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Abstract

High-dimensional single-cell technologies present new opportunities for biological discovery, but 

the complex nature of the resulting datasets makes it challenging to perform comprehensive 

analysis. One particular challenge is the analysis of single-cell time course datasets: how to 

identify unique cell populations and track how they change across time points. To facilitate this 

analysis, we developed FLOW-MAP, a graphical user interface (GUI)-based software tool that 

uses graph layout analysis with sequential time ordering to visualize cellular trajectories in high-

dimensional single-cell datasets obtained from flow cytometry, mass cytometry or single-cell RNA 

sequencing (scRNAseq) experiments. Here we provide a detailed description of the FLOW-MAP 

algorithm and how to use the open-source R package FLOWMAPR via its GUI or with text-based 

commands. This approach can be applied to many dynamic processes, including in vitro stem cell 

differentiation, in vivo development, oncogenesis, the emergence of drug resistance and cell 

signaling dynamics. To demonstrate our approach, we perform a step-by-step analysis of a single-

cell mass cytometry time course dataset from mouse embryonic stem cells differentiating into the 

three germ layers: endoderm, mesoderm and ectoderm. In addition, we demonstrate FLOW-MAP 

analysis of a previously published scRNAseq dataset. Using both synthetic and experimental 
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datasets for comparison, we perform FLOW-MAP analysis side by side with other single-cell 

analysis methods, to illustrate when it is advantageous to use the FLOW-MAP approach. The 

protocol takes between 30 min and 1.5 h to complete.

Introduction

High-dimensional single-cell technologies allow for unprecedented profiling of complex 

biological processes at the cellular level1,2. However, analyzing the resulting datasets 

remains challenging, as traditional methods for single-cell analysis such as 2D gating do not 

take advantage of the multi-dimensionality of this data, and do not scale easily for high-

dimensional analysis. Therefore, computational tools are required to leverage these data and 

gain a comprehensive understanding of the underlying biological systems. Dimensionality 

reduction methods have gained favor in this area because they compress high-dimensional 

datasets into 2D space in a human-interpretable manner3–27, but most of these approaches do 

not explicitly treat time as a variable for analysis. Toward this end, we have developed 

FLOW-MAP, a graph-based algorithm for visualizing high-dimensional single-cell datasets 

that can incorporate sequential time point information. This approach, previously applied to 

study the progression of cellular reprogramming28, can be used to identify unique cell 

populations at a single time point or connect these populations across multiple time points.

In this manuscript, we demonstrate how to use the FLOW-MAP software interface to 

analyze single-cell time course datasets, and we demonstrate the applicability of this graph 

layout approach in multiple contexts. FLOW-MAP graphs can accommodate a static 

characterization of a system, but the algorithm can also be applied to multiple time points 

and conditions to compare trajectories on a single graph. In Anticipated results, we compare 

and contrast FLOW-MAP with other single-cell analysis methods, using a simple 2D 

synthetic dataset and a more complex mouse embryonic stem cell (mESC) differentiation 

time course collected via mass cytometry. Using these datasets for demonstration, we 

provide practical guidelines on how to use FLOW-MAP and choose optimal parameter 

settings for data exploration. Moreover, we show how the FLOW-MAP algorithm can be 

applied to other data such as single-cell RNA sequencing(scRNAseq), and we highlight 

several improvements over the previously described version of FLOW-MAP28, including a 

graphical user interface (GUI).

Overview of the FLOW-MAP algorithm

FLOW-MAP is a dimensionality reduction tool with an easy-to-use software interface that 

allows researchers to explore patterns or rare phenomena in single-cell datasets from a single 

time point or over multiple time points obtained using flow cytometry, mass cytometry or 

scRNAseq experiments. The goal of these analyses is to identify relationships between cell 

types, visualize cellular trajectories and identify the molecular signatures associated with 

cell-state transitions. The FLOW-MAP algorithm builds single cells or cell clusters into a 

graph structure with similarity-based edge weights, and it allows for sequential time point 

ordering. After graph construction, the 2D layout is resolved by iterative force-directed 

layout with the ForceAtlas2 algorithm29. In visualization plots, node size is used to indicate 

the number of cells from the initial dataset that are represented by each graph vertex, if 
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clustered or downsampled. When downsampling is used, node size is determined by 

assigning removed cells to the nearest unremoved cell and sizing the node for the unremoved 

cell according to its number of assignments. Node color is used to indicate the properties of 

that cell type or cluster, such as marker expression level or condition type. Thus, FLOW-

MAP summarizes diverse changes in multiple cell populations over time in a single 2D 

graph, facilitating the identification of cellular trajectories and branch points in a robust and 

reproducible manner. FLOW-MAP graphs can contain one or multiple experimental 

conditions simultaneously to allow comparison of trajectories. This analysis provides 

visualization of dynamic biological processes and the relationships between cell populations 

across time points, for hypothesis generation and testing.

After data preprocessing and cleanup that is performed before FLOW-MAP analysis, there 

are three major stages to the FLOW-MAP algorithm: data preprocessing within FLOW-MAP 

(Steps 1–3), graph building (Step 4) and graph layout for visualization (Steps 5–9). An 

overview of the FLOWMAPR software workflow and the program output is shown in Fig. 1, 

and the synthetic datasets used for this demonstration are described in Supplementary Fig. 1. 

Implementation tips are given in Boxes 1 and 2, and troubleshooting tips are given in Table 

1. In the FLOWMAPR package, the function FLOWMAP implements the major steps of the 

algorithm from start to finish. Here we provide technical details for each of these steps for a 

single sample (Fig. 1a), multiple samples from a single time point (Fig. 1b), multiple time 

points from a single sample condition (Fig. 1c) and multiple time points with more than one 

condition at some or all time points (Fig. 1d).

FLOW-MAP was originally developed and implemented as a series of R scripts and applied 

to a series of cellular reprogramming time course datasets28. These scripts have been 

organized and compiled into the R package FLOWMAPR version 1.2.0, which is open 

source and freely available at https://github.com/zunderlab/FLOWMAP/. Graph and layout 

output from the FLOWMAPR package can be viewed or processed further using graph 

analysis software, such as Gephi30, a free and open-source software tool for Windows, Mac 

OS X and Linux systems (https://gephi.org/).

Comparison of FLOWMAP to other high-dimensional single-cell visualization algorithms

FLOW-MAP is one of several algorithms designed and implemented for single-cell analysis. 

Other tools include implementations of dimensionality-reduction techniques like principal 

component analysis (PCA)3,4 and t-distributed stochastic neighborhood embedding (t-

SNE)5–7 to project a high-dimensional manifold to an interpretable 2D pattern. These tools 

have been used largely to distinguish between patient samples, whether disease and normal, 

or cell types within a given sample. In a previous study by Amir et al.6, t-SNE was used to 

demonstrate the inter-patient variability of cancer using bone marrow taken from different 

acute lymphoblastic leukemia and acute myeloid leukemia patients. More recently, uniform 

manifold approximation and projection (UMAP) has gained popularity as an alternative 

method for dimensionality reduction of single-cell data16,17. Some tools, such as SPRING31, 

instead summarize the data using graph-based visualizations. Generally, these methods aim 

to recreate a progression of cell types from static data, based on a single time point. For 

example, SPRING was used by Tusi et al.32 to identify fated hematopoietic stem cells 
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(HSCs) from scRNAseq data of bone marrow. In contrast, FLOW-MAP aims to recreate one 

or more trajectories of cells undergoing processes over time from snapshots of time course 

data. Trajectory inference algorithms33,34 determine pseudotime to assign temporal ordering 

to cell types in dynamic processes. This ordering is used to infer trajectories and branch 

points within these processes. FLOW-MAP does not calculate ordering or branch points but 

uses temporal input to generate a visualization that allows users to generate hypotheses 

about key points in the processes, as well as perform downstream graph-based analyses35,36.

Limitations of FLOW-MAP

A major limitation of FLOW-MAP analysis that is inherent to all dimensionality reduction 

methods with real datasets is the lack of a known gold standard, or an objective function to 

calculate the accuracy and comprehensiveness of the cell populations and trajectories 

identified by the algorithm. Changing the FLOW-MAP parameters for marker choice, cluster 

number and edge density produces different output graph structures, and none of these are 

simply ‘correct’ or ‘incorrect’. Instead, they are all viewing the same high-dimensional 

dataset from different angles. Depending on the research question, some viewing angles may 

be more useful than others, and we propose that the best objective measure for the utility of 

a dimensionality-reduction method is its ability to predict cell trajectories and form testable 

hypotheses. Users may need to try many iterations of FLOW-MAP analysis with different 

settings to arrive at the most useful visualization to make population-level conclusions (see 

Anticipated results for examples).

General limitations of single-cell analysis methods also apply to the FLOW-MAP approach. 

On cell dissociation, all cell morphology and spatial information is lost. This limitation may 

be mitigated by new high-dimensional imaging methods, such as multiplexed error-robust 

fluorescence in situ hybridization37 and multiplexed ion beam imaging38, or imaging mass 

cytometry39, although cell segmentation remains a challenging problem for these 

approaches. FLOW-MAP can identify unique cell populations in heterogeneous single-cell 

datasets and visualize the trajectories of these populations as they change over time. 

However, the algorithm cannot directly retrace the fates of individual cells, because it relies 

on destructive single-cell technologies that cannot take multiple measurements from the 

same cell over time. Therefore, cellular trajectories identified by FLOW-MAP analysis must 

be tested by alternative methods to draw any conclusion about causal relationships between 

the observed molecular and cellular transitions. In addition, a central assumption for time-

resolved FLOW-MAP analysis is that each timed sample is collected with sufficient fine-

grained resolution so that no intermediate stage cell types are missed. If the timed samples 

are collected too far apart, the underlying ground truth cell trajectory will have a gap in it, 

and the graph-building algorithm may not be able to properly connect these gapped 

trajectories. Using a weighted emphasis on time point adjacency rather than the rigid 

connectivity rules of FLOW-MAP may be well suited to samples with anticipated trajectory 

gaps40,41. Along these lines, these destructive or ‘snapshot’ measurements present a caveat, 

which is specific for time course analysis in FLOWMAPR. Each time point will come from 

a separately collected sample, so sample variability and outliers will confound the analysis. 

For example, in setting up a cell differentiation time course, one of the collected samples 

may have followed a different course than all the other samples due to stochastic variability 
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or experimental error. This outlier time point will have an outsize skewing effect on the 

FLOW-MAP graph. To protect against this behavior, it is recommended to use experimental 

replicates for all samples, adjusting the number of replicates based on the expected 

variability in the biological system of interest. In addition, a single culture may be used to 

collect multiple time points, if the cells of interest can be collected fractionally without 

disturbing the biological system, as is the case for suspension cell culture or blood draws.

Similar to identifying trajectories, branch point identification is not defined by the algorithm. 

User parameters will have a large role in the number of branches on a graph, with the 

potential for branches to become merged with too many edges, or the formation of spurious 

branches when graphs have few edges. Any conclusions drawn from FLOW-MAP analysis 

will require additional experimental validation.

Applications of the FLOW-MAP algorithm

We previously applied FLOW-MAP to cellular reprogramming to map the transition from 

mouse embryonic fibroblasts to induced pluripotent stem cells (iPSCs)28. This approach 

identified heterogeneous expression of the reprogramming factors at the single-cell level, 

including an early Oct4highKlf4high stage that was followed by an intermediate stage, 

phenotypically similar to partially reprogrammed cell lines, a Lin28high cell population that 

diverges from the mESC-like end stage and a Ki67low branch that reverts to a mouse 

embryonic fibroblast-like phenotype. In addition to cellular reprogramming, FLOW-MAP 

can also be applied to study other dynamic cell processes assayed by single-cell 

measurement techniques, such as oncogenesis, metastasis, drug resistance, direct 

reprogramming, in vivo development and as described below, in vitro cell differentiation. In 

Anticipated Results, we demonstrate how the FLOW-MAP algorithm can be applied to other 

data such as single-cell transcriptomics, using a recently published scRNAseq dataset from 

Nestorowa et al.42.

Experimental design

Data preprocessing—Before FLOW-MAP analysis, data preprocessing and cleanup are 

performed using standard workflows (e.g., normalization, cleanup and cell-type gating) for 

the data type being analyzed. After loading the preprocessed dataset into R via the FLOW-

MAP package, the dataset may be further preprocessed by applying an Arcsinh transform. 

The mESC dataset presented in this manuscript was Arcsinh transformed after dividing by 

five, a standard transform for mass cytometry datasets13. Additional preprocessing by 

downsampling and clustering may be applied to reduce the size of the FLOW-MAP graph. 

This reduction may be necessary to successfully perform and complete the FLOW-MAP 

analysis, depending on available processor speed and memory allocation, as discussed below 

in Timing. Three varieties of downsampling and clustering methods are available in the 

FLOW-MAP package: (i) density-dependent downsampling, which helps to preserve rare 

cell populations11,12; (ii) random subsampling; and (iii) hierarchical clustering implemented 

in the Rclusterpp library as the hclust function (https://cran.r-project.org/web/packages/

Rclusterpp/). These methods can be performed either individually or sequentially in 

combination. If downsampling or clustering is performed, FLOW-MAP performs best with 

an overclustering approach, rather than attempting to capture the true number of distinct 
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populations in the dataset. As discussed in the following section, the graph structure and 

force-directed layout will draw these overclustered cells together to recapitulate the distinct 

underlying cell populations.

FLOW-MAP graph building—After the optional downsampling and clustering steps, 

FLOW-MAP computes the distance matrix for the dataset with either Euclidean or 

Manhattan city block distances. These distances are used to construct a graph containing all 

of the cells or cell clusters, with the number of edges per vertex determined by local density. 

Vertices with lower local density receive fewer edges, and vertices with higher local density 

receive more edges, with ‘Edge Min’ and ‘Edge Max’ set as user-defined parameters. If 

‘Edge Min’ and ‘Edge Max’ are set equal to each other, a kNN graph would be built, where 

k is equal to the number of edges. Local density is estimated by counting the number of 

neighbors within a high-dimensional sphere, the radius of which is defined by a fixed 

quantile parameter derived from all edges in the distance matrix. Once the number of 

allotted edges per vertex (i.e., k) are determined, each vertex will have its corresponding 

number of edges drawn connecting that vertex to its k-nearest neighbors from the same or 

adjacent time point. In addition to these density-based edges, the edges of the minimum 

spanning tree are added to the graph to ensure that the final graph is connected to remain 

proximal during the force-directed layout step. For time course dataset graph building, the 

distance matrices, density calculation, edge selection and minimum spanning tree overlay 

are performed sequentially by pairs of time points n and n + 1. For example, FLOWMAPR 

will isolate the vertices from time point 1 and the vertices from time point 2 to calculate the 

distances between all vertices. This prevents connections between nonadjacent time points. 

As described above, edges will be drawn from each vertex to its k-nearest neighbors, where 

k is chosen for each vertex in a density-based manner according to the ‘Edge Min’ and 

‘Edge Max’ edge parameters. The software proceeds in this manner until edges are drawn 

between nodes from the last two time points. After graph construction, the vertices are 

annotated with the single-cell measurement parameters. If the original dataset was 

downsampled or clustered, these are recorded as median values. Moreover, upsampling is 

performed using the starting dataset to record the percent of the total cells associated with 

each graph vertex. Annotations for sample time point, condition or name are also added if 

applicable. Edge weights in the graph are assigned by the inverse distance between the 

connected vertices.

FLOW-MAP graph layout and visualization—After graph construction and annotation 

are complete, the FLOWMAPR software first outputs a graph file in GRAPHML format 

without any layout information, and then applies the ForceAtlas2 layout algorithm29 

implemented in R to the graph for a defined number of iterations, to produce an x–y layout 

that is output as a second GRAPHML file. These graphml output files can be loaded into 

graph analysis software programs, such as Gephi (https://gephi.org/)30 for interactive graph 

manipulation such as force-directed layout with manual perturbations, which can help to 

relieve overlapping branches that become trapped in local energy minima. Automated output 

of the final graph layout in PDF or PNG format from the FLOWMAPR package can be used 

to identify the characteristic marker expression patterns for every region of the graph.
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Extending FLOW-MAP to scRNAseq—In addition to mass cytometry datasets, FLOW-

MAP can also be applied to other single-cell data types, including scRNAseq datasets. We 

demonstrate this capability in Anticipated results using a publicly available dataset from 

Nestorowa et al.42, who performed scRNAseq analysis on lineage-depleted bone marrow to 

profile cell-type heterogeneity in early hematopoiesis. We recommend preprocessing data in 

Seurat43 for quality control, normalization and PCA, determining an elbow point to decide 

on a number of principal components to analyze by FLOW-MAP.

Materials

Equipment

• Hardware. 32- and 64-bit computer with at least a 2.2-GHz processor running 

Windows or Mac OS X (10.11 systems); ≥4 GB of RAM (16 GB preferred). An 

internet connection is needed for downloading the R and FLOWMAPR packages 

from GitHub, as well as any prerequisite packages

• Data. Example datasets used in this paper include the 2D synthetic single-cell 

data (available as Supplementary Data 1 and on Cytobank: http://

community.cytobank.org/cytobank/experiments/71954) and the mESC mass 

cytometry dataset (available as Supplementary Data 2 and on Cytobank: http://

community.cytobank.org/cytobank/experiments/71953)

Software

• R. Users can install R by downloading the appropriate R-x.y.z.tar.gz file from 

http://www.r-project.org and following the system-specific instructions. The 

version of FLOWMAPR described in this manuscript was developed and tested 

on version 3.5.3 of R

• FLOWMAPR. FLOW-MAP R version 1.2.0 package, called FLOWMAPR, is 

free software available on GitHub (https://github.com/zunderlab/FLOWMAP/) 

and licensed under the MIT license (https://opensource.org/licenses/MIT), and it 

can be redistributed under the terms of that license. FLOWMAPR depends on R 

libraries: igraph, Rclusterpp, SDMTools, robustbase, shiny, tcltk, rhandsontable, 

spade and flowCore from Bioconductor, and scaffold published on the Nolan Lab 

GitHub12,27. It runs on Windows and Mac OS X 10.11 systems

• Gephi. Gephi is a free, open-source program that can be used to change the 

aesthetics of the final FLOW-MAP graph. Users can download Gephi from 

http://www.gephi.org30. We recommend using Gephi version ‘0.9.2-

SNAPSHOT’, which is the most compatible with graphml files from the 

FLOWMAPR package

Equipment setup

FLOWMAPR installation—To install the FLOWMAPR package from GitHub, start R 

and enter the following:
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> install.packages(“devtools”)

> library(devtools)

> install.packages(“SDMTools”)

> install.packages(“igraph”)

> install.packages(“robustbase”)

> install.packages(“shiny”)

> install.packages(“tcltk”)

> install.packages(“rhandsontable”)

> source(“http://bioconductor.org/biocLite.R“)

> biocLite(“flowCore”)

> library(devtools)

> install_github(“nolanlab/scaffold”)

> install_github(“nolanlab/Rclusterpp”)

> install_github(“nolanlab/spade”)

> install_github(“zunderlab/FLOWMAP”)

Procedure

Setting up files and specifying parameters for FLOW-MAP analysis ● Timing 1–5 min

▲ CRITICAL To run a FLOW-MAP analysis on a given dataset: the first critical step is to 

choose a FLOW-MAP mode that reflects the question the user intends to ask about the data.

1. Choose the most applicable FLOW-MAP mode. The available modes and their 

purposes are as follows (also shown in Fig. 1):

• OneFLOW-MAP visualizes a single time point. This mode can be 

useful for visualizing the heterogeneity and unique subpopulations 

present within a single sample (one time point, one condition).

• OneFLOW-MAP has a special subcase, where you can visualize 

multiple conditions at a single time point.

• SingleFLOW-MAP visualizes one time course. This mode is the core 

functionality of the FLOWMAPR package and is used to map 

trajectories of cells undergoing some process over time within a single 

condition.

• MultiFLOW-MAP visualizes two or more different conditions. This 

mode can be useful for comparison of the effects of two or more 

treatments across time.

2. Format the data so that it can be accessed and correctly parsed by the selected 

FLOWMAPR package. For the OneFLOW-MAP mode for a single sample or 

multiple conditions, follow option A or B, respectively. For SingleFLOW-MAP, 

follow option C, and for MultiFLOW-MAP, follow option D.

A. OneFLOW-MAP mode (mode <- ‘one’)
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i. Name the flow cytometry standard (FCS) file as desired for 

outputted graphs and PDFs, but otherwise no precautions are 

necessary in file naming as no information is parsed from the 

FCS file in this mode.

B. OneFLOW-MAP mode with multiple conditions (mode <- ‘one-
special’)

i. To properly label each condition, include the appropriate 

condition label as the first part of the FCS file name separated 

by ‘-’ or ‘.’ characters (e.g., ‘ConditionA-othertext.fcs’, where 

‘ConditionA’ will be the condition label).

C. SingleFLOW-MAP mode (mode <- ‘single’)

i. Ensure that the FCS files include time labels that are named 

such that they can be properly sorted by labels (e.g., use time 

labels, such as ‘01.fcs’, ‘02.fcs’, ‘04.fcs’, ‘06.fcs’, and ‘10.fcs’ 

instead of ‘1.fcs’, ‘2.fcs’, ‘4.fcs’, ‘6.fcs’, and ‘10.fcs’: in R, 

these labels would sort ‘1.fcs’ and ‘10.fcs’ as the first two 

labels instead of ‘10.fcs’ last).

ii. Ensure that time labels in FCS file names use numeric 

characters, not alpha characters (e.g., use ‘01.fcs’ and not 

‘one.fcs’). Note that when FCS files are loaded into 

FLOWMAPR, any ‘Time’ variables already in the data will be 

removed and overwritten with the time point of each FCS file.

D. MultiFLOW-MAP mode (mode <- ‘multi’)

i. If the file variable provided is a directory, then make sure that 

each subfolder in this directory contains samples from the 

same time point. If FCS files in the same subfolder appear to 

come from different time points (e.g., a folder containing 

‘ConditionA-d01.fcs’ and ‘ConditionB-d02.fcs’), then 

FLOWMAPR will pick one time label arbitrarily.

ii. To properly label each condition within each time point, 

include the appropriate condition label as the first part of the 

FCS file name separated by ‘-’ or ‘.’ characters (e.g., 

‘ConditionA-d01.fcs’, where ‘ConditionA’ will be the 

condition label and ‘01’ will be the time label).

iii. Do not use any numeric characters in the name of the FCS file 

unless they specify time. Change any labels for the conditions 

in the FCS file name to be alpha characters (e.g., ‘Condition1-

t24.fcs’ should be renamed to ‘ConditionOne-t24.fcs’, or the 

time label will be incorrectly parsed as ‘124” instead of ‘24’ 

for this file).
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3. Establish variable names as shown in the example provided below. The variables 

that need to be assigned before running FLOWMAPR are described in more 

detail in Box 1, and tips for determining their values are detailed in Box 2.

> files <- “FLOW-MAP/inst/extdata/SingleFLOWMAP”

> mode <- “single”

> save.folder <- “/Users/mesako/Desktop”

> var.annotate <- list(“marker1” = “marker1”, “marker2” = “marker2”)

> var.remove <- c()

> minimum <- 2

> maximum <- 5

> distance.metric <- “manhattan”

> subsamples <- 200

> cluster.numbers <- 100

> seed.X <- 1

> clustering.var <- c(“marker1”, “marker2”)

▲ CRITICAL STEP Alternatively, you can take advantage of FLOWMAPR’s GUI if you 

are working with FCS files. Setting up the variables described above can instead be done in 

a series of windows that leverage the shiny R package. To launch the GUI, type:

> FLOWMAPR::LaunchGUI()

How to assign FLOWMAPR settings in the GUI is demonstrated in Fig. 2.

Running FLOW-MAP ● Timing 10–45 min

4. Run the FLOWMAP() function with all specified input parameters. If running 

with all default settings, the user will only need to provide the correct mode, files 

for input and the clustering variables to use to cluster, as well as inform the shape 

of the FLOW-MAP graph.

> FLOWMAP(mode = mode, files = files, clustering.var = 

clustering.var)

If you have specified your own settings in Step 3, pass these variables to the 

FLOWMAP() function for customized analysis as shown:

> FLOWMAP(mode = mode, seed.X = seed.X, files = files, var.remove 

= var. remove, var.annotate = var.annotate, clustering.var = 

clustering.var, cluster.numbers = cluster.numbers, subsamples = 

subsamples, distance. metric = distance.metric, minimum = minimum, 
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maximum = maximum, save. folder = save.folder, name.sort = 

name.sort, downsample = downsample, savePDFs = savePDFs, 

which.palette = which.palette)

If you have set up the run in the FLOWMAPR GUI, execute the FLOWMAP 

function by instead pressing the button labeled ‘Run FLOWMAPR’.

When running data other than FCS files as a starting input, the 

FLOWMAPfromDF() function can be used. There are subtle differences between 

this function and the main FLOWMAP() function, especially in terms of 

available parameter settings, which are detailed in Box 3.

Depending on the settings specified in Step 3, messages similar to the following 

output should appear on your R console:

Seed set to 1

check FALSE folder

output.folder is 2018-01-01_12.30.00_SingleFLOWMAP_run

Subsampling all files to: 200

Reading FCS file data from: d00.fcs

Subsampling d00.fcs to 200 cells

Fixing channel names from: d00.fcs

Removing unnecessary channel names from: d00.fcs

Transforming data from: d00.fcs

…

IGRAPH 5904bd7 UNW- 600 1938 --

+ attr: marker1 (v/n), marker2 (v/n), timepoint (v/n), 

percent.total 

| (v/n), name (v/n), size (v/n), x (v/n), y (v/n), weight (e/n),

| label (e/c), sequence_assignment (e/n) + edges from 5904bd7 

(vertex names):

[1] 1-- 48 1-- 3 2-- 31 2-- 61 3-- 17 4--100 4-- 67 5-- 84 5—26

[10] 6-- 54 6-- 16 7-- 8 1-- 7 7-- 20 8-- 55 8-- 10 8-- 52 9—69

[19] 9-- 17 9-- 32 9-- 46 10-- 55 10-- 88 11-- 79 11-- 91 12-- 74 

12—50

[28] 13-- 37 13--100 14-- 22 14-- 36 15-- 33 15-- 19 15-- 44 16-- 

54 3—16

[37] 16-- 17 18-- 25 18-- 51 19-- 95 20-- 24 20-- 48 20-- 67 21-- 

35 21—99

[46] 21-- 80 22-- 36 22-- 49 23-- 52 23-- 43 23-- 72 23-- 76 23-- 

26 24—67

+… omitted several edges

This final output that prints an igraph graph object indicates that analysis is complete and 

that all results have been generated without error.
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▲ CRITICAL STEP Note that the duration of this step will depend largely on your 

settings, as well as the number of computer cores available and the speed of your computer’s 

processor. More nodes in your graph, as determined by the number of individual cells or 

clusters of cells from each time point and condition (if relevant), will take longer to process, 

especially during the step that determines the force-directed layout of the graph.

▲ CRITICAL STEP You may get the warning message below in R, which can be ignored, 

as it will have no effect on the output of your run.

Warning messages:

1. In if (subsamples == FALSE) {:

the condition has length >1 and only the first element will be used?

? TROUBLESHOOTING

Visualizing FLOW-MAP results ● Timing 5–20 min

▲ CRITICAL Though FLOWMAPR automatically generates PDF files of the final graph 

image, the user may find producing aesthetically pleasing graphs easier in Gephi. We 

recommend scanning through the resulting graphs in the FLOWMAPR output during the 

iteration process to arrive at the best settings. After doing so, we find that Gephi allows for 

greater customization of visual settings.

5. Open one of the FLOW-MAP graphml files in Gephi. We recommend starting 

with the resulting graphml file that contains the substring ‘xy_orig_time’ in the 

file name as this graph has already been partially resolved with a force-directed 

layout.

6. Set the node size in the FLOW-MAP graph. The nodes will need to be the 

intended size in the graph before running the force-directed layout. We 

recommend setting the node size to scale with the percent.total parameter, 

describing the relative size of each cluster, if relevant (Supplementary Fig. 2a).

7. Resolve the FLOW-MAP graph further using Gephi’s ForceAtlas2 algorithm29 

(Supplementary Fig. 2b). If regions of the graph appear tangled while the 

ForceAtlas 2 algorithm is actively running, the user can move and manipulate the 

nodes to untangle the graph (Supplementary Fig. 2c). As ForceAtlas 2 does not 

have a stopping time, we recommend running the algorithm until there are no 

tangles and the graph stops changing. Steps to manipulating the final FLOW-

MAP graph in Gephi are also shown in Supplementary Fig. 2. We recommend:

• Trying to toggle on the ‘Dissuade Hubs’ option in ForceAtlas 2. This 

option can be helpful to resolve graphs that are less spread out 

(Supplementary Fig. 2d).

• Toggling on the ‘Prevent Overlap’ option in ForceAtlas 2. This setting 

will spread the nodes to all be clearly visible as opposed to stacked on 

top of each other (Supplementary Fig. 2d).
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? TROUBLESHOOTING

8. (Optional) Following the force-directed layout step, color the final graph by the 

expression of different markers using the ‘Appearance’ pane in Gephi.

9. Export final figures from the FLOW-MAP graph to PDFs or image files in the 

‘Preview’ option within Gephi.

? TROUBLESHOOTING

Troubleshooting

Troubleshooting advice can be found in Table 1.

Timing

Steps 1–3, setting up files and specifying parameters for FLOW-MAP analysis: 1–5 min

Step 4, running FLOW-MAP: 10–45 min

Steps 5–9, visualizing FLOW-MAP results: 5–20 min

In a SingleFLOW-MAP with no downsampling (uses random subsampling), 1,200 total 

nodes take ~2 min to produce results (including PDFs) on a MacBook Pro (2.7 GHz Intel 

Core i5, 16 GB RAM). In comparison, 3,000 total nodes take ~6 min to produce all results, 

6,000 total nodes take ~21 min and 12,000 total nodes take ~59 min on the same computer. 

These all ran with a subsample:cluster. numbers ratio of 2:1.

Anticipated results

The output of FLOWMAPR is a FLOW-MAP visualization, a 2D graph representation of 

high-dimensional single-cell time course data. The layout of this graph is resolved using a 

ForceAtlas 2 algorithm to produce a final graph that shows patterns of change across time 

across multiple markers, simultaneously.

To aid in data interpretation, FLOWMAPR creates a final graph where each node has the 

associated median expression level for each marker in the analysis, as well as what 

percentage of cells are represented in the node. With expert knowledge of the biological 

system, the user can use a FLOW-MAP graph to visualize relationships between cell states 

over time, as well as markers of interest that may regulate the process under study. 

Repeating the same FLOWMAPR analysis with multiple settings of seed.X can be used to 

produce ‘technical replicates’ and demonstrate the analysis’ reproducibility. This process 

can replicate FLOW-MAP graphs with different random subsampling from each FCS file to 

ensure that patterns are robust.

Specifying different FLOW-MAP settings

We demonstrate the effects of varying multiple FLOW-MAP parameters in Fig. 3, including 

the ratio of the cells subsampled to the number of clusters (i.e., ‘cluster ratio’ (Fig. 3b)) and 

edge density parameters (Fig. 3c). The resulting graphs from parameter testing can be found 
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in Supplementary Data 1. Too few clusters for a given sample results in ‘averaging’ of the 

single-cell events and reduces separation, although too many clusters greatly increases 

computation time. Choice of edge parameters represents a balance between too few edges, 

which leads to a graph lacking cohesion, and too many edges, which restricts the branching 

separation of the graph. The choice of measurement parameters used in the clustering and 

graph-building steps can also have a dramatic effect on the final graph; using all available 

markers in a high-dimensional dataset is not recommended, because uninformative or 

confounding variables may dilute or even distort the underlying cell population trajectories.

Comparison of FLOW-MAP with other single-cell analysis methods

To compare the performance of FLOW-MAP for time course analysis with other single-cell 

dimensionality-reduction methods, we first applied each method to a 2D synthetic time 

course dataset. This dataset was created to mimic cell differentiation over time, with three 

diverging lineage branches that emerge from a single progenitor (Supplementary Fig. 1). 

Stripes were drawn on this dataset, and corresponding index values were assigned to 

evaluate the performance of the methods. Comparing FLOW-MAP to PCA, t-SNE, diffusion 

maps, SPADE, Monocle and UMAP shows the ability of all of these techniques to 

recapitulate the general structure of the synthetic dataset, placing assigned stripes on the 

correct branch in the correct order (Fig. 4a–g). A similar comparison on other datasets, 

including higher-dimensional versions of the synthetic dataset used, swissroll44, spiral45 and 

gaussian distributions, show some variation in the 2D layouts from the techniques, while 

mostly recapitulating the expected layout (Supplementary Figs. 3–8). The datasets and code 

used to generate the synthetic datasets can be found in Supplementary Data 2.

FLOW-MAP analysis of mESC differentiation time course

To further compare the performance of FLOW-MAP against other single-cell 

dimensionality-reduction methods, we applied each method to a comprehensive mESC 

differentiation time course dataset measured by mass cytometry (Supplementary Data 3). 

The mESC differentiation experiment was performed using three separate culture conditions 

that favor differentiation into the endoderm lineage (with activin and epidermal growth 

factor (EGF))46, mesoderm lineage (with BMP4)47, or ectoderm lineage (N2B27 basal 

medium with no additional supplements)48. Time course samples were collected every day 

over an 11-day period to capture the intermediate stages of cell differentiation toward the 

three germ layers in vitro (Supplementary Fig. 9a). Individual samples were collected as 

previously described28. After sample barcoding49, the pooled cell samples were stained with 

an antibody panel that covers markers of pluripotency and developmental regulators for the 

three germ layers (Supplementary Methods, Supplementary Table 1).

The data presented in this manuscript were collected by mass cytometry13,50,51 before 

preprocessing for FLOW-MAP analysis with bead-based normalization (https://github.com/

nolanlab/bead-normalization52;] Supplementary Fig. 9b), sample debarcoding (https://

github.com/zunderlab/single-cell-debarcoder53;] Supplementary Fig. 9c) and sequential 2D 

cleanup gating on iridium intercalator × event length and histone/nuclear positivity to 

remove cell debris (Supplementary Fig. 9d; www.cytobank.org)54,55. After sample 

preprocessing and cleanup, the mESC differentiation time course dataset was analyzed by 
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FLOW-MAP, with three samples per time point after embryoid body plating at day 2.5. 

More details on data generation can be found in the Supplementary Methods. The resulting 

FLOW-MAP graph structure illustrates the cellular trajectories and lineage branching pattern 

that result from the three differentiation culture conditions (Fig. 4h). Data following cleanup 

gating and graphs used to generate figures for the stem cell time course can be found in 

Supplementary Data 3.

Further, we show a comparison of FLOW-MAP to alternative dimensionality-reduction 

methods (Fig. 4i–n). Building sequential time information into the graph provides a 

significant advantage for identifying cell trajectories, as demonstrated by the results obtained 

from withholding the time point information from FLOW-MAP analysis (Supplementary 

Fig. 10). Ultimately, the utility of this and other dimensionality-reduction methods will be 

determined by their ability to identify predictive models and testable hypotheses about cell 

populations and their behavior. This FLOW-MAP method was previously used to map the 

cellular trajectories of mouse iPSC reprogramming28 and helped to identify a previously 

undescribed intermediate stage that is phenotypically similar to ‘partially reprogrammed’ 

cell lines56.

Analysis of 2D dot plots can provide insight into cellular transitions (Fig. 5a and 

Supplementary Figs. 11–13), but FLOW-MAP analysis of the mESC differentiation time 

course dataset allows simultaneous comparison of differentiation to the three germ layers in 

a combined phenotypic space (Fig. 5b). Cell populations identified by the Louvain 

modularity method for community detection implemented in Gephi57 enable violin plot 

expression profile visualization for different regions of the differentiation time course graph 

(Fig. 5c). Coloring each node by time point enables visualization of temporal progression for 

cell trajectories (Fig. 6a). Coloring each node by experimental condition reveals the 

contribution of each differentiation culture to the overall graph structure (Fig. 6b). Coloring 

each node by median values of the pluripotency and differentiation markers measured by 

mass cytometry reveals the underlying cell populations that contribute to the graph structure 

(Fig. 6c–j). Unexpectedly, SSEA1 expression was observed to increase in the initial stages 

of differentiation during embryoid body formation (Fig. 6c). This unanticipated result is 

likely because of SSEA1 repression during mESC monolayer culture, caused by 

supplementing the mESC growth medium with MEK and GSK3 inhibitors (2i)58. On 

embryoid body suspension culture in differentiation medium without 2i, this inhibition is 

relieved, which we hypothesize to result in a transient spike of SSEA1 expression.

After embryoid body plating on day 2.5, the cell molecular expression profiles transition 

along defined trajectories into phenotypes that indicate formation of endoderm, mesoderm 

and ectoderm lineages. In an unanticipated result, activin/EGF-supplemented culture 

resulted in an epiblast stem cell (EpiSC)-like phenotype, characterized by Oct4 and EpCAM 

expression (Fig. 6d,e), as well as the desired endoderm population, characterized by FoxA2 

and Gata4 expression (Fig. 6f,g). This unexpected result is consistent with the fact that 

activin/fibroblast growth factor (FGF) is commonly used to maintain mouse EpiSCs59,60, as 

well as the phenotypically similar human pluripotent stem cells, such as human embryonic 

stem cells61 and iPSCs62. The mesoderm cell population induced by BMP4-supplemented 

differentiation medium is characterized by Gata4 and PDGFR-α expression (Fig. 6g,h), 
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while the neuroectoderm cell population induced by unsupplemented N2B27 culture 

medium is characterized by Sox2 expression at intermediate time points, followed by TuJ1 

expression at later time points (Fig. 6i,j). The complete stem cell time course dataset is 

available for download and analysis at www.cytobank.org. FLOW-MAP plots colored by 

additional measurement parameters are shown in Supplementary Fig. 14. This combined 

FLOW-MAP analysis provides a global perspective on mESC differentiation into the three 

germ layers from separate culture conditions.

When FLOW-MAP analysis is performed on the three differentiation conditions individually 

rather than in combination, the molecular trajectory for the cell populations in each culture 

condition is derived without interference from the other conditions. Individual FLOW-MAP 

analysis of the ectoderm differentiation samples reveals three primary cell trajectories, with 

a TUJ1+ neuronal trajectory on the left side of the plot and CCR9-expressing and EpCAM-

expressing trajectories on the right side of the plot (Fig. 7a). Differentiation of the mesoderm 

differentiation samples individually reveals a more uniform cellular trajectory, without 

distinct branch points, that appears to follow an Oct4/Klf4/Cdx2/CCR9/PDGFRα/Flk1/

Gata4/CD44 progression from pluripotency to a mesoderm state (Fig. 7b). Individual 

FLOW-MAP analysis of the endoderm differentiation samples reveals a primary bifurcation 

in the graph structure between the FoxA2-expressing endoderm branch, which progresses to 

express EpCAM and CD24 at later time points, and the Oct4/Nanog/SSEA-expressing 

EpiSC-like branch (Fig. 7c). In the endoderm time course graph structure, we observe a 

relatively sparse, but still substantial, number of intermediate cell types bridging the 

phenotypic space between the two major branches. We hypothesize that this sparse 

intermediate phenotypic space is composed of cells differentiating from the EpiSC-like cells 

into the endoderm (FoxA2+) and neuroectoderm (Fig. 7b) lineages over the entire time 

course. The complete sets of FLOW-MAP plots for each separate condition colored by every 

measurement parameter are shown in Supplementary Figs. 15–17. This type of analysis by 

the FLOW-MAP algorithm provides an intuitive window into mass cytometry datasets, 

enabling the visualization of discrete cellular trajectories and their molecular determinants 

simultaneously.

Using FLOW-MAP to analyze scRNAseq data

To demonstrate the application of FLOW-MAP to analyze scRNAseq data, we used a 

scRNAseq dataset published by Nestorowa et al.42, who performed scRNAseq analysis on 

lineage-depleted bone marrow to profile cell-type heterogeneity in early hematopoiesis. 

Surface marker cell typing as provided in the original analysis showed grouping of HSCs 

and multipotent progenitors with one another. Other cell types mostly grouped together, but 

there was overlap between common myeloid progenitors and granulocyte-macrophage 

progenitors, as well as common myeloid progenitors and megakaryocyte-erythroid 

progenitors (MEPs; Fig. 8a).

For FLOW-MAP analysis of Nestorowa et al.42, the original quality control parameters were 

used to maintain analysis of the same genes and cells as the original analysis. Consistent 

with standard scRNAseq analysis, we performed PCA before further dimensionality 

reduction32,63–65. Data normalization and PCA were performed using Seurat43. The first five 

Ko et al. Page 16

Nat Protoc. Author manuscript; available in PMC 2021 February 21.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.cytobank.org/


principal components were used for FLOW-MAP analysis. The data and code used to 

generate figures for the Nestorowa et al.42 scRNAseq dataset can be found in Supplemental 

Data 4.

Gata1 expression points to the rightmost group of MEPs as erythroid-fated cells (Fig. 8b), 

with decreasing Gata2 expression in the leftmost MEPs (Fig. 8c), representing canonical 

GATA factor switching66. Using transcript signatures identified in a separate scRNAseq 

study by Tusi et al.60, erythroid cells (Fig. 8d,e), cells in transition to erythroid (Fig. 8f), 

basophil-fated cells (Fig. 8g) and megakaryocyte-fated cells (Fig. 8h) were identified. 

Notably, Gata1, Mt2, and Hpn4 show a gradual transition from HSCs to the erythroid 

population, suggesting a potential non-canonical GATA2-independent differentiation 

trajectory.

Kee et al.65 showed scRNAseq of mesencephalic dopamine neurons and subthalamic 

nucleus neurons at multiple time points in development, showing similarities in the 

trajectories. FLOW-MAP analysis recapitulated the major findings of that study 

(Supplementary Fig. 18 and Supplemental Data 5). By including FLOW-MAP in current 

scRNAseq analysis pipelines, differentiation trajectories can be better visualized from time 

course datasets.

Reporting Summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability

Mass cytometry datasets have been placed on Cytobank for the stem cell differentiation time 

course (http://community.cytobank.org/cytobank/experiments/71954) and synthetic 2D 

single-cell data (http://community.cytobank.org/cytobank/experiments/71953). Original 

scRNAseq data from Nestorowa et al.42 and Kee et al.65 can be found on NCBI GEO 

(accession numbers GSE81782 and GSE87069, respectively).

Code availability

The code to run FLOW-MAP has been shared on Github (https://github.com/zunderlab/

FLOWMAP/).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1 |

FLOWMAP function

In this Box, we describe all the parameters you can set within the FLOWMAP() function, 

as well as some guidelines on what the default values are set to and how you can pick 

values for your given analysis.

• mode: this variable specifies what type of FLOW-MAP analysis you want to 

run.

• files: this variable specifies the input (cell data) for the FLOW-MAP run.

• var.remove: this variable designates any channels you want completely 

excluded from analysis.

• var.annotate: this variable can be used to rename channels as needed.

• clustering.var: this variable names the channels that should be used to 

influence the graph shape. Channels specified in this variable will be used to 

calculate the between-node distances.

• cluster.numbers: this variable specifies how many clusters to generate from 

each subsampled file. Setting this variable and the subsamples variable will 

dictate the cluster ratio (ratio of the cells subsampled to the number of 

clusters).

• distance.metric: this variable chooses the distance metric to use in all 

calculations.

• minimum: this variable specifies the minimum number of edges allotted 

based on the density in each density-dependent edge drawing step. Setting 

this variable and the maximum edge setting variable will affect the 

cohesiveness of the graph.

• maximum: this variable specifies the maximum number of edges allotted 

based on the density in each density-dependent edge drawing step. Setting 

this variable and the minimum edge setting variable will affect the 

cohesiveness of the graph.

• save.folder: this variable names the folder to which the output files will be 

saved.

• subsamples: this variable specifies how many cells to randomly subsample 

from each FCS file named in files. Setting this variable and the cluster. 

numbers variable will dictate the cluster ratio.

• name.sort: this variable toggles the option to sort user-inputted FCS files 

according to name in alphanumeric order.

• downsample: this variable toggles the option to use the SPADE density-

dependent downsampling11,12.
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• seed.X: this variable is an integer that sets the seed and can be reused to 

reproduce FLOWMAPR results.

• savePDFs: this variable toggles the option to produce PDF files for all 

markers in the final graph.

• which.palette: this variable specifies what colors to use in the scale for each 

variable if the savePDFs option is set to TRUE.
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Box 2 |

FLOW-MAP tips and troubleshooting

In this Box, we provide some general guidelines on how to effectively navigate 

preprocessing, implementation, and troubleshooting of the FLOW-MAP algorithm ● 
Timing 5–8 h

Procedure

1. Analyze your dataset by some conventional means (i.e., heatmaps, histogram, 

dotplots and contour plots) to get an intuition for the following:

• Any parameters that can be removed from the analysis, such as DNA 

staining or cell-event size parameters. These can be supplied using 

the variable var.remove to reduce the number of parameters carried 

through the analysis process.

• Different subpopulations in your data, especially those of interest to 

your question(s). Knowledge of markers that define these 

populations can be used to choose channels to include in the variable 

clustering. var.

• The relative abundance of different subpopulations. This knowledge 

can guide the choice of random subsampling or density-dependent 

downsampling and variables like subsamples, cluster.numbers and 

downsample. Users should choose the appropriate sampling process 

to ensure they do not lose rare populations, if relevant.

• Which markers vary or change across the dataset. Expert knowledge 

of informative markers or markers revealed to be informative using 

other visualizations should be specified in the variable clustering.var.

• If possible or relevant, any expected changes in different 

subpopulations over time. Knowledge of known trajectories in the 

dataset can be used to validate the results of FLOWMAPR analysis 

before identifying novel trajectories.

2. Install FLOWMAPR using instructions found in README and run GUI at 

https://github.com/zunderlab/FLOWMAP using default parameters. If 

comfortable working in R scripts, use run_FLOWMAPR.R file outputted in 

the results folder for fast iteration of parameters.

3. We recommend starting with a small number of clusters and generally 

keeping the cluster ratio smaller (subsample close to or equal to 

cluster.numbers). These settings will allow you to quickly iterate through 

different configurations of edge settings and different choices of markers for 

clustering.var. Try using ≤2,000 total nodes in the graph (clustering.numbers 

= 2,000/number of samples).
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4. Several iterations of FLOWMAPR might be necessary to arrive at optimal 

settings for minimum, maximum and clustering.var. The order in which you 

proceed through the following steps (5 and 6) may depend on your results.

5. Try using the default edge settings for minimum and maximum with different 

options for clustering.var. These results will show how informative different 

sets of markers are. Once you narrow down to a particular marker set, you can 

refine the edge settings.

6. For a given clustering.var setting, you can change edge settings minimum and 

maximum to achieve maximal separation within your data. Users generally 

get the most utility from a graph that best resolves difference and allows for 

spread of different trajectories in the data. Here are some general rules for 

how to tweak the FLOWMAPR edge settings:

• If the graph is too interconnected, reduce the value of maximum. 

You can reduce minimum to 1, but in most cases, we recommend 

keeping the minimum value to ≥2. Try setting maximum to being at 

most minimum +1.

• If the graph is not interconnected enough, increase the value of 

minimum and/or maximum.

• Graphs can essentially become tangled as they are resolved using a 

force-directed layout. Check for these tangles that can be resolved in 

Gephi. In addition, the force-directed layout step is a 

computationally intensive and time-consuming step that may not 

complete during the FLOWMAPR run. Graphs can be resolved to a 

stable shape in Gephi.

7. Once you arrive at a FLOW-MAP graph with the optimal settings, repeat the 

analysis with multiple settings of seed.X to produce ‘technical replicates’ of 

your analysis. Different settings of seed.X will show how the graph does or 

does not change with different random subsampling or random clustering of 

your data.

Most datasets produce interpretable results by setting minimum to 2 and maximum to any 

value between 5 and 20. Some datasets exhibit a ‘saturation point’, where more edges 

allotted (a higher value of maximum) do not significantly change the graph shape. If you 

need more cohesiveness, increase minimum. If you need less cohesiveness, reduce 

maximum.
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Box 3 |

FLOWMAPfromDF function

In this Box, we describe all the parameters you can set within the FLOWMAPfromDF() 

function, which can be used to apply the FLOW-MAP algorithm to any dataset formatted 

as a data.frame object in R. Notably, FLOWMAPfromDF() does not accept var.remove or 

var.annotate variables as data should be properly transformed and markers changed or 

removed before using the FLOW-MAP algorithm. Moreover, SPADE downsampling is 

not available in this mode and should be done before calling FLOWMAPR’s functions. 

Many of the variables and their usage are shared with the FLOWMAP() function, and 

only unique parameters are explained below:

• project.name: this variable specifies a text label that will be appended to 

some of the files generated in the results from the FLOW-MAP run.

• df: this variable contains your data as a data.frame format object, a list of 

data.frame objects or a list of lists of data.frame objects in R. If the latter, it is 

expected that the first level of each list corresponds to different time points 

and that sublists correspond to different conditions (if applicable).

• time.col.label: this required variable specifies which column (by name) 

should be used as the time label for each cell.

• condition.col.label: this optional variable is needed only in the case of 

MultiFLOW-MAP runs to distinguish cells from different conditions/

treatments/time courses. The function will use the column with this name as 

the condition label for each cell.

• clustering: this variable specifies whether or not to cluster within each time 

point, in which case you will need to specify optional variable 

cluster.numbers.
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Fig. 1 |. Conceptual overview of FLOWMAPR software.
The FLOW-MAP algorithm has three major stages: data preprocessing, including optional 

subsampling or density-dependent downsampling and clustering (Steps 1–3); graph building 

between nodes from adjacent time points, allotting edges in a density-dependent manner 

(Step 4); and graph visualization after iterative force-directed layout and postprocessing 

(Steps 5–9). Workflow and example outputs are shown for the four available modes: a, 

single time point, single condition; b, single-time point, multiple conditions; c, multiple time 

points, single condition; and d, multiple-time points, multiple conditions. The default input 

for FLOW-MAP is an FCS file, but the tool can be applied to other formats. Example 

FLOW-MAPs are shown on synthetic 2D datasets.
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Fig. 2 |. FLOW-MAP software GUI interface.
a, Initial interface and file selection for FLOWMAPR GUI. The user should first ensure that 

all FCS files to be analyzed are in one folder. Choose the FCS file directory and a separate 

directory for FLOWMAP results. Recommended defaults are: distance metric = Manhattan, 

FLOW-MAP mode = selection depends on data (see text) and color palette = blue and red. b, 

Parameter selection and running FLOWMAP in R Shiny. After completing steps detailed in 

a, FCS files in the selected folder will be listed here. Reorder FCS files if desired and then 

select ‘Generate Parameters’ to populate FCS file fields. c, Once files are selected, shared 

channels across FCS files will be under the ‘Similar Fields’ section, and any different 

channels across FCS files will be under the ‘Different Fields’ section. There is an option to 

merge different channels across FCS files under a user-generated merge name. For each 
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channel in the FCS file(s), the user can rename, remove or specify its use as a clustering 

variable.
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Fig. 3 |. FLOW-MAP output with extreme parameter settings.
The effects of extreme parameter selection on global graph shape. a, FLOW-MAP analysis 

of a 2D synthetic time course dataset (Supplementary Data 2), with settings Min edge = 2, 

Max edge = 5 and Cluster ratio = 2:1. b, Changing Cluster ratio while holding Min edge and 

Max edge constant. c, Changing the Max edge and Min edge parameters while holding 

Cluster ratio constant.
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Fig. 4 |. Comparison of FLOW-MAP to other single-cell analysis tools.
a, FLOW-MAP plot produced from a 2D synthetic time course dataset (Supplementary Data 

2) with nodes colored by index values to denote the same points across different 

visualizations. The FLOW-MAP graph was generated from random subsampling to 800 cells 

each in the first two time points and 2,400 cells each in the remaining time points, followed 

by clustering to 400 clusters and 1,200 clusters, respectively, with edge settings of Min = 2 

and Max = 5, using marker 1 and marker 2 as clustering variables. b, PCA results produced 

from a dataset containing all time points merged. c, t-SNE results produced from 5,000 cells 

randomly subsampled from merged time point files (perplexity = 250). d, Diffusion maps 

produced in destiny from 1,000 cells subsampled from a dataset containing all time points 

merged, using most informative axes DC1 and DC2. e, SPADE analysis from 2,000 cells 
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after density-dependent downsampling of merged time point files with 100 target nodes. f, 
Monocle analysis of 50,000 cells randomly subsampled from merged time point files. 

Monocle analysis was produced using the Monocle package in R using transformed data 

assuming Gaussian-distributed expression. g, UMAP results produced from 10,000 cells 

randomly subsampled from merged time point files (n_neighbor = 500). All analyses were 

created using marker 1 and marker 2 as clustering/informative variables and colored by time 

point from which cells came. h, mESC differentiation measured by mass cytometry 

(Supplementary Data 3) and then analyzed by FLOW-MAP algorithm, colored by time point 

and condition. The FLOW-MAP graph was generated from random subsampling to 100 

nodes (with no clustering) from each time point and condition, respectively, with edge 

settings of Min = 2 and Max = 100, using the following parameters for graph building: 

Nestin, FoxA2, Oct4, CD45, Vimentin, Cdx2, Nanog, Sox2, Flk1, Tuj1, PDGFRa, EpCAM, 

CD44, GATA4 and CCR9. i, PCA results produced from all conditions and time points 

merged. j, t-SNE results produced from 200 cells subsampled from each condition and time 

point (perplexity = 50). k, Diffusion maps produced in destiny from 100 cells subsampled 

from each condition and time point using the most informative axes DC2, DC3 and DC4. l, 
SPADE analysis from 50,000 cells after density-dependent downsampling of merged time 

point/condition files with 200 target nodes. m, Monocle analysis of 100 cells subsampled 

from each condition and time point. Monocle analysis in Monocle was produced with 

Gaussian family expression. n, t-SNE results produced from 200 cells subsampled from each 

condition and time point. Unless otherwise mentioned, default parameters were used for 

each analysis. All analyses were created using the same markers listed above for FLOW-

MAP as clustering/informative variables and colored by time point and condition from 

which cells came.
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Fig. 5 |. FLOW-MAP analysis of combined mESC differentiation time course.
a, Representative biaxial plots across all time points: FoxA2 versus EpCAM for endoderm-

promoting activin-EGF condition (AE), GATA4 versus PDFGFRα for mesoderm-promoting 

BMP4 condition (B4) and Sox2 versus Tuj1 for ectoderm-promoting N2B27 basal condition 

(N2). b, FLOW-MAP plot colored by distinct graph regions identified in Gephi through the 

Louvain Modularity community detection algorithm with the following settings: 

randomization on, use edge weights on and resolution = 1.0. The FLOW-MAP graph layout 

was generated using the same parameter settings described in Fig. 4h. c, Violin plots 

showing marker expression distributions in each separate graph region identified by Gephi 

community detection. The color code matches identified graph regions shown in b.
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Fig. 6 |. Comparison of protein expression levels in combined mESC differentiation time course.
The same FLOW-MAP graph layout as in Figs. 4h and 5b, now colored by, time point (a), 

culture condition (b) and the median expression levels of SSEA1 (c), Oct4 (d), EpCAM (e), 

FoxA2 (f), GATA4 (g), PDGFRα (h), Sox2 (i) and Tuj1 (j).
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Fig. 7 |. FLOW-MAP analysis of mESC differentiation by individual culture conditions.
a, FLOW-MAP graph of ectoderm differentiation, generated from random subsampling and 

clustering to 2,000 cells and 1,000 clusters from each time point, with edge settings of Min = 

2 and Max = 5, using the following set of clustering variables: Sca1, Nestin, FoxA2, Oct4, 

CD54, SSEA1, Lin28, Cdx2, CD45, Vimentin, Nanog, Sox2, Flk1, Tuj1, PDGFRa, 

EpCAM, CD44 and CCR9. b, FLOW-MAP graph of mesoderm differentiation, generated 

from random subsampling and clustering to 2,000 cells and 1,000 clusters from each time 

point, with edge settings of Min = 2 and Max = 5, using the following set of clustering 

variables: Sca1, Oct4, CD54, SSEA1, Lin28, Cdx2, CD45, Nanog, Sox2, Flk1, Tuj1, 

PDGFRa, EpCAM, CD44, CCR9 and GATA4. c, FLOW-MAP graph of endoderm 

differentiation, generated from random subsampling and clustering to 2,000 cells and 1,000 

clusters from each time point, with edge settings of Min = 2 and Max = 20, using the 

following set of clustering variables: Sca1, FoxA2, Oct4, CD54, SSEA1, Lin28, Cdx2, 

CD45, Nanog, Sox2, Flk1, Tuj1, PDGFRa, EpCAM, CD44, CCR9 and GATA4.
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Fig. 8 |. FLOW-MAP analysis of hematopoietic transitions in bone marrow measured by 
scRNAseq.
a, FLOW-MAP analysis of FACS-sorted human bone marrow populations, measured by 

scRNAseq42, with edge settings of Min = 2 and Max = 5. Coloring by cell types as defined 

by surface markers in Nestorowa et al.42 shows similar cell types grouped. Gata1 (b) and 

Gata2 (c) point to GATA factor switching in this dataset. Mt2 (d) and Hpn (e) as markers of 

erythroid-fated cells, Trib2 (f) as a marker of a pre-erythroid progenitor, Ms4a2 (g) as a 

marker of basophil-fated cells and Pf4 (h) as a marker of megakaryocyte fated cells as 

defined by Tusi et al.32. CMP, common myeloid progenitor; GMP, granulocyte-monocyte 

progenitor; LMPP, lymphoid multipotent progenitor; LTHSC, long-term hematopoietic stem 

cell; MPP, multipotent progenitor; STHSC, short-term hematopoietic stem cell.
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Table 1 |

Troubleshooting table

Step Problem Possible reason Solution

4 In the FLOWMAPfromDF() 
function, the software does not 
recognize input

This error will appear if the provided input (the 
dataframe in R) does not match the mode 
specified by the user

We suggest double-checking that the mode of 
analysis is what you intended and also check 
that the input is one of the accepted inputs for 
that mode

In the FLOWMAP() function, 
the software does not recognize 
input

This error will appear if the provided input (the 
full path of the folder or of the FCS files) does 
not match the mode specified by the user

We suggest that you double-check that the 
mode of analysis is what you intended and 
also check that the input is one of the accepted 
inputs for that mode

The program crashes during 
clustering through Rclusterpp

These crashes originate during hierarchical 
clustering. The source of this bug is still unclear

We recommend trying to circumvent the error 
by changing the number of clusters/
subsampled cells, the distance metric used 
and/or the seed of the FLOWMAPR analysis

The program crashes during 
ForceAtlas2

These crashes originate during the ForceAtlas2 
algorithm stage, which is programmed in C++ 
called from R. The source of this bug is still 
unclear

We recommend trying to circumvent the error 
by changing the seed of the FLOWMAPR 
analysis

7 The final FLOW-MAP graph is 
too interconnected (hairball-like)

Certain edge settings that lead to many edges 
with strong edge weights between the different 
nodes can result in too much pull during the 
force-directed layout step. As a result, differences 
between cell subsets or branching will be de-
emphasized

Try reducing minimum to 1, but generally we 
recommend that minimum is ≥2. Try moving 
maximum to being at most minimum +1

The final FLOW-MAP graph 
layout is amorphous, and/or the 
major cell trajectories are 
obscured by a broad network of 
interconnected low-density 
nodes

Rare outliers can have an outsized influence on 
graph structure. These can make independent 
branches of a graph appear to be more connected 
than they would seem otherwise. Density-
dependent downsampling in particular will enrich 
for these low-density outliers

Perform more stringent preprocessing and 
include an outlier removal step. Great care 
must be exercised in determining which cells 
are outliers to be removed and which cells 
belong to rare populations of interest

The final FLOW-MAP graph is 
not interconnected enough 
(spiky, single nodes radiating 
out)

Certain edge settings lead to too few edges 
between the different nodes. During the force-
directed layout step, there are not enough 
connections to hold cell subsets together and 
visualize clear, cohesive trajectories

Try increasing the minimum and/or maximum

The graph has one or more time 
points, showing up in the wrong 
ordering

Time labels are scraped from these file paths in 
the case of the FLOWMAP function or from 
columns in a data.frame object, if using the 
FLOWMAPfromDF function. These labels may 
then be sorted in R, which may organize the 
labels in a way that seems counterintuitive. For 
example, three FCS files named ‘20.fcs’, ‘3.fcs’ 
and ‘03.fcs’ would be sorted in order: ‘03.fcs’, 
‘20.fcs’ and ‘3.fcs’ in R

Check ahead of time how the file names you 
use would be sorted in R and rename 
accordingly; if your files are named ‘5.fcs’, 
‘10.fcs’ and ‘20.fcs’, then the first file should 
be renamed to ‘05.fcs’ before FLOW-MAP 
analysis

9 The graph from the graphml file 
or the PDFs have unexpected 
labels (especially for time or 
condition)

Condition and time names are scraped from these 
file paths in the case of the FLOWMAP function 
or from columns in a data.frame object if using 
the FLOWMAPfromDF function

If you are performing a FLOWMAPR run 
using the FLOWMAP function, check that 
your FCS files (and folders, if applicable) are 
named according to the acceptable naming 
convention. If you are performing a 
FLOWMAPR run using the 
FLOWMAPfromDF function, check that you 
correctly specify the names of the Condition 
and Time columns in the dataframe, and that 
the labels contained in those columns are 
correct
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