets (e.g., Pdyn, 
CaMKIV, Creb, and C1q) (Cavanaugh et al. 2011; D’Arco et al. 2015; Guo et al. 2004; 

Hagenston and Simonetti 2014; Lalisse et al. 2018; Luo et al. 2008; Matsumura et al. 2015; 

Schlumm et al. 2013; Simonetti et al. 2013; Stemkowski et al. 2016). Reduced neuronal 

Ca2+entry could produce similar gene dysregulation in the tmem35a KO spinal cord. Indeed, 

the transcriptomic findings in the spinal cord of tmem35a KO mice showed consistent 

changes in regulation of the aforementioned genes. Our transcriptomic data also showed an 

altered profile of receptors and nociceptive signaling molecules in the spinal cord of 

tmem35a KO mice. For example, reduced expression of Htr3a, fosB, and Pdyn (see Table) 

could be associated with hyperalgesia in these mice as they have been implicated in various 

pain models (Knisely et al. 2019; Negrete et al. 2017; Solecki et al. 2008; Tang et al. 2020; 

Tesarz et al. 2013; Wang et al. 2001). While the role of Htr3a-encoding peptide 5-HT3R in 

the spinal cord remains unclear with evidence both supporting and against its antinociceptive 

activity (Costa-Pereira et al. 2020; Khasabov et al. 1999; Raithel et al. 2018; Tang et al. 

2020), a lower level of Htr3a coupled with the hyperalgesia in the tmem35a KO mice 

support an anti-nociceptive role for this receptor in neurons. Likewise, reduced fosB 
expression, a transcriptional regulator highly expressed in immune cells, could also have 

compensatory implications. FOSB can induce NF-kB expression and associated 
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inflammatory response, and increased expression of fosB in the spinal cord has been 

associated with the development of chronic pain (Dimitrov et al. 2014; Luis-Delgado et al. 

2006; McClung and Nestler 2003; Tesarz et al. 2013). Nonetheless, our finding suggests an 

antinociceptive role of FOSB or a compensatory gene transcriptional response induced by 

the pain phenotype in KO mice. Similarly, neuropathic pain was associated with 

upregulation of spinal cord prodynorphin (Pdyn), a preprotein of a secreted peptide for 

kappa-opioid receptor expressed in lamina I of the dorsal horn (Ji et al. 2019; Wang et al. 

2001). Contrary to these observations, Pdyn KO mice exhibited mechanical allodynia 

associated with inflammatory pain (Negrete et al. 2017). Our findings of reduced spinal cord 

Pdyn expression concomitant with the mechanical allodynia in tmem35 KO mice support an 

antinociceptive function of prodynorphin.

Analysis of differentially-expressed genes by IPA predicted increased neuroinflammation in 

the KO mouse. This effect is consistent with the elevated immune responses found in α4, 

β2, and α7 KO mice (Fujii et al. 2007; Skok et al. 2005). The underlying mechanism for this 

neuron-microglia crosstalk mediated by nAChR remains to be determined. However, the 

altered expression of genes known to be highly expressed in immune cells (e.g., S100A8/9, 

SEMA4D, KLK6) highlights the importance of neuronal nAChRs in mediating neuron-

microglia interactions. S100A8/9 are calcium binding proteins that are found predominantly 

in myeloid cells and circulating neutrophils and have been implicated in pro-inflammatory 

response and inflammatory pain (Roth et al. 2003; Sunahori et al. 2006). SEMA4D is a 

secreted peptide which is found primarily in leukocytes, that has been shown to facilitate 

dendritic and axonal morphogenesis through activation of neuronal plexin receptors (Hall et 

al. 1996; Vodrazka et al. 2009). Increased SEMA4D activity was associated with 

neuropathic pain (Binmadi et al. 2012; Gong et al. 2019). KLK6, a member of serine 

proteolytic family expressed in oligodendrocytes and macrophages, has been implicated in 

inflammatory responses following insults of the central nervous system (Scarisbrick et al. 

2006; Yoshida 2003). Increased KLK6 expression could facilitate microglial mobilization in 

the spinal cord (Ghosh et al. 2004). These transcriptional changes could contribute to pain 

hypersensitivity in tmem35a KO mice.

In summary, we found that mice with loss of neuronal-specific NACHO exhibited 

mechanical allodynia and thermal hyperalgesia. This phenotype was associated with a loss 

of α7 or reduced neuronal activity of α3, α4, and α6-containing nAChR subtypes 

accompanied by molecular changes in the spinal cord indicative of neuroinflammation. 

Although these findings highlight the contribution of NACHO-expressing neurons in the 

spinal cord to the modulation of pain, future studies are needed to unravel the underlying 

molecular mechanisms.

Acknowledgments:

We thank Dr. Michael Georgieff for his generosity in financial support via the Harrison Chair Endowment to 
continue this important research. We thank Dr. Ralph Loring (Northeastern University) for his contribution in 
reviewing and editing our manuscript.

Grants: This work was supported by the Vikings’ Children Fund and Minnesota Medical Foundation to P.V.T., and 
NIH grants CA241627 and HL135895 to D.A.S.

Khasabov et al. Page 11

Neuroscience. Author manuscript; available in PMC 2022 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Abbreviations

NACHO Novel Acetylcholine receptor Chaperone

nAChR nicotinic acetylcholine receptor

CGRP Calcitonin gene-related peptide

IB4 Isolectin B4

IPA Ingenuity Pathway Analysis
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Highlights

• NACHO modulates spinal cord pain transmission

• Specific loss of neuronal α7 in tmem35a KO mice results in heat hyperalgesia

• The tmem35a KO spinal cord transcriptome indicates increased 

neuroinflammation
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Figure 1: 
NACHO expression in mouse dorsal spinal horn. (A) Confocal image of WT spinal cord 

showing NACHO+ neurons (green), lamina I marked with CGRP+ fiber (blue), and lamina II 

marked with IB4+ fibers (red) of the dorsal horn. (B) Confocal image showing absence of 

NACHO+ neurons in the tmem35a KO spinal cord without changes in the dorsal horn 

architecture. (C, D) Enlarged image of panel A (white box) showing colocalization of 

NACHO and peptidergic fibers in lamina I (panel C, CGRP+, arrows), but little with non-

peptidergic fibers (panel D, IB4+) in lamina II. In panel C, the pseudocolor blue was 

converted to purple for visual enhancement of overlapping areas (white). (E, F) 

Photomicrographs showing colocalization of NACHO (red) and α7 nAChR (α-Bgtx, green) 

in lamina I, II (panel E) and V, VI (panel F). Cell nuclei were labeled with DAPI (blue) in 

panel E and F. White boxes in insets indicate enlarged areas of the dorsal horn. Scale bars = 

100 μm for panel A and B, and 25 μm for panel E and F.
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Figure 2: 
Pain behaviors in tmem35a knockout (KO) adult male mice. KO mice showed 

hypersensitivity to mechanical (A) heat (B) and cold (C) stimuli as compared to WT control 

mice. Values are mean ± SEM, t-test, ***p<0.001, ****p<0.0001.
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Figure 3: 
Intrathecal administration nicotine produced analgesia to heat in tmem35a KO mice. In WT 

mice, nicotine (0.5 nmol) produced analgesia to mechanical and heat stimuli (panel A and 

C), but not at a higher (1.5 nmol) nicotine dose. In the KO mice, a high dose (1.5 nmol) of 

nicotine produced an analgesic response to heat, but not mechanical stimuli (panel B and D). 

Values are mean ± SEM, 2-way ANOVA with post hoc Bonferroni’s multiple comparisons 

test, **p<0.01, ***p<0.001.
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Figure 4: 
High dose intrathecal PHA543613 administration reduced mechanical allodynia in tmem35a 
KO mice. In WT mice, PHA at doses of 10 nM or 50nM produced analgesia to mechanical 

and heat stimuli (A and C). In KO mice, only the 50 nM PHA dose reduced mechanical 

allodynia (B), whereas sensitivity to heat was not altered (D). Values are mean ± SEM, 2-

way ANOVA with post hoc Bonferroni’s multiple comparisons test, *p<0.05, **p<0.01.
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Figure 5: 
Spinal cord transcriptomic analysis revealed increased neuro-inflammation in tmem35a KO 

mice. (A) A merged functional gene network showed a predictive reduction of intracellular 

transport of molecules (Z-score = −2.6, p = 0.0026) and neuroglia activation (Z-score = 

−1.0, p = 0.0005) concomitant with increased inflammation (Z-score = +1.4, p < 0.0001) 

and number of leukocytes (Z-score = +1.0, p = 0.0022). (B) Predictive activation of 

upstream regulators (e.g., TCF7L2, AIRE, and EHF, Z-score ≥ +2.0, p < 0.001) 

accompanied by reduced activity of inhibitors of inflammation (e.g., IKBKB, CHUK, Z-

score < −2.2, p < 0.0001). Legends: Red/pink = upregulation, green = downregulation, 

orange line = leads to activation, blue line = leads to inhibition, yellow line = findings 

inconsistent with state of downstream molecule, and grey line = effect not predicted. Arrows 

indicate direction of change in activity. (C) Estimation of microglia (Iba1+) in mouse spinal 

cord dorsal horn. Number of Iba1+ cells were counted in the dorsal horn lamina I through III 

using only visible cell bodies (arrows). Compared to WT, tmem35a KO mice showed a 

higher number of microglia in the dorsal horn. Representative confocal image of spinal cord 

dorsal horn labeled for CGRP (blue), IB4 (red), and Iba1 (green). Arrows indicate Iba1+ 

microglia. Scale bar = 50 μm. Values are mean ± SEM, t-test, **p<0.01.
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Table 1

The 72 differentially-expressed genes in the tmem35a KO spinal cord.

Entrez Gene Name ID
Log2(K 
O/WT)

P-value FDR (q-
value) Location Type(s)

RIKEN cDNA 1700063D05 gene
1700063 
D05Rik −1.43

0.00005
0.0131 Other other

acid phosphatase 1 Acp1 0.596 0.00015 0.0316 Cytoplasm phosphatase

actin alpha 1, skeletal muscle Acta1 −0.764 0.00025 0.0483 Cytoplasm other

aminoacylase 1 Acy1 −0.386 0.0001 0.0232 Cytoplasm peptidase

ADP ribosylation factor like GTPase 
4D Arl4d −0.578

0.00005
0.0131 Nucleus enzyme

aryl hydrocarbon receptor nuclear 
translocator like 2 Arntl2 −1.655

0.00015
0.0316 Nucleus

transcription 
regulator

ATP synthase membrane subunit g Atp5l −4.132 0.00005 0.0131 Cytoplasm enzyme

beaded filament structural protein 2 Bfsp2 1.697 0.00005 0.0131 Cytoplasm other

calpain 11 Capn11 1.064 0.00005 0.0131 Cytoplasm peptidase

carnosine synthase 1 Carns1 0.328 0.00005 0.0131 Cytoplasm enzyme

CD47 molecule Cd47 −0.417 0.00005 0.0131
Plasma 
Membrane

transmembrane 
receptor

cyclin-dependent kinase inhibitor 1C 
(P57) Cdkn1c 0.408

0.00005
0.0131 Nucleus other

centromere protein I Cenpi 5.132 0.00005 0.0131 Nucleus other

cholesterol 25-hydroxylase Ch25h −1.612 0.00005 0.0131 Cytoplasm enzyme

coproporphyrinogen oxidase Cpox 0.356 0.00005 0.0131 Cytoplasm enzyme

RIKEN cDNA D430020J02 gene
D43002 
0J02Rik 0.955

0.00005
0.0131 Other other

dpy-19 like Cmannosyltransferase 1 Dpy19l1 0.394 0.00005 0.0131 Other other

family with sequence similarity 107 
member A

Fam107 a
−0.334

0.00005
0.0131 Nucleus other

FAU ubiquitin like and ribosomal 
protein S30 fusion Fau 1.474

0.00005
0.0131

Cytoplasm
other

FCH and mu domain containing 
endocytic adaptor 1 Fcho1 −0.44 0.00005 0.0131

Plasma 
Membrane other

Fos proto-oncogene, AP-1 transcription 
factor subunit Fos −0.455

0.00005
0.0131 Nucleus

transcription 
regulator

FosB proto-oncogene, AP-1 
transcription factor subunit 
glycerophosphodiester

Fosb −0.913
0.00005

0.0131 Nucleus
transcription 
regulator

phosphodiesterase domain containing 3 Gdpd3 −1.986 0.00005 0.0131 Cytoplasm enzyme

gap junction protein gamma 2 Gjc2 0.274 0.0001 0.0232
Plasma 
Membrane transporter

G protein-coupled receptor 15 Gpr15 −0.753 0.00025 0.0483
Plasma 
Membrane

G-protein coupled 
receptor

gelsolin Gsn 0.431
0.00005

0.0131
Extracellular 
Space other

H2B clustered histone 11 H2bc21 −0.535 0.00015 0.0316 Nucleus other

HemK methyltransferase family 
member 1 Hemk1 −0.711

0.00005
0.0131 Nucleus enzyme

hypoxia inducible factor 3 subunit alpha
Hif3a −0.641

0.00005
0.0131 Nucleus

transcription 
regulator
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Entrez Gene Name ID
Log2(K 
O/WT)

P-value FDR (q-
value) Location Type(s)

3-hydroxy-3-methylglutaryl-CoA 
synthase 1 Hmgcs1 0.345

0.00005
0.0131

Cytoplasm
enzyme

homeobox A10 Hoxa10 −0.387
0.00005

0.0131 Other
transcription 
regulator

homeobox C10 Hoxc10 −0.356
0.00005

0.0131 Nucleus
transcription 
regulator

homeobox C8 Hoxc8 0.31
0.00005

0.0131 Nucleus
transcription 
regulator

homeobox D10 Hoxd10 −1.144
0.00005

0.0131 Nucleus
transcription 
regulator

heat shock protein family A (Hsp70) 
member 1A Hspa1a −0.954

0.00005
0.0131

Cytoplasm
enzyme

heat shock protein family A (Hsp70) 
member 1A Hspa1b −0.866

0.00005
0.0131

Cytoplasm
enzyme

heat shock protein family A (Hsp70) 
member 8 Hspa8 −1.216

0.00005
0.0131

Cytoplasm
enzyme

5-hydroxytryptamine receptor 3A Htr3a −0.697 0.0001 0.0232
Plasma 
Membrane ion channel

intercellular adhesion molecule 1 Icam1 −1.407 0.00005 0.0131
Plasma 
Membrane

transmembrane 
receptor

kallikrein related peptidase 6 Klk6 0.266
0.00025

0.0483
Extracellular 
Space peptidase

leucyl-tRNA synthetase 2, 
mitochondrial Lars2 −0.346

0.00005
0.0131

Cytoplasm
enzyme

lipocalin 2 Lcn2 −1.557
0.00005

0.0131
Extracellular 
Space transporter

lanosterol synthase Lss 0.35 0.00005 0.0131 Cytoplasm enzyme

lactotransferrin Ltf 2.511
0.00005

0.0131
Extracellular 
Space peptidase

major facilitator superfamily domain 
containing 2A Mfsd2a −0.321 0.00015 0.0316

Plasma 
Membrane transporter

MOB kinase activator 3B Mob3b 0.406 0.00005 0.0131 Other other

metallothionein 2 Mt2 −0.34 0.00005 0.0131 Cytoplasm other

neutrophilic granule protein Ngp 2.851
0.00005

0.0131
Extracellular 
Space other

neuropeptide S receptor 1 Npsr1 1.122 0.00005 0.0131
Plasma 
Membrane

G-protein coupled 
receptor

negative regulator of reactive oxygen 
species Nrros −0.712

0.0001
0.0232

Cytoplasm
other

neurexophilin and PC-esterase domain 
family member 4 Nxpe4 −0.574

0.00005
0.0131

Extracellular 
Space other

prodynorphin Pdyn −0.582
0.00025

0.0483
Extracellular 
Space transporter

phosphatidylserine decarboxylase, 
pseudogene 1 Pisd-ps1 −0.544

0.00005
0.0131 Other other

phosphatidylserine decarboxylase, 
pseudogene 2 Pisd-ps2 −0.405

0.0001
0.0232 Other other

POC1 centriolar protein A Poc1a 0.941 0.00005 0.0131 Cytoplasm peptidase

RAB7B, member RAS oncogene family Rab7b 0.519 0.00005 0.0131 Cytoplasm peptidase

REC8 meiotic recombination protein Rec8 1.13 0.00005 0.0131 Nucleus other

ribosomal protein L29 Rpl29 2.308 0.00005 0.0131 Cytoplasm other
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Entrez Gene Name ID
Log2(K 
O/WT)

P-value FDR (q-
value) Location Type(s)

ribosomal protein L34 Rpl34 −1.089 0.0001 0.0232 Cytoplasm other

ribosomal protein L35a Rpl35a 2.04 0.00005 0.0131 Cytoplasm other

ribosomal protein L7 Rpl7 −0.327
0.00015

0.0316 Nucleus
transcription 
regulator

S100 calcium binding protein A8 S100a8 1.935 0.00005 0.0131 Cytoplasm other

S100 calcium binding protein A9 S100a9 1.672 0.00005 0.0131 Cytoplasm other

semaphorin 4D Sema4d 0.277 0.00025 0.0483
Plasma 
Membrane

transmembrane 
receptor

serpin family A member 3
Serpina 3n

0.786
0.00005

0.0131
Extracellular 
Space other

serum/glucocorticoid regulated kinase 1 Sgk1 −0.519 0.00005 0.0131 Cytoplasm kinase

transferrin Trf 0.327
0.00025

0.0483
Extracellular 
Space transporter

transmembrane protein 117
Tmem1
17 0.339

0.00015
0.0316

Cytoplasm
other

transmembrane protein 35A
Tmem3
5a −2.973

0.00005
0.0131 Other other

trophoblast glycoprotein Tpbg −0.424 0.00005 0.0131
Plasma 
Membrane other

tubulin alpha 1c Tuba1c 1.727 0.00005 0.0131 Cytoplasm other

UDP glycosyltransferase 8 Ugt8a 0.32 0.0001 0.0232 Cytoplasm enzyme
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